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Flynn’s Taxonomy of computer architectures
This taxonomy focuses on control mechanisms

Single Multiple

Instruction Instruction
stream S CEINE

Single data SISD MISD
stream

Multiple data gSiLYI») MIMD
streams

» Single instruction stream, single data stream (SISD)
» Traditional uniprocessors
« Single instruction stream, multiple data streams (SIMD)
» Vector units, GPU stream processors
* Multiple instruction streams, single data stream (MISD)
» Generally specialized systems (e.g. Space shuttle flight control system)
* Multiple instruction streams, multiple data streams (MIMD)
* Multi-core systems
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Single Instruction Single Data

SISD Instruction Pool
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MANIAC at LANL —
John von Neumann & Nicholas
C. Metropolis
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The wider influence of Los Alamos was perhaps of greater signifi-
cance than the machines used and built by the scientists who worked
there. The Manhattan Project involved an unprecedented scale of the
use of numerical modeling as a research and development tool. It also
demonstrated the time and effort needed to do that modeling with
existing technology. As scientists and engineers from the project “dis-
persed to laboratories, universities, companies, and government agen-
cies after the war . . . they provided . . . a receptive climate for the
introduction of electronic computing.””7 Here the key individual was
John von Neumann, who moved between Los Alamos, the early com-
puter projects, the Institute for Advanced Study, and IBM. His Los
Alamos experience may have led von Neumann to doubt the practicali-
ty, with then-existing technology, of parallelism (other than in the lim-
ited form of bit-parallelism) in computer design:
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In March or April 1944, [von Neumann] spent two weeks working in the
punched-card machine operation [at Los Alamos], pushing cards through the
various machines, learning how to wire plugboards and design card layouts, and
becoming thoroughly familiar with the machine operations. He found wiring
the tabulator plugboards particularly frustrating; the tabulator could perform
parallel operations on separate counters, and wiring the tabulator plugboard to
carry out parallel computation involved taking into account the relative timing
of the parallel operations. He later told us this experience led him to reject par-
allel computations in electronic computers and in his design of the single-
address instruction code where parallel handling of operands was guaranteed
not to occur.’S

*MacKenzie, Donald, “Knowing Machines: Essays on Technical Change”
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Single Instruction Multiple Data
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Figure 3-1, Computation section
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Multiple Instruction Multiple Data

,"w MIMD Instruction Pool

—[PU|- Ls[PU|—

—(PU|- —[PU|—

Data Pool

—[PU|- L[PU|

CM-5 by Thinking Machines —|PU|« "—|PU|+
Corp. Composed of SPARC
processors interconnected in
a fat-tree network
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Address Space Organization

« Message-passing architecture

INTERCONNECTION NETWORK

« Shared-address-space
architecture

P: Processor

M: Memocy

P

Inter- Inter- Tnter-

Figure 2.4 A typical message-pasging architecture.
Copyright (r) 1984 Benjamin/Cummings Publighing Co.

connection connection connection

Netwoik Network Network

(a) ib) )

Figure 2.5 Typical shared-address-space architectures: (a) Uniform-memory-
access shared-address-space computer; (b) Non-uniform-memory-access shared-
address-space computer with local and global memories; {c) Non-uniform-memory-
access shared-address-gpace computer with local memory only.

Copyright (r) 1994 Benjamin/Cummings Publishing Co.
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What is Trinity? e

* The Intel Xeon-Phi is a MIMD architecture

» Each Phi processing core is capable of operating on single or multiple data
» Vector processing units (AVX-512) provide SIMD processing per core

» Multiple cores can operate on different instructions and different memories
concurrently (MIMD)

« Within the Phi cores share an address space (shared-address-space
architecture)

* Intel Xeon-Phi processors are interconnected in a flattened butterfly
network

* Network and runtime systems provide either a shared-address-space view of
these processors (Global Address Space runtimes) or a message-passing
view (Message Passing Interface)

* Control mechanisms: SISD, SIMD, and MIMD
« Address space organization: shared-address-space and message-passing
» So what programming model does this support?

* Many!
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Flynn’s Taxonomy of computer architectures

Single Multiple Single Multiple

Instruction Instruction Program Programs
stream streams

Single data
stream

Multiple data SPMD MPMD
streams

» Single program, multiple data streams (SPMD)

« Multiple cooperating processes running a single program
* Multiple programs, multiple data streams (MPMD)

« Multiple cooperating processes running multiple programs

29116 | 11



Single Program Multiple Data

« By far the most widely used programming model in high-performance
computing
+ Well-suited for message-passing architectures

« Each process runs the same program concurrently, exchanging data as
needed to cooperatively complete a computation

» Often uses a stencil computation
« Data that must be shared is often D —con

p (i.j+1.k+1)
“ghosted” explicitly (copied) between N

(i.j.k+1) (i-15,k+1) | (igk+1)  (i+1,jk+1)

cooperating processes

—Co2 a1 —Co1

» Finite-element, finite-volume and particle

b (i.j-1,k+1)

methods are often expressed as SPMD —~co2
(a) (b)
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Multiple Program Multiple Data

» Less widely used in HPC, broadly used in “big data” applications
« Also well suited for message-passing architectures

« Each process runs a different program concurrently, exchanging data
as needed to cooperatively complete a computation

» Often used in data-flow computations

* Producer-consumer models of computation
* Think pipes & filters in Unix

Is -1 | tee file.txt | less
—‘ n

stdout T’ stdin
' _RelU )
file.txt @/‘ I
MatMul)

« Some HPC applications utilize this model
* Multi-scale applications such as ExMatEx’s Tabasco application
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ExMatEx Workflow Overview
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So what is a programming model?
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What is a programming model?




Programming languages

Guide to
Fortran 2008
Programming

PROGRAMMING
LANGUAGE

HASKELL

M L for the

WORKIN G
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s L.C. Paulson




Runtime Systems

A7 WP

arm OpenAGCC

Directives for Accelerators

OpenMP

Legion

A Data-Centric Parallel Programming
System




Programming Model and Environments

Programming Model

Programming Environment

System Level Node Level
* Legion * Legion
« UPC/PGAS (LBL) « TiDA (LBL)
* OCR (Intel, Rice) » Kokkos (SNL)
* Charm++ (UIUC * Raja (LLNL)
P Ve K . T (LANL)
srorage | I situ Too/g

— abstract

— concrete implementation

The programming model is an abstraction of the underlying computer system,

allowing the expression of algorithms and data structures

- Languages and runtimes provide implementations of these abstractions
- A programming model exists independent of choice of language and runtime



A7 NP

* MPI (The Message Passing Interface)

— Provides abstractions to implement either SIMD or MIMD using a message-passing
architecture

* Each process in an MPI application is assigned a rank (0 — N) existing within a
global MPI_COMM_WORLD

e Two-sided communication
— MPI_SEND/MPI_RECEIVE

e One-sided communication
—  MPI_PUT/MPI_GET

e (Collective communication
— MPI_BCAST, MPI_GATHER, MPI_ALLTOALL

e Reductions
— MPI_REDUCE

* Process granularity can be controlled by the user
— Single process per node, single process per core

* Provides a well-documented APl with C, C++, and FORTRAN bindings



/******************************************************************************

* FILE: mpi_helloBsend.c

* DESCRIPTION:

* MPI tutorial example code: Simple hello world program that uses blocking
* send/receive routines.

* AUTHOR: Blaise Barney

* LAST REVISED: 06/08/15
******************************************************************************/
#include "mpi.h"

#include <stdio.h>

#include <stdlib.h>

#define MASTER 0

int main (int argc, char *argv|])

{

int numtasks, taskid, len, partner, message;
char hostname[MPI_MAX_PROCESSOR_NAME];
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);



/* need an even number of tasks */
if (numtasks % 2 !=0) {
if (taskid == MASTER)
printf("Quitting. Need an even number of tasks: numtasks=%d\n", numtasks);
}
else {
if (taskid == MASTER)
printf("MASTER: Number of MPI tasks is: %d\n",numtasks);
MPI_Get_processor_name(hostname, &len);
printf ("Hello from task %d on %s!\n", taskid, hostname);
/* determine partner and then send/receive with partner */
if (taskid < numtasks/2) {
partner = numtasks/2 + taskid;
MPI_Send(&taskid, 1, MPI_INT, partner, 1, MPI_COMM_WORLD);
MPI_Recv(&message, 1, MPI_INT, partner, 1, MPI_COMM_WORLD, &status);
}
else if (taskid >= numtasks/2) {
partner = taskid - numtasks/2;
MPI_Recv(&message, 1, MPI_INT, partner, 1, MPI_COMM_WORLD, &status);
MPI_Send(&taskid, 1, MPI_INT, partner, 1, MPI_COMM_WORLD);
}
/* print partner info and exit*/
printf("Task %d is partner with %d\n",taskid,message);

}
MPI_Finalize();

}



Fork Join
O enMP
. Serial region Serial region

Parallel region

* Provides abstractions to implement either SIMD
or MIMD using a shared-memory architecture

* Uses the fork-join model of parallelism

— A master thread forks multiple parallel threads to
execute a parallel region
* Provides constructs for parallel-for, tasks, and
reductions

* Pragma based: OMP directives are inserted in the
application code to describe parallel regions and
reduction operations



#include <stdio.h>
H#include <math.h>
#include <omp.h>

int main()

{
const int N = 10000000;

const double L = 1.0;
const doubleh=L/N;
const double x_0=0.0;

double pi;
doublet 1,t 2;

inti;
double sum = 0.0;

t 1 =omp_get_wtime();

#pragma omp parallel for reduction(+: sum)

schedule(static)
for (i=0; i< N; ++i)
{
doublex=x 0+i*h+h/2;
sum +=sqrt(1 - x*x);

}

t 2 =omp_get_wtime();

pi =sum * h * 4.0;

printf("omp_get_max_threads(): %d\n",
omp_get_max_threads());

printf("time: %f\n", t 2 -t_1);

printf("pi ~ %f\n", pi);

return O;




Kokkos: Performance Portable Thread-Parallel ) o
Programming Model

* Open source, C++11-based library Applications & Libraries
for node-level programming: X
application identifies parallelizable Kokkos
grains of
I
§ ) I 1

Multi-core | Many-core | APU | CPU+GPU

v’ Multicore CPU - including NUMA architectural concerns

v'Intel Xeon Phi (KNC) — testbed prototype toward Trinity / ATS-1
v"NVIDIA GPU (Kepler) — testbed prototype toward Sierra / ATS-2
<> IBM Power 8 — testbed prototype toward Sierra / ATS-2

<> AMD Fusion — via collaboration with AMD

v" Regularly and extensively tested
<> Ramping up testing

https://github.com/kokkos/kokkos




Kokkos Abstractions: Patterns, Policies, and Spaces

Parallel Pattern of user’s computations

e parallel_for, parallel_reduce, parallel_scan, task-graph, ... (extensible)
Execution Policy tells how the computations will be executed
 Static scheduling, dynamic scheduling, thread-teames, ... (extensible)
Execution Space tells where the computations will execute

* Which cores, numa region, GPU, ... (extensible)

Memory Space tells where user data resides

e Host memory, GPU memory, high bandwidth memory, ... (extensible)
Layout (policy) tells how user data is laid out in memory

* Row-major, column-major, array-of-struct, struct-of-array ... (extensible)

Sandia
National
Laboratories

parallel for( nrow, KOKKOS LAMBDA( int 1 ) {
for ( int 7 = irow([i] ; J < dirow[i+1l] ; ++7J )
y[i] += A[J] * x[ jcol[3j] 1;
});




UI_. Lawrence Livermore National Laboratory

RAJA: A Systematic Approach to Node-
Level Portability and Tuning

* Loops are the main conceptual abstraction in RAJA

* Based on loop structures and mesh traversal patterns in LLNL ASC codes (many
loops O(10K) but only O(10) patterns — RAJA categorizes these patterns.

* Lightweight, can be adopted incrementally, does not overburden
maintenance, allows easy exploration of alternative parallel strategies

* Key abstractions:

* Traversals & execution policies (loop scheduling, execution, implementation
details)

* |IndexSets (iteration space partition, data placement, dependency scheduling)

* Reduction types (programming model portability)

More on RAJA: http://1.usa.gov/1MJXIGd
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IndexSets Allow Common Algorithms to Run Safely
in Parallel Without Refactoring or Critical Sections

* Allows loop traversals to execute groups of work in parallel that guarantee no
race conditions in otherwise non thread-safe loops

* E.g. Element volume can be distributed to nodes without
contention-heavy fine-grained synchronization such as
critical sections, atomic operations, and temporary arrays

forall<colorset> (elemSet, [=] (int elem) {
int p0 = elemToNodeMap[elem] [0];
int pl = elemToNodeMapl[elem] [1];
int p2 = elemToNodeMapl[elem] [2];
int p3 = elemToNodeMap[elem] [3];
double volFrac = elemVol[elem]/4.0 ;

nodeVol [p0O] += volFrac ;
nodeVol [pl] += volFrac ; Pparallel
nodeVol [p2] += volFrac ;
nodeVol [p3] += volFrac ;

Yoo
* Indexsets allow for ‘contention-light’ coarse-grained locking

: PO p
reductions
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Quick Overview of the Legion Programming e

Model

Targets heterogeneous, distributed memory machines

A
° Lo/?sAIamos

AAAAAAAAAAAAAAAAAA

NVIDIA.

* Task: unit of parallel execution
» Task arguments are regions (collection of data w/ an index and field space)
* Regions may be arbitrarily partitioned (by index space) and sliced by field (access)
* Tasks must specify how they use their regions:
* Privlieges(read-only,write-only,read+write,reduce)

» Coherence(exclusive,atomic,simultaneous) —w/ respect to “sibling” tasks

* Tasks launches follow sequential semantics with relaxed execution order

https://github.com/StanfordLegion/legion




Mapping Tasks and Data to Hardware
Resources

* Application selects:
* Where tasks run and where regions are placed

e Computed dynamically

» Decouple correctness from performance NUMAD
NUMA 1

Region1 Region 2
NUMA O
/ \ CPU NUMA 1
N NUMA O
1/> Mapper > CPU NUMA 1
/ NUMA O
CPU NUMA 1

GPU

Task




Mapping Tasks and Data to Hardware Resources
Interoperability: Supporting Task-Level Models

* Interoperability: Allow tasks to be written in different
programming models . Kokkos “Processor”

* Different versions of a task may be provided...

Region1 Region 2

.

Kokkos
Task

Kokkos “Processor”



X CENTER FOR EXASCALE SIMULATION
OF COMBUSTION IN TURBULENCE

Legion S3D Execution and
Performance Details

Weak scaling results on Titan out to 8K nodes
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Workflow: Integration of External JLosA|amos (
Resources into the Programming Model 4 it ﬁ;r m./m A

* We can’t ignore the full workflow!
TheHDFGnoup

e Amdahl's law sneaks in if we consider

I/O from tasks — 15-76% overhead vs. 20—, ! 30.00 76.51

. . [ Fort
2-12% of original Fortran code! = Legion

B Iris
] L B |

* Introduce new semantics for operating
with external resources (e.g. storage,
databases, etc.).

10-....?_ ............................................................................................. -
* Incorporates these resources into deferred |

execution model

* Maintains consistency between different
copies of the same data

Checkpoint Overhead (in % of Base Simulation Time)

s mlml

* Underlying parallel I/0 handled by HDF5 200 100 S 20
but SCheduIed by runtime Save Interval (in Timesteps)

. . . Performance of S3D checkpoints running on 64 nodes
e Allow applications to adjust the (i.e., 1,024 cores) of Titan.

snapshot interval based on available
storage and system fault concerns
instead of overheads.




#include <cstdio>

#include <cassert>

#include <cstdlib>

#include "legion.h"

using namespace LegionRuntime: :HighlLevel;

enum TaskIDs {

b

TOP_LEVEL_TASK_ID,

FIBONACCI_TASK_ID,
SUM_TASK_ID,

void top_level_task(const Task *task,

}

const std: :vector<PhysicalRegion> &regions,
Context ctx, HighLevelRuntime *runtime) {
int num_fibonacci = 7; // Default value
const InputArgs &command_args = HighlLevelRuntime: :get_input_argsQ);
if (command_args.argc > 1) {
num_fibonacci = atoi(command_args.argv[1]);
assert(num_fibonacci >= 0);

}

printf("Computing the first %d Fibonacci numbers...\n

, hum_fibonacci);

std: :vector<Future> fib_results;

for (int 1 = 0; 1 < num_fibonacci; i++) {
TaskLauncher launcher(FIBONACCI_TASK_ID, TaskArgument(&i,sizeof(i)));
fib_results.push_back(runtime->execute_task(ctx, launcher));

}

for (int i = 0; 1 < num_fibonacci; i++) {
int result = fib_results[i].get_result<int>(Q);
printf("Fibonacci(%d) = %d\n", i, result);

}

fib_results.clear();



int fibonacci_task(const Task *task,
const std: :vector<PhysicalRegion> &regions,
Context ctx, HighLevelRuntime *runtime) {
assert(task->arglen == sizeof(int));
int fib_num = *(const int*)task->args;
if (fib_num == 0)
return 0;
if (fib_num == 1)
return 1;

// Launch fib-1

const int fibl = fib_num-1;

TaskLauncher t1(FIBONACCI_TASK_ID, TaskArgument(&fibl,sizeof(fibl)));
Future fl = runtime->execute_task(ctx, tl1);

// Launch fib-2

const int fib2 = fib_num-2;

TaskLauncher t2(FIBONACCI_TASK_ID, TaskArgument(&fib2,sizeof(fib2)));
Future f2 = runtime->execute_task(ctx, t2);

TaskLauncher sum(SUM_TASK_ID, TaskArgument(NULL, ©));
sum.add_future(fl);

sum.add_future(f2);

Future result = runtime->execute_task(ctx, sum);

return result.get_result<int>(Q);



int sum_task(const Task *task,

const std: :vector<PhysicalRegion> &regions,
Context ctx, HighLevelRuntime *runtime) {

assert(task->futures.size() == 2);

Future fl1 = task->futures[0];

int rl = fl.get_result<int>(Q);

Future f2 = task->futures[1];

int r2 = f2.get_result<int>(Q);

return (rl + r2);

}

int main(int argc, char **argv) {

HighLevelRuntime: : set_top_level_task_id(TOP_LEVEL_TASK_ID);

HighLevelRuntime: : register_legion_task<top_level_task>(TOP_LEVEL_TASK_ID,
Processor: : LOC_PROC, true/*single*/, false/*index*/);

HighLevelRuntime: :register_legion_task<int,fibonacci_task>(FIBONACCI_TASK_ID,
Processor: : LOC_PROC, true/*single*/, false/*index*/);

HighLevelRuntime: :register_legion_task<int,sum_task>(SUM_TASK_ID,
Processor: : LOC_PROC, true/*single*/, false/*index*/,
AUTO_GENERATE_ID, TaskConfigOptions(true/*leaf*/), "sum_task");

return HighLevelRuntime: :start(argc, argv);

}



Resources

MPI: https://computing.linl.gov/tutorials/mpi/
OpenMP: https://computing.linl.gov/tutorials/openMP/

OpenACC: http://www.openacc.org
Kokkos: https://github.com/kokkos/kokkos-tutorials

Raja: http://software.lInl.gov/RAJA/
Legion: http://legion.stanford.edu

Charm++: http://charm.cs.illinois.edu/research/charm

PGAS: http://www.pgas.org




