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An Adaptive Mesh Algorithm:
Mapping the Mesh Variables

A. J. Scannapieco

July 25, 2016

1 Mapping the physical variables

Both thermodynamic and kinematic variables must be mapped. The kine-
matic variables are defined on a separate kinematic mesh; it is the duel mesh
to the thermodynamic mesh. The map of the kinematic variables is done
by calculating the contributions of kinematic variables on the old thermo-
dynamic mesh, mapping the kinematic variable contributions onto the new
thermodynamic mesh and then synthesizing the mapped kinematic variables
on the new kinematic mesh. In this document the map of the thermodynamic
variables will be described.

After the new mesh structure has been generated the physical variables
are mapped from the old to the new mesh. The map is done in three parts.

1. The physical variables in zones that are unchanged are collected and
saved for redistribution on the new mesh, which includes all mixed
zones.

2. The physical variables in zones that are created by coarsening the mesh
are mapped from the old to the new mesh.

3. The physical variables in zones that are created by refining the mesh
are mapped from the old to the new mesh.

Two types of physical variables are mapped: extensive variables that
are naturally conserved upon being mapped (e.g. density) and non-extensive
variables that are not conserved when mapped (e.g. equivalent plastic strain).
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Before the map, non-extensive variables are multiplied by the material den-
sity. After the map of the non-extensive variables they are divided by the
new densities to recover the new non-extensive variables. It is important to
note that the mixed zones are not mapped, because they remain on the finest
mesh. Therefore, the mixed zone data are also retained unchanged.

1.1 Map the coarsened thermodynamic variables

The new extensive variables, ϕ(Nz) associated with the new coarsened zone
zone Nz are obtained by volume summing the contributions made by the old
daughter zones that comprise the new coarsened zone.

ϕ(Nz) =
2κ∑
i=1

ν(ni)ψ(ni)/
2κ∑
i=1

ν(ni) (1)

In equation 1. κ is the problem dimension, ν(ni) is the volume of daughter
zone ni, and ψ(ni) is the extensive variable of the old daughter zone ni.

The new non-extensive variables, ϕ(Nz) associated with the new coars-
ened zone Nz are obtained by density summing the contributions made by
the daughter zones that comprise the new coarsened zone.

ϕ(Nz) =
2κ∑
i=1

ρ(ni)ψ(ni)/
2κ∑
i=1

ρ(ni) (2)

In equation 2 ρ(ni) is the density of the old daughter zone ni, and ψ(ni)
is a non-extensive variable of daughter zone ni. As can be seen, the map
of the new coarsened zones is conservative in the extensive variables and
conservative for the non-extensive variables insofar as those variables are
associated with a zonal mass of material. The set of coarsened zones and
the new data is collected and stored to be used in the synthesis of the new
mesh. In two and three dimensions the new coarsened zone Nz and the old
daughter zones that contribute to zone Nz are displayed in Figures 1 and 2.
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Figure 1: Two dimensional logical daughter index layout for the map of the
coarsened zone Nz.
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Figure 2: Three dimensional logical daughter index layout for the map of
coarsened zone Nz.
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1.2 Map the refined thermodynamic variables

Each new refined zone shares a common vertex of the old zone that is to be
refined. The zone to be refined and the satellite zones surrounding the com-
mon vertex are the zones used to do the high-order, monotonic, conservative
map of the new refined zone. The same set of zones are used to map every
new refined zone that shares that vertex; this ensures consistency in the data
and map of all the new zones that share that vertex. If κ is the problem
dimension, than the number of zones that share the vertex is, at most, 2κ.
Table 1. defines the variables used in calculating the pseudo anti-diffusive
fluxes ψ(i, j, k) and the new extensive variable ϕ(i, j, k).

ne(i, j, k, ib) Zonal index of neighbor zone (ib) at vertex (i, j, k).
d(ne(i, j, k, ib)) Material density in neighbor zone (ib)

at vertex (i, j, k).
f(ne(i, j, k, ib)) Physical variable in neighbor zone (ib)

at vertex (i, j, k).
fx(i, j, k, ib) Old extensive variable in neighbor zone (ib)

at vertex (i, j, k).
fx(i, j, k, ib) = f(ne(i, j, k, ib))
if f is an extensive variable.
fx(i, j, k, ib) = f(ne(i, j, k, ib))d(ne(i, j, k, ib)
if f is not an extensive variable.

fmn(i, j, k) Minimum value of fx(i, j, k, ib) at vertex (i, j, k).
fmx(i, j, k) Maximum value of fx(i, j, k, ib) at vertex (i, j, k).
δfxmn(i, j, k, ib) Minimum change of fx relative to fx(i, j, k, 0) at vertex (i, j, k).

δfxmn(i, j, k, ib) = fmn(i, j, k)− fx(i, j, k, 0)
δfxmx(i, j, k, ib) Maximum change of fx relative to fx(i, j, k, 0) at vertex (i, j, k).

δfxmx(i, j, k, ib) = fmx(i, j, k)− fx(i, j, k, 0)
x(i, j, k, ib, idir) Fractional distance with respect to zone 0 of zone center (i, j, k, ib)

relative to zone center (i, j, k, 0) in the idir direction.
g(i, j, k, ib, ic) Geometrical contribution of neighbor zone ib to zone (i, j, k)

of matrix element ic.
ϕ(i, j, k) New extensive variable in new zone (i, j, k).

Table 1: Glossary of variables used in the high-order refinement map.
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In two and three dimensions the new zone and the satellite zones, along
with the associated indexing are displayed in Figures 3 through 14. The
(i, j, k) index of the new refined zone is defined relative to the 0 zone.

(1, 1, 1)

01

2

3

Y⃗

X⃗

Figure 3: Two dimensional logical neighbor index layout for high order map
of the refined zone (1, 1, 1). ne(1, 1, 1, ib) = ib, 0 ≤ ib ≤ 3.

6



(2, 1, 1)

0

1

2

3

Y⃗

X⃗

Figure 4: Two dimensional logical neighbor index layout for high order map
of the refined zone (2, 1, 1). ne(2, 1, 1, ib) = ib, 0 ≤ ib ≤ 3.
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Figure 5: Two dimensional logical neighbor index layout for high order map
of the refined zone (1, 2, 1). ne(1, 2, 1, ib) = ib, 0 ≤ ib ≤ 3.

8



(2, 2, 1)

0

1

2 3

Y⃗

X⃗

Figure 6: Two dimensional logical neighbor index layout for high order map
of the refined zone (2, 2, 1). ne(2, 2, 1, ib) = ib, 0 ≤ ib ≤ 3.

9



Z⃗

X⃗

Y⃗

1

0

5

3

4

2

7

6

(1, 1, 1)

Figure 7: Three dimensional logical neighbor index layout for high order map
of refined zone (1, 1, 1). ne(1, 1, 1, ib) = ib, 0 ≤ ib ≤ 7.
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Figure 8: Three dimensional logical neighbor index layout for high order map
of refined zone (2, 1, 1). ne(2, 1, 1, ib) = ib, 0 ≤ ib ≤ 7.
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Figure 9: Three dimensional logical neighbor index layout for high order map
of refined zone (1, 2, 1). ne(1, 2, 1, ib) = ib, 0 ≤ ib ≤ 7.

12



Z⃗

X⃗

Y⃗

2

4

6

7

0
1

3

5
(2, 2, 1)

Figure 10: Three dimensional logical neighbor index layout for high order
map of refined zone (2, 2, 1). ne(2, 2, 1, ib) = ib, 0 ≤ ib ≤ 7.
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Figure 11: Three dimensional logical neighbor index layout for high order
map of refined zone (1, 1, 2). ne(1, 1, 2, ib) = ib, 0 ≤ ib ≤ 7.
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Figure 12: Three dimensional logical neighbor index layout for high order
map of refined zone (2, 1, 2). ne(2, 1, 2, ib) = ib, 0 ≤ ib ≤ 7.
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Figure 13: Three dimensional logical neighbor index layout for high order
map of refined zone (1, 2, 2). ne(1, 2, 2, ib) = ib, 0 ≤ ib ≤ 7.
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Figure 14: Three dimensional logical neighbor index layout for high order
map of refined zone (2, 2, 2). ne(2, 2, 2, ib) = ib, 0 ≤ ib ≤ 7.
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The refinement map is done using a multi-dimensional Flux-Corrected-
Transport algorithm1 in which a high-order pseudo anti-diffusive flux is cal-
culated for each new zone and added to the original state variable of the 0
zone to calculate the new state variable in each of the new refined zones.
The fluxes are limited via the fully multi-dimensional FCT algorithm which,
ensures both conservation and monotonicity over the map.

The pseudo anti-diffusive fluxes are calculated by first defining δ(κ, ic)
where κ is the number of dimensions and ic is the matrix element.

δ(1, 1) ≡ x(i, 1, 1, 1)

δ(2, 1) ≡ x(i, j, 1, 1)

δ(2, 2) ≡ x(i, j, 1, 2)

δ(2, 3) ≡ x(i, j, 1, 1)x(i, j, 1, 2)

δ(3, 1) ≡ x(i, j, k, 1)

δ(3, 2) ≡ x(i, j, k, 2)

δ(3, 3) ≡ x(i, j, k, 3)

δ(3, 4) ≡ x(i, j, k, 1)x(i, j, k, 2)

δ(3, 5) ≡ x(i, j, k, 1)x(i, j, k, 3)

δ(3, 6) ≡ x(i, j, k, 2)x(i, j, k, 3)

δ(3, 7) ≡ x(i, j, k, 1)x(i, j, k, 2)x(i, j, k, 3)

The pseudo anti-diffusive fluxs ψ(i, j, k) are

ψ(i, j, k) =
2κ−1∑
ib=1

2κ−1∑
ic=1

δ(κ, ic)g(i, j, k, ib, ic)(fx(i, j, k, ib)− fx(i, j, k, 0))

These fluxes are limited to ensure that monotonicity is maintained.

ψ(i, j, k) = {δfxmx , {δfxmn , ψ(i, j, k)}max}min

The final steps ensure that the map is conservative.

ψmn(i, j, k) = {0, ψ(i, j, k)}min

ψmx(i, j, k) = {0, ψ(i, j, k)}max

1S. T. Zalesak, J. Comput. Phys. 31(1979), 335
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Ψmn =

∣∣∣∣ imx∑
i=1

jmx∑
j=1

kmx∑
k=1

ψmn(i, j, k)

∣∣∣∣
Ψmx =

∣∣∣∣ imx∑
i=1

jmx∑
j=1

kmx∑
k=1

ψmx(i, j, k)

∣∣∣∣
imx = 2

jmx = 1 κ < 2

jmx = 2 κ ≥ 2

kmx = 1 κ < 3

kmx = 2 κ = 3

αmn = Ψmx/{Ψmn,Ψmx}max

αmx = Ψmn/{Ψmn,Ψmx}max

Finally the new value of the physical variable, ϕ(i, j, k) in the new zone (i, j, k)
is

ϕ(i, j, k) = fx(i, j, k, 0) + αmxψ(i, j, k) ψ(i, j, k) ≥ 0 (3)

ϕ(i, j, k) = fx(i, j, k, 0) + αmnψ(i, j, k) ψ(i, j, k) < 0 (4)

1.2.1 Calculate the Geometrical Contributions

In one, two and three dimensions the geometrical coefficients, g(i, j, k, ib, ic)
are calculated and used to map all the new zonal extensive variables. The
g(i, j, k, ib, ic) variables are solved by inverting a matrix equation that re-
lates the unknown variables di, defined below, to the values of the physical
variables in each zone surrounding the common vertex.

In one dimension the map of the spatial derivative d1 is linear and two
independent values of the old variable are needed to create the geometrical
coefficients.

f = (ax + bx(x− x0)

f = ax + bx(x− x0)

f = f0 + fx(x− x0) (5)
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s1 ≡ (f1 − f0)

d1 ≡ fx

a11 ≡ (x1 − x0)

a11d1 = s1 (6)

In two dimensions the map of the spatial derivatives di is bi-linear and four
independent values of the old variable are needed to create the geometrical
coefficients.

f = (ax + bx(x− x0))(ay + by(y − y0))

f = axay + bxay(x− x0) + axby(y − y0) + bxby(x− x0)(y − y0)

f = f0 + fx(x− x0) + fy(y − y0) + fxy(x− x0)(y − y0) (7)

s1 ≡ (f1 − f0)

s2 ≡ (f2 − f0)

s3 ≡ (f3 − f0)

d1 ≡ fx

d2 ≡ fy

d3 ≡ fxy

a11 ≡ (x1 − x0), a12 ≡ (y1 − y0), a13 ≡ (x1 − x0)(y1 − y0)

a21 ≡ (x2 − x0), a22 ≡ (y2 − y0), a23 ≡ (x2 − x0)(y2 − y0)

a31 ≡ (x3 − x0), a32 ≡ (y3 − y0), a33 ≡ (x3 − x0)(y3 − y0)

a11d1 + a12d2 + a13d3 = s1

a21d1 + a22d2 + a23d3 = s2 (8)

a31d1 + a32d2 + a33d3 = s3

In three dimensions the map of the spatial derivatives, di is tri-linear and eight
independent values of the old variable are needed to create the geometrical
coefficients.

f = (ax + bx(x− x0))(ay + by(y − y0))(az + bz(z − z0))

f = f0 + fx(x− x0) + fy(y − y0) + fz(z − z0)+

fxy(x− x0)(y − y0) + fxz(x− x0)(z − z0) + fyz(y − y0)(z − z0)+

fxyz(x− x0)(y − y0)(z − z0) (9)
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s1 ≡ (f1 − f0)

s2 ≡ (f2 − f0)

s3 ≡ (f3 − f0)

s4 ≡ (f4 − f0)

s5 ≡ (f5 − f0)

s6 ≡ (f6 − f0)

s7 ≡ (f7 − f0)

d1 ≡ fx

d2 ≡ fy

d3 ≡ fz

d4 ≡ fxy

d5 ≡ fxz

d6 ≡ fyz

d7 ≡ fxyz
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a11 ≡ (x1 − x0), a12 ≡ (y1 − y0), a13 ≡ (z1 − z0),

a14 ≡ (x1 − x0)(y1 − y0), a15 ≡ (x1 − x0)(z1 − z0), a16 ≡ (y1 − y0)(z1 − z0),

a17 ≡ (x1 − x0)(y1 − y0)(z1 − z0),

a21 ≡ (x2 − x0), a22 ≡ (y2 − y0), a23 ≡ (z2 − z0),

a24 ≡ (x2 − x0)(y2 − y0), a25 ≡ (x2 − x0)(z1 − z0), a26 ≡ (y2 − y0)(z2 − z0),

a27 ≡ (x2 − x0)(y2 − y0)(z2 − z0),

a31 ≡ (x3 − x0), a32 ≡ (y3 − y0), a33 ≡ (z3 − z0),

a34 ≡ (x3 − x0)(y3 − y0), a35 ≡ (x3 − x0)(z3 − z0), a36 ≡ (y3 − y0)(z3 − z0),

a37 ≡ (x3 − x0)(y3 − y0)(z3 − z0),

a41 ≡ (x4 − x0), a42 ≡ (y4 − y0), a43 ≡ (z4 − z0),

a44 ≡ (x4 − x0)(y4 − y0), a45 ≡ (x4 − x0)(z4 − z0), a46 ≡ (y4 − y0)(z4 − z0),

a47 ≡ (x4 − x0)(y4 − y0)(z4 − z0),

a51 ≡ (x5 − x0), a52 ≡ (y5 − y0), a53 ≡ (z5 − z0),

a54 ≡ (x5 − x0)(y5 − y0), a55 ≡ (x5 − x0)(z5 − z0), a56 ≡ (y5 − y0)(z5 − z0),

a57 ≡ (x5 − x0)(y5 − y0)(z5 − z0),

a61 ≡ (x6 − x0), a62 ≡ (y6 − y0), a63 ≡ (z6 − z0),

a64 ≡ (x6 − x0)(y6 − y0), a65 ≡ (x6 − x0)(z6 − z0), a66 ≡ (y6 − y0)(z6 − z0),

a67 ≡ (x6 − x0)(y6 − y0)(z6 − z0),

a71 ≡ (x7 − x0), a72 ≡ (y7 − y0), a73 ≡ (z7 − z0),

a74 ≡ (x7 − x0)(y7 − y0), a75 ≡ (x7 − x0)(z7 − z0), a76 ≡ (y7 − y0)(z7 − z0),

a77 ≡ (x7 − x0)(y7 − y0)(z7 − z0)

a11d1 + a12d2 + a13d3 + a14d4 + a15d5 + a16d6 + a17d7 = s1

a21d1 + a22d2 + a23d3 + a24d4 + a25d5 + a26d6 + a27d7 = s2

a31d1 + a32d2 + a33d3 + a34d4 + a35d5 + a36d6 + a37d7 = s3

a41d1 + a42d2 + a43d3 + a44d4 + a45d5 + a46d6 + a47d7 = s4 (10)

a51d1 + a52d2 + a53d3 + a54d4 + a55d5 + a56d6 + a57d7 = s5

a61d1 + a62d2 + a63d3 + a64d4 + a65d5 + a66d6 + a67d7 = s6

a71d1 + a72d2 + a73d3 + a74d4 + a75d5 + a76d6 + a77d7 = s7
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It is not always the case that there will be 2κ zones that define a refine-
ment map. Consider the two-dimensional case shown in Figure 15 in which
both zones 0 and 0

′
are scheduled to be refined. In this case vertex 1 and

vertex 3 are the same.

(2, 2, 1)

0

0
′

1

2 3Y⃗

X⃗

Figure 15: Degenerate case of a two dimensional logical neighbor index layout
for high order map of the refined zone (2, 2, 1). ne(2, 2, 1, ib) = ib, 0 ≤ ib ≤ 2

The coordinates of zones 1 and 3 are equal to the coordinates of the center
of zone 0

′
. The map for this degenerate case is no longer bi-linear but linear.

f = f0 + fx(x− x0) + fy(y − y0) (11)

s1 ≡ (f1 − f0)

s2 ≡ (f2 − f0)

d1 ≡ fx

d2 ≡ fy
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a11 ≡ (x1 − x0), a12 ≡ (y1 − y0),

a21 ≡ (x2 − x0), a22 ≡ (y2 − y0)

a11d1 + a12d2 = s1

a21d1 + a22d2 = s2 (12)

In the above equations, for all dimensions:

xp = x(i, j, k, p, 1)

yp = x(i, j, k, p, 2)

zp = x(i, j, k, p, 3)

fp = f(ne(i, j, k, p)) 0 ≤ p ≤ 2κ − 1

where κ is the problem dimension.
In each case the matrix equation is inverted by solving for the inverse

of the matrix aij. The matrix equations in one, two, and three dimensions,
written as

aijdj = si (13)

can be solved using cofactors. The cofactor of the matrix aki is

cki = (−1)k+idet((ap,q)p̸=k,q ̸=i)

The inverse of the matrix aki is

a−1
ki = cik/det(aki)

where cik is the transpose of the cofactor cki. The solution of the matrix
equations is given as:

a−1
ki aijdj = a−1

ki si

a−1
ki aij = δkj

where δkj is the Kronecker delta. Therefore

δkjdj = a−1
ki si

and
dk = a−1

ki si (14)

The geometrical coefficients g(i, j, k, ib, ic) are than defined as

g(i, j, k, ib, ic) ≡ a−1
ic,ib (15)

where the a−1
ic,ib are calculated for each (i, j, k) new zone.
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2 Conclusion

The mapping of the thermodynamic physical variables has been presented
when coarsening and/or refinement of the new mesh is required. The maps
are conservative, monotonic high order pseudo FCT maps. It is important
to note that when the kinematic quantities reside on the thermodynamic
mesh or when they are defined at panels of the thermodynamic mesh, the
mesh description above applies as stated. If however, the kinematic variables
reside at the vertices of the thermodynamic mesh than a separate map of the
kinematic variables is required on a regenerated kinematic mesh. In that case
the duel kinematic mesh has to be regenerated and the kinematic variables
mapped unto that new kinematic mesh. The map on the new duel mesh
proceeds exactly as on the thermodynamic mesh. The map described here
has been used in a wide variety of one, two and three dimensional problems
in a multi-physics code.
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