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A modeling approach for heat conduction and radiation diffusion in
plasma-photon mixture in temperature nonequilibrium

C. H. Chang
Los Alamos National Laboratory

We present a simple approach for determining ion, electron, and radiation temperatures of hetero-
geneous plasma-photon mixtures, in which temperatures depend on both material type and mor-
phology of the mixture. The solution technique is composed of solving ion, electron, and radiation
energy equations for both mixed and pure phases of each material in zones containing random mix-
ture and solving pure material energy equations in subdivided zones using interface reconstruction.
Application of interface reconstruction is determined by the material configuration in the surround-
ing zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat
fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures
is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat
flux in each material is determined using the volume fractions.

I. INTRODUCTION

It is possible that each component in a mixture can have different temperatures (temperature
nonequilibrium). In fact, it is exceptional when all materials have identical temperatures. Modeling of
heat transport through mixtures in temperature nonequilibrium needs to include the local heat transfer
between materials (energy exchange) as well as the spatial heat conduction. When thermal radiation
becomes important, local energy exchange and spatial radiation transport also need to be determined in
the nonequilibrium mixture, adding complexity.

It is rather obvious that the material configuration, or mixture morphology, would critically affect
the modeling approach. For example, when materials are segregated in large scale, resolution of contact
interfaces would help determining heat transport. Heat flux through interfaces could of course be calculated
using discretized heat conduction between subdivided zones. If a component in the mixture is dispersed, i.e.,
segregated in small scales, local energy exchange is often modeled as subzonal energy exchange between
materials present in the zone, and typically takes the form of source or sink terms, while spatial heat
conduction and radiation diffusion is modeled by discretized conduction and diffusion terms. Since inter-
material energy exchange in fact is conduction/diffusion in this case, the source/sink terms should be
based on conduction and diffusion. On the other hand, when materials are mixed at the molecular level,
inter-material energy exchange should take the form of collisional energy exchange.

Very little is usually known about the mixture morphology, and a reliable model for morphology
modeling is not currently available. Nonetheless, it is possible to adopt a relatively simple approach to
circumvent the lack of mixture morphology information, and still capture essential information necessary
for reasonable modeling while ignoring information of lesser importance. In this report, we present an
approach based on the ansatz that components of the mixture are “connected” to the neighboring zone,
and the average inter-zonal connection area can simply be determined using the volume fraction. This
way, modification of discretized conduction and diffusion terms is straightforward and simple. The subzonal
inter-material energy exchange would still require models for the necessary information. When such models
are available, e.g., Ref. [1], they can be utilized. If not, a simple energy exchange model presented in Ref. [2]
can be used.

In high temperature environments, materials ionize and radiation energy transport becomes impor-
tant. Complexities added in plasma-photon mixtures include required implicit numerical schemes, energy
exchange between ion and electrons, and radiation-matter interactions. Transport of radiation energy is af-
fected by the material motion. In optically thin material, material motion would hardly affect the radiation
energy, while motion of optically thick material would force the radiation energy move with the material.
In this report, we limit our discussion to the case radiation diffusion is a valid approach. Additional energy
exchange terms in plasma-photon mixtures have been included in the presented modeling approach.

We first describe interface reconstruction techniques that have been frequently used to handle en-
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FIG. 1: Typical mixture morphology expected in mixing caused by breaking up of material B.

ergetics in multitemperature mixtures, and its issues. We then describe our approach of selective utilization
of the interface reconstruction only in the zones with large scale interfaces. We also introduce simplification
of combining all molecular mixtures into a composite material.

II. INTERFACE RECONSTRUCTION AND ENERGY TRANSPORT

Imagine a situation in which a material (B) is breaking off from the bulk and mixing with ma-
terial A, as shown in Fig. 1. In this situation, a substantial fraction of material B is “connected” across
computational zones, while another substantial fraction is dispersed. Obtaining material temperatures in
this situation requires heat fluxes to be correctly calculated across the material interfaces as well as zone
boundaries. This in turn would require dispersed phase size, shape, and locations. In fact, correct calcu-
lation would require mesh resolution comparable to the finest dispersed particulate size, which could be
of order of the mean free path length. It is thus necessary to introduce approximations and/or numerical
techniques.

One conceptually simple way is to utilize the interfaces to represent the mixture morphology.
Figure 2 shows an example of the interfaces constructed between materials A and B in a computational
domain. As illustrated, materials in each zone exchange energy through zone boundaries and interfaces
between materials. Details of this approach can be found in Ref. [3]. This approach has advantages. It
is conceptually straight forward. Subzonal information such as dispersed phase size, shape, location, and
contact surface area is unnecessary. However, this approach requires a large amount of implementation
effort in three dimensions.

Another difficulty is that this technique is subject to an artifact which could generate inaccurate
results to the point of producing misleading computational simulations. It is highly likely that the concen-
tration profile of material B would dictate the interface reconstruction algorithms to locate the material
B toward the higher concentration side in the zone. This could lead to the “layered” structures as shown
in Fig. 3, and resulting temperatures of materials A and B could have substantial amount of error. This
error would be exaggerated when the material A is relatively optically thin. Radiation transport in the
material A would be effective in this case, leading to a relatively uniform temperature distribution in the
real situation represented in Fig. 1. However, this would not be the case in the situation shown in Fig. 3
due to the layering of material B blocking radiation transport in material A. When tracking of material
A temperature is important, the technique solely based on interface reconstruction (illustrated in Fig. 2)
could lead to unacceptably large errors.
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FIG. 2: Heat transfer between materials through interfaces and zone boundaries when interface reconstruction is
used [3].

III. ENERGY CONSERVATION IN RANDOM PHOTON-PLASMA MIXTURES IN
TEMPERATURE NONEQUILIBRIUM

III.1. Energy equations in random mixtures

As discussed above, interface reconstruction may introduce undesirable artifacts. Furthermore,
materials may mix at the molecular level, increasing the level of randomness. In the technique developed
previously [3], when molecular mixtures exist, material interfaces are not constructed, even when dispersed
or continuous phases exist, resulting in equilibrated material temperatures. This largely alleviates the
difficulty discussed above. However, it needs to be generalized in order to track material temperatures of
segregated phases (continuous and dispersed), and mixed phases, separately. We combine the interface
reconstruction and nonequilibrium heat flux model in the present approach. Interface reconstruction is
utilized in the selected zones with resolved interfaces, while zones composed of dispersed and mixed phases

FIG. 3: Example of layered structure produced by interface reconstruction.
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FIG. 4: Zones with various mixture morphology represented by zone typing. The background (yellow) of dispersed
phases represents the mixed phase.

utilize the nonequilibrium heat flux model.
It is necessary to categorize zones according to the mixture morphology of the zone in order to apply

the appropriate modeling techniques. As discussed in the extended mix model [2], mixture is presumed to
be composed of segregated components and molecularly mixed components in which materials A and B
are mixed at the molecular level. (We can regard the molecularly mixed region as a composite material.)
In short, the mixture is composed of continuous phase of A, continuous phase of B, dispersed phase of A,
dispersed phase of B, and composite mixture phase. (Dispersed phase of A is not involved in the discussions
above as mixing process is presumed to occur via break up of the material B. But it is included in the
discussion below.) Illustrated in Fig. 4, computation zones are categorized as:

• Type-1: Zones facing unmixed zones with pure material A or pure material B. These zones usually
contain contact surfaces requiring interface reconstruction.

• Type-2: Zones containing dispersed or continuous components but not facing pure zones.

• Type-3: Zones containing only the molecularly mixed phase.

In our approach, interfaces are constructed only in Type-1 zones. When an interface is involved,
heat flux is calculated using the subzonal information generated by interface reconstruction as shown in
Fig. 2. In these zones, pure material energy equations are solved in subdivided zones. Pure material energy
equations are well-known, thus not repeated here.

Interfaces are not constructed in Type-2 and Type-3 zones. Instead of solving pure material energy
equations as in Type 1 zones, we solve the energy conservation equations for nonequilibrium mixtures given
by [2]
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where ρ̃c
i is the mass density of pure species i, and ei and Ti respectively are the specific energy and

temperature of material i. Superscripts c and m respectively represent pure and molecular mixture forms.
The volume fraction of all segregated pure (chunks) species i (i.e., the volume of chunks of pure species i
per unit total volume) will be denoted by αc

i . Similarly, the volume fraction of molecularly mixed portion
is denoted by αm

i . The mean velocities of species i in pure and molecular mixture forms are denoted by
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uc
i and um

i , respectively. Thermal conductivities kc
i and km

i are evaluated at T c
i and Tm

i , respectively.
Ṁ c

i = −Ṁm
i is the mass conversion rate from the pure component to mixed component of material i.

Compression work Wi, frictional dissipation QF
i , dissipation of unresolved kinetic energy QV

i i, and energy
exchange QT

i are discussed in detail in Ref. [2].

III.2. Energy equations in photon-plasma mixtures

Equations (1) and (2) need to be generalized for plasma-photon mixture. In particular, electron,
ion, and radiation energy need to be solved separately for each material. Note that 3-T diffusion approach,
similar to the one in Ref. [4], has been employed here. Energy equations are given by
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i e

cE
i +WmE

i +QV mE
i +QFmE

i +QTmE
i (7)

∂
(
αm

i ρ̃
m
i e

mR
i

)
∂t

+∇ ·
(
αm

i ρ̃
m
i e

mR
i um

i

)
= ∇ · αm

i k
mR
i ∇(TmR

i )4 − Ṁ c
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where superscripts I, E, and R respectively denote ion, electron and radiation, eR = a(TR)4 is the radiation
energy, and a is the radiation constant. Note that energies of neutral (unionized) particles are included in
Eqs. (3) and (6).

The compression work W is given by
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The dissipation of unresolved kinetic energy QV , given in Ref. [2], is split into electron and ion
energy according to the mass ratio. They are given by
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where ζI
i is the fraction of the dissipation energy into ions in the plasma phase of material i. ζI
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are given by [5]
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where mE the mass of free electron, and mI
I is the mass of ion of species i. The frictional dissipation QFc

i

given in Ref. [2] is split in the identical manner as
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Energy exchange terms QTc
i and QTm

i described in Ref. [2] is not simply split between electrons and
ions. In plasma-photon mixture, they include radiation-matter interactions such as absorption, Compton
scattering, and Bremsstrahlung in addition to the energy exchange due to temperature differences between
electrons and ions. They are given by

QTcI
i =

∑
j

αc
iα

c
jE

cI
ij

(
T cI

j − T cI
i

)
+
∑

j

αc
iα

m
j E

cI
ij

(
TmI

j − T cI
i

)
+ αc

iα
c
iR

cEI
ii

(
T cE

i − T cI
i

)
(21)

QTcE
i =

∑
j

αc
iα

c
jE

cE
ij

(
T cE

j − T cE
i

)
+
∑

j

αc
iα

m
j E

cE
ij

(
TmE

j − T cE
i

)
+ αc

iα
c
iR

cIE
ii

(
T cI

i − T cE
i

)
+ αc

iα
c
iR

cRE
ii

[
(T cR

i )4 − (T cE
i )4

]
(22)

QTcR
i = αc

iα
c
iR

cER
ii

[
(T cE

i )4 − (T cR
i )4

]
(23)

QTmI
i =

∑
j

αm
i α

c
jE

cI
ij

(
T cI

j − TmI
i

)
+
∑

j

αm
i α

m
j R

mII
ij

(
TmI

j − TmI
i

)
+
∑

j

αm
i α

m
j R

mIE
ij

(
TmE

j − TmI
i

)
(24)

QTmE
i =

∑
j

αm
i α

c
jE

cE
ij

(
T cE

j − TmE
i

)
+
∑

j

αm
i α

m
j R

mEI
ij

(
TmI

j − TmE
i

)
+
∑

j

αm
i α

m
j R

mEE
ij

(
TmE

j − TmE
i

)
+
∑

j

αm
i α

m
j R

mER
ij

[
(TmR

j )4 − (TmE
i )4

]
(25)

QTmR
i =

∑
j

αm
i α

m
j R

mRE
ij

[
(TmE

j )4 − (TmR
i )4

]
(26)

As in Ref. [2], Eij is the spatial heat transport rate, and Rij is the local, or collisional, energy transfer
rate.

Observe that QTc
i is composed of ion-ion, ion-electron, and electron-electron energy exchanges

between segregated materials. Radiation is assumed to interact with free electrons only. This modeling
approach implies that a single computational zone is composed of segregated regions with different radiation
temperatures, and is modeled with insufficient mesh resolution.

For mixed composite materials, however, the forms of QTm
i imply that each material component in

the composite material has a different temperature. Furthermore, there are multiple radiation temperature
in the region where materials are mixed at the molecular level, which would make radiation diffusion ap-
proximation invalid. In fact, material temperatures would be identical in the molecular mixture. However,
QTm

i presented above is still expected to produce reasonable results, since REE
ij and RII

ij , are usually quite
large, resulting in equilibrium of TmI

i and TmE
i between materials i. (TmI

i and TmE
i can still be quite

different, since REI
ij may not be large enough.) Due to these large energy exchange rates, the physical

situation is expected to be reasonably modeled. Radiation temperatures may still produce errors when
RER

ij is not large. It is thus recommended to solve energy conservation of the whole composite (mixed)
phase similar to the N + 1 model described in Ref. [2], which is presented in Sec. IV.

III.3. Subzonal energy exchange

Eij = Eji represents subzonal heat conductions such as ion-ion and electron-electron conductions.
Em

ij and Ec
ij have identical functional forms, they are just evaluated at the different temperatures of the
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segregated and mixed phases. They are given by
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where Sij is the characteristic contact surface area between materials i and j, `i is the characteristic length
scale of material i, kB is the Boltzmann’s constant, and m is the particle mass. Bij is the momentum
exchange coefficient give in Ref. [2]. For monodispersed spherical particles, Sij and `i are given in Ref. [1].
The inter-material diffusivity kij between segregated pure-materials pair (i,j) is given by
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When `i are not given, we can use the simple harmonic mean given by
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Prij is the Prandtl number at the segregated material interface, evaluated using electron and ion properties.
If not available, unity can be used.

With a simple inspection, we can deduce that the terms involving Sij in Eqs. (27) and (28)
represent heat conduction. The term involving Bij represents convectional heat transfer, estimated from the
momentum exchange, using elementary kinetic theory [5–7]. Since the momentum exchange is dominated
by ions, the electron contribution has been ignored.

Collisional energy exchange rates for the particle pair (s,t) are given by
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where ns is the number density of the particle type s evaluated in the mixture (ns = αM ρ̃m
s /ms), µst =

msmt/(ms +mt) is the reduced mass of the particle pair s and t, and Tst is the effective pair temperature
given by [5, 6]
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where T is the dummy temperature variable, and Q(1)
st (v) is the cross-section for relative speed v, which is

an integral involving the angle of deflection χ over all impact parameters b given by [8]
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For weakly coupled plasmas Rst is given by
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where Λst = 3kBTstRD/|qsqt, qs is the charge of the single particle of type s, and RD is the Debye length
defined as

RD =
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2
i
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i

)−1/2

(38)

Observe that RD is a property of the whole plasma mixture. Note that collision between electron and
neutral particle can be ignored when the degree of ionization is not small. Rab

ij , where a and b are I or E,
can be evaluated by using appropriate values. For example, RIE

ij can be obtained from Eq. (33), using s
particle as the ion of species i and t particle as the electron of species j. Radiation-electron exchange RER

ij

is given by [4]

RER
ij = acσij (39)

where c and σija are the speed of light and extinction coefficient, respectively.

IV. COMBINED ENERGY EQUATIONS FOR MIXED PHASE

As discussed above, material temperatures in the composite material should be identical (tem-
perature equilibrium). Therefore, Eqs. (6)–(8) can be combined into the energy equation set for the one
composite material. That is, one set of energy equations is solved for the composite material instead of
one set for each species. The combined energy equations are given by
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Radiation enthalpy hmR
i is (4/3)a(TR

M )4 [9].
Mixture average velocity uM and species velocities um

i are determined by solving species momen-
tum equations or Stefan-Maxwell equations given in Ref. [2]. Species densities ρ̃m

i are determined from
species conservation equations also given in Ref. [2]. We recommend employing the composite momentum
equations, when Eqs. (40)–(42) are used.
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Compression work WM , dissipation of unresolved kinetic energy QV
M , frictional dissipation QF

M ,
and energy exchange QT

M are given by
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(48)

QV E
M = ζE

M

∑
j

ζMc
MjC

V
MjαMαc

j

(
Dc

ju
c
j

Dt
− DMuM

Dt

)
·
(
uc

j − uM

)
(49)

QFI
M = ζI

M

∑
j

ζMc
MjB

c
MjαMαc

j

(
uc

j − uM

)
·
(
uc

j − uM

)
(50)

QFE
M = ζE

M

∑
j

ζMc
MjB

c
MjαMαc

j

(
uc

j − uM

)
·
(
uc

j − uM

)
(51)

QTI
M =

∑
j

αMαc
jE

cI
ij

(
T cI

j − T I
M

)
+ αMαMRIE

M

(
TE

M − T I
M

)
(52)

QTE
M =

∑
j

αMαc
jE

cE
ij

(
T cE

j − TE
M

)
+ αMαMREI

M

(
T I

M − TE
M

)
+ αMαMRER

M

[
(TR

M )4 − (TE
M )4

]
(53)

QTR
M = αMαMRRE

M

[
(TE

M )4 − (TR
M )4

]
(54)

Collisional energy exchange rates REI
M = RIE

M are evaluated using Eq. (33) setting s = M and t =
M . Electron-radiation Radiation-electron exchange RER

M is obtained from Eq. (39) using the extinction
coefficient for the composite material σM . Distribution factors ζI

M and ζE
M are determined from Eqs. (17)

and (18). ζMc
Mj is given by ζMc

ij = CvM/(CvM + Cc
vj) [2].

V. SUMMARY AND CONCLUDING REMARKS

The multifluid approach provides a natural framework, when it is necessary to model temperature
dependencies on the mixture morphology. In this approach, molecular mixtures can be combined into a
composite material which has its own energy equation. We have presented both the 2N model, where each
species in the composite material has its own temperature, and the N + 1 model, where the composite
material has one temperature. In both models, ion, electron, and radiation temperatures are separately
tracked, resulting in 6N or 3(N + 1) energy equations. Mixture energy equations are solved in the zones
with random mixtures. When material interfaces are resolved, pure material energy equations are solved
with interface reconstruction. Due to the number of equations to be solved, and the complexity of the
model, we recommend the N + 1 model. When N + 1 model is employed, corresponding N + 1 momentum
equations and Stefan-Maxwell equations can be found in Ref. [2].

The present discussion is limited to the radiation diffusion approach. It should be possible to
generalize the present approach with multi-group diffusion or advanced transport models. This development
will be carried out when needs arise, and reported in due course.
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