
LA-UR-16-26424
Approved for public release; distribution is unlimited.

Title: Programming Models in HPC

Author(s): Shipman, Galen M.

Intended for: Make presentation available to LANL Parallel Computing summer school
participants (externally).
Web

Issued: 2016-08-22

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

NOTE: THIS IS
YOUR WALK-IN
SLIDE OPTION
#1. Instead of the
Title Slide,
display this slide
on the venue
screen while your
audience is
arriving.

This is not a title
slide.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

NOTE: THIS IS
YOUR TITLE
SLIDE.

If you use the
Walk-in Slide, you
may replace the
gray LANL logo
on the Title Slide
with your
organization’s
logo and delete
the NNSA logo/
management
statement.

If you DO NOT
use one of the two
the Walk-in Slide
options, you
MUST keep the
LANL and NNSA
logos and
management
statement on this
Title Slide.

Los Alamos National Laboratory

Programming Models in HPC

Galen Shipman

6/13/2016

 Parallel Computing Summer School

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

2/9/16 | 3

NOTE:
This is the
lab color
palette. è

Flynn’s Taxonomy of computer architectures
 This taxonomy focuses on control mechanisms

Single
Instruction
stream

Multiple
Instruction
streams

Single data
stream

SISD MISD

Multiple data
streams

SIMD MIMD

•  Single instruction stream, single data stream (SISD)
•  Traditional uniprocessors

•  Single instruction stream, multiple data streams (SIMD)
•  Vector units, GPU stream processors

•  Multiple instruction streams, single data stream (MISD)
•  Generally specialized systems (e.g. Space shuttle flight control system)

•  Multiple instruction streams, multiple data streams (MIMD)
•  Multi-core systems

Los Alamos National Laboratory

2/9/16 | 4

NOTE:
This is the
lab color
palette. è

Single Instruction Single Data

MANIAC at LANL –
John von Neumann & Nicholas
C. Metropolis

Los Alamos National Laboratory

2/9/16 | 5

NOTE:
This is the
lab color
palette. è

Los Alamos National Laboratory

2/9/16 | 6

NOTE:
This is the
lab color
palette. è

*MacKenzie, Donald, “Knowing Machines: Essays on Technical Change”

Los Alamos National Laboratory

2/9/16 | 7

NOTE:
This is the
lab color
palette. è

Single Instruction Multiple Data

Seymour Cray and the
Cray-1, first installation was at
LANL in 1976
Brought vector processing
into wide-spread HPC use

Los Alamos National Laboratory

2/9/16 | 8

NOTE:
This is the
lab color
palette. è

Multiple Instruction Multiple Data

CM-5 by Thinking Machines
Corp. Composed of SPARC
processors interconnected in
a fat-tree network

Los Alamos National Laboratory

2/9/16 | 9

Address Space Organization

•  Message-passing architecture •  Shared-address-space
architecture

Los Alamos National Laboratory

2/9/16 | 10

NOTE:
This is the
lab color
palette. è

What is Trinity?

•  The Intel Xeon-Phi is a MIMD architecture
•  Each Phi processing core is capable of operating on single or multiple data

•  Vector processing units (AVX-512) provide SIMD processing per core

•  Multiple cores can operate on different instructions and different memories
concurrently (MIMD)

•  Within the Phi cores share an address space (shared-address-space
architecture)

•  Intel Xeon-Phi processors are interconnected in a flattened butterfly
network
•  Network and runtime systems provide either a shared-address-space view of

these processors (Global Address Space runtimes) or a message-passing
view (Message Passing Interface)

•  Control mechanisms: SISD, SIMD, and MIMD
•  Address space organization: shared-address-space and message-passing
•  So what programming model does this support?

•  Many!

Los Alamos National Laboratory

2/9/16 | 11

NOTE:
This is the
lab color
palette. è

Flynn’s Taxonomy of computer architectures

Single
Instruction
stream

Multiple
Instruction
streams

Single
Program

Multiple
Programs

Single data
stream

SISD MISD

Multiple data
streams

SIMD MIMD SPMD MPMD

•  Single instruction stream, single data stream (SISD)
•  Traditional uniprocessors

•  Single instruction stream, multiple data streams (SIMD)
•  Vector units, GPU stream processors

•  Multiple instruction streams, single data stream (MISD)
•  Multiple instruction streams, multiple data streams (MIMD)

•  Multi-core systems
•  Single program, multiple data streams (SPMD)

•  Multiple cooperating processes running a single program
•  Multiple programs, multiple data streams (MPMD)

•  Multiple cooperating processes running multiple programs

Los Alamos National Laboratory

2/9/16 | 12

NOTE:
This is the
lab color
palette. è

Single Program Multiple Data

•  By far the most widely used programming model in high-performance
computing

•  Well-suited for message-passing architectures
•  Each process runs the same program concurrently, exchanging data as

needed to cooperatively complete a computation
•  Often uses a stencil computation
•  Data that must be shared is often
 “ghosted” explicitly (copied) between
 cooperating processes
•  Finite-element, finite-volume and particle
 methods are often expressed as SPMD

Los Alamos National Laboratory

2/9/16 | 13

NOTE:
This is the
lab color
palette. è

Multiple Program Multiple Data

•  Less widely used in HPC, broadly used in “big data” applications
•  Also well suited for message-passing architectures
•  Each process runs a different program concurrently, exchanging data

as needed to cooperatively complete a computation
•  Often used in data-flow computations
•  Producer-consumer models of computation

•  Think pipes & filters in Unix

•  Some HPC applications utilize this model

•  Multi-scale applications such as ExMatEx’s Tabasco application

DB

On-demand fine
scale models

(MPMD)

Coarse-scale
model

(SPMD)
DB$

Eventually
consistent
distributed
database

Adaptive
Sampler

FSM

Subdomain 1

Subdomain 2

FSM FSM

Node 1

DB

DB

DB$
Adaptive
Sampler

Subdomain N-1

Subdomain N

Node N/2

ExMatEx Workflow Overview

Los Alamos National Laboratory

2/9/16 | 15

So what is a programming model?

NOTE:	
This	is	the	
lab	color	
pale/e.	è

What	is	a	programming	model?		

Not	Programming	Models	

NOTE:	
This	is	the	
lab	color	
pale/e.	è

Programming	languages			

NOTE:	
This	is	the	
lab	color	
pale/e.	è

Run;me	Systems		

Legion
A Data-Centric Parallel Programming
System	

Programming Model and Environments

Programming Model 	–	abstract

Programming Environment 	–	concrete	implementa0on

System Level Node Level
•  Legion
•  TiDA (LBL)
•  Kokkos (SNL)
•  Raja (LLNL)
•  Tilearchy (LANL)
•  OpenMP

•  Legion
•  UPC/PGAS (LBL)
•  OCR (Intel, Rice)
•  Charm++ (UIUC)
•  MPI

Storage In situ

The	programming	model	is	an	abstrac0on	of	the	underlying	computer	system,		
allowing	the	expression	of	algorithms	and	data	structures		
	-	Languages	and	run0mes	provide	implementa0ons	of	these	abstrac0ons		
	-	A	programming	model	exists	independent	of	choice	of	language	and	run0me	

Tools Compiler

•  MPI		(The	Message	Passing	Interface)		
–  Provides	abstrac;ons	to	implement	either	SIMD	or	MIMD	using	a	message-passing	

architecture		
•  Each	process	in	an	MPI	applica;on	is	assigned	a	rank	(0	–	N)	exis;ng	within	a	

global	MPI_COMM_WORLD		
•  Two-sided	communica;on		

–  MPI_SEND/MPI_RECEIVE		
•  One-sided	communica;on		

–  MPI_PUT/MPI_GET		
•  Collec;ve	communica;on		

–  MPI_BCAST,	MPI_GATHER,	MPI_ALLTOALL	
•  Reduc;ons		

–  MPI_REDUCE	
•  Process	granularity	can	be	controlled	by	the	user		

–  Single	process	per	node,	single	process	per	core		
•  Provides	a	well-documented	API	with	C,	C++,	and	FORTRAN	bindings		

/**	
*	FILE:	mpi_helloBsend.c	
*	DESCRIPTION:	
*			MPI	tutorial	example	code:	Simple	hello	world	program	that	uses	blocking	
*			send/receive	rou;nes.	
*	AUTHOR:	Blaise	Barney	
*	LAST	REVISED:	06/08/15	
**/	
#include	"mpi.h"	
#include	<stdio.h>	
#include	<stdlib.h>	
#define		MASTER 	 	0	
	
int	main	(int	argc,	char	*argv[])	
{	
int		numtasks,	taskid,	len,	partner,	message;	
char	hostname[MPI_MAX_PROCESSOR_NAME];	
MPI_Status	status;	
	
MPI_Init(&argc,	&argv);	
MPI_Comm_rank(MPI_COMM_WORLD,	&taskid);	
MPI_Comm_size(MPI_COMM_WORLD,	&numtasks);	

/*	need	an	even	number	of	tasks		*/	
if	(numtasks	%	2	!=	0)	{	
			if	(taskid	==	MASTER)		
						prino("Quiqng.	Need	an	even	number	of	tasks:	numtasks=%d\n",	numtasks);	
			}			
else	{	
				if	(taskid	==	MASTER)		
						prino("MASTER:	Number	of	MPI	tasks	is:	%d\n",numtasks);	
			MPI_Get_processor_name(hostname,	&len);	
			prino	("Hello	from	task	%d	on	%s!\n",	taskid,	hostname);	
			/*	determine	partner	and	then	send/receive	with	partner	*/	
			if	(taskid	<	numtasks/2)	{	
					partner	=	numtasks/2	+	taskid;	
					MPI_Send(&taskid,	1,	MPI_INT,	partner,	1,	MPI_COMM_WORLD);	
					MPI_Recv(&message,	1,	MPI_INT,	partner,	1,	MPI_COMM_WORLD,	&status);	
					}	
			else	if	(taskid	>=	numtasks/2)	{	
					partner	=	taskid	-	numtasks/2;	
					MPI_Recv(&message,	1,	MPI_INT,	partner,	1,	MPI_COMM_WORLD,	&status);	
					MPI_Send(&taskid,	1,	MPI_INT,	partner,	1,	MPI_COMM_WORLD);	
					}	
			/*	print	partner	info	and	exit*/	
			prino("Task	%d	is	partner	with	%d\n",taskid,message);	
			}	
MPI_Finalize();	
}	

•  Provides	abstrac;ons	to	implement	either	SIMD	
or	MIMD	using	a	shared-memory	architecture		

•  Uses	the	fork-join	model	of	parallelism		
– A	master	thread	forks	mul;ple	parallel	threads	to	
execute	a	parallel	region		

•  Provides	constructs	for	parallel-for,	tasks,	and	
reduc;ons		

•  Pragma	based:	OMP	direc;ves	are	inserted	in	the	
applica;on	code	to	describe	parallel	regions	and	
reduc;on	opera;ons		

Serial	region	 Serial	region	

Parallel	region	

Fork	 Join	

	
#pragma	omp	parallel	for	reduc;on(+:	sum)		

	 	 	 	 	 	 	schedule(sta;c)	
				for	(i	=	0;	i	<	N;	++i)	
				{	
								double	x	=	x_0	+	i	*	h	+	h/2;	
								sum	+=	sqrt(1	-	x*x);	
				}	
	
				t_2	=	omp_get_w;me();	
	
				pi	=	sum	*	h	*	4.0;	
	
				prinA("omp_get_max_threads():	%d\n",	

	 	 	 	 	 	
	omp_get_max_threads());	

				prinA(";me:	%f\n",	t_2	-	t_1);	
				prinA("pi	~	%f\n",	pi);	
	
				return	0;	
}	
	

#include	<stdio.h>	
#include	<math.h>	
#include	<omp.h>	
	
int	main()	
{	
				const	int	N	=	10000000;	
				const	double	L	=	1.0;	
				const	double	h	=	L	/	N;	
				const	double	x_0	=	0.0;	
	
				double	pi;	
				double	t_1,	t_2;	
	
				int	i;	
				double	sum	=	0.0;	
	
				t_1	=	omp_get_w;me();	

NOTE:	
This	is	the	
lab	color	
pale/e.	è Kokkos:	Performance	Portable	Thread-Parallel	

Programming	Model	

•  Open	source,	C++11-based	library	
for	node-level	programming:	
applica;on	iden;fies	parallelizable	
grains	of	computa0ons	and	data	

Many-core	Mul;-core	 CPU+GPU	

Kokkos	

APU	

Applica;ons	&	Libraries	

h/ps://github.com/kokkos/kokkos	

ü Mul;core	CPU	-	including	NUMA	architectural	concerns	
ü Intel	Xeon	Phi	(KNC)	–		testbed	prototype	toward	Trinity	/	ATS-1	
ü NVIDIA	GPU	(Kepler)	–	testbed	prototype	toward	Sierra	/	ATS-2	
²  IBM	Power	8	–	testbed	prototype	toward	Sierra	/	ATS-2	
² AMD	Fusion	–	via	collabora;on	with	AMD	

ü  Regularly	and	extensively	tested	
²  Ramping	up	tes;ng	

NOTE:	
This	is	the	
lab	color	
pale/e.	è

Kokkos	Abstrac0ons:	PaCerns,	Policies,	and	Spaces	

•  Parallel	Pa[ern	of	user’s	computa;ons	
•  parallel_for,	parallel_reduce,	parallel_scan,	task-graph,	...	(extensible)	

•  Execu;on	Policy	tells	how	the	computa;ons	will	be	executed	
•  Sta;c	scheduling,	dynamic	scheduling,	thread-teams,	...	(extensible)	

•  Execu;on	Space	tells	where	the	computa;ons	will	execute	
•  Which	cores,	numa	region,	GPU,	...	(extensible)	

•  Memory	Space	tells	where	user	data	resides	
•  Host	memory,	GPU	memory,	high	bandwidth	memory,	...	(extensible)	

•  Layout	(policy)	tells	how	user	data	is	laid	out	in	memory	
•  Row-major,	column-major,	array-of-struct,	struct-of-array	…		(extensible)	

	
parallel_for(nrow, KOKKOS_LAMBDA(int i){
 for (int j = irow[i] ; j < irow[i+1] ; ++j)
 y[i] += A[j] * x[jcol[j]];
});

NOTE:	
This	is	the	
lab	color	
pale/e.	è RAJA:	A	Systema;c	Approach	to	Node-

Level	Portability	and	Tuning	
•  Loops	are	the	main	conceptual	abstrac;on	in	RAJA	

•  Based	on	loop	structures	and	mesh	traversal	pa/erns	in	LLNL	ASC	codes	(many	
loops	O(10K)	but	only	O(10)	pa/erns	–	RAJA	categorizes	these	pa/erns.	

•  Lightweight,	can	be	adopted	incrementally,	does	not	overburden	
maintenance,	allows	easy	explora;on	of	alterna;ve	parallel	strategies	

•  Key	abstrac;ons:	
•  Traversals	&	execu;on	policies	(loop	scheduling,	execu;on,	implementa;on	
details)	

•  IndexSets	(itera;on	space	par;;on,	data	placement,	dependency	scheduling)	
•  Reduc;on	types	(programming	model	portability)	

More	on	RAJA:	h/p://1.usa.gov/1MJXlGd	

NOTE:	
This	is	the	
lab	color	
pale/e.	è IndexSets	Allow	Common	Algorithms	to	Run	Safely	

in	Parallel	Without	Refactoring	or	Cri;cal	Sec;ons	

•  Allows	loop	traversals	to	execute	groups	of	work	in	parallel	that	guarantee	no	
race	condi;ons	in	otherwise	non	thread-safe	loops	

•  E.g.	Element	volume	can	be	distributed	to	nodes	without	
conten;on-heavy	fine-grained	synchroniza;on	such	as	
cri;cal	sec;ons,		atomic	opera;ons,	and	temporary	arrays	

forall<colorset>(elemSet, [=] (int elem) {
 int p0 = elemToNodeMap[elem][0];
 int p1 = elemToNodeMap[elem][1];
 int p2 = elemToNodeMap[elem][2];
 int p3 = elemToNodeMap[elem][3];
 double volFrac = elemVol[elem]/4.0 ;
 nodeVol[p0] += volFrac ;
 nodeVol[p1] += volFrac ;
 nodeVol[p2] += volFrac ;
 nodeVol[p3] += volFrac ;
}) ;
•  Indexsets	allow	for	‘conten;on-light’	coarse-grained	locking	

Parallel	
reduc;ons	

NOTE:	
This	is	the	
lab	color	
pale/e.	è Quick	Overview	of	the	Legion	Programming	

Model	

Targets	heterogeneous,	distributed	memory	machines	

•  Task:	unit	of	parallel	execu;on		
•  Task	arguments	are	regions	(collec;on	of	data	w/	an	index	and	field	space)	
•  Regions	may	be	arbitrarily	par;;oned	(by	index	space)	and	sliced	by	field	(access)	

•  Tasks	must	specify	how	they	use	their	regions:		
•  Privlieges(read-only,write-only,read+write,reduce)	
•  Coherence(exclusive,atomic,simultaneous)	–w/	respect	to	“sibling”	tasks	

•  Tasks	launches	follow	sequen;al	seman;cs	with	relaxed	execu;on	order	
	

h/ps://github.com/StanfordLegion/legion	

NOTE:	
This	is	the	
lab	color	
pale/e.	è

Mapper	

Task	

Mapping Tasks and Data to Hardware
Resources

Region	1	 Region	2	

CPU	
NUMA	0	
NUMA	1	

CPU	
NUMA	0	
NUMA	1	

CPU	
NUMA	0	
NUMA	1	

CPU	
NUMA	0	
NUMA	1	

GPU	
MEMORY	

•  Applica;on	selects:	
•  Where	tasks	run	and	where	regions	are	placed		
•  Computed	dynamically	
•  Decouple	correctness	from	performance	

NOTE:	
This	is	the	
lab	color	
pale/e.	è

Mapper	

Region	1	 Region	2	

CPU	
NUMA	0	
NUMA	1	

CPU	
NUMA	0	
NUMA	1	

CPU	
NUMA	0	
NUMA	1	

CPU	
NUMA	0	
NUMA	1	

GPU	
MEMORY	

Kokkos	“Processor”	

Kokkos	“Processor”	

Kokkos	
Task	

•  Interoperability:	Allow	tasks	to	be	wri[en	in	different	
programming	models	
•  Different	versions	of	a	task	may	be	provided…	

Mapping Tasks and Data to Hardware Resources
Interoperability: Supporting Task-Level Models

NOTE:	
This	is	the	
lab	color	
pale/e.	è Legion	S3D	Execu;on	and		

Performance	Details	 Weak	scaling	results	on	Titan	out	to	8K	nodes	

•  Mapping	for	963	Heptane	
•  Top	line	shows	run;me	workload	
•  Different	species	required	mapping	
changes	(e.g.,	due	to	limited	GPU	
memory	size)	–	i.e.	tuning	is	o�en	not	
just	app	and	system	specific…	

NOTE:	
This	is	the	
lab	color	
pale/e.	è

Workflow:	Integra;on	of	External	
Resources	into	the	Programming	Model	
•  We	can’t	ignore	the	full	workflow!	

•  Amdahl's	law	sneaks	in	if	we	consider	
I/O	from	tasks	–	15-76%	overhead	vs.	
2-12%	of	original	Fortran	code!		

•  Introduce	new	seman;cs	for	opera;ng	
with	external	resources	(e.g.	storage,	
databases,	etc.).	
•  Incorporates	these	resources	into	deferred	

execu;on	model	
•  Maintains	consistency	between	different	

copies	of	the	same	data	

•  Underlying	parallel	I/O	handled	by	HDF5	
but	scheduled	by	run;me	

•  Allow	applica;ons	to	adjust	the	
snapshot	interval	based	on	available	
storage	and	system	fault	concerns	
instead	of	overheads.	

Performance	 of	 S3D	 checkpoints	 running	 on	 64	 nodes	
(i.e.,	1,024	cores)	of	Titan.	

Resources		
•  MPI:	h/ps://compu;ng.llnl.gov/tutorials/mpi/	
•  OpenMP:	h/ps://compu;ng.llnl.gov/tutorials/openMP/	
•  OpenACC:	h/p://www.openacc.org	
•  Kokkos:	h/ps://github.com/kokkos/kokkos-tutorials	
•  Raja:	h/p://so�ware.llnl.gov/RAJA/	
•  Legion:	h/p://legion.stanford.edu	
•  Charm++:	h/p://charm.cs.illinois.edu/research/charm	
•  PGAS:	h/p://www.pgas.org	

