skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes

Abstract

Here, we analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the “damaging” and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In this model, both damaging and “dissipative” charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. Moreover, these equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using propermore » combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Finally, our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.« less

Authors:
; ORCiD logo; ;
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1304705
Report Number(s):
LA-UR-14-29366
Journal ID: ISSN 0303-6812
Grant/Contract Number:  
AC52-06NA25396; 15349; 711091
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Mathematical Biology
Additional Journal Information:
Journal Volume: 74; Journal Issue: 1-2; Journal ID: ISSN 0303-6812
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Biological Science

Citation Formats

Berman, Gennady P., Nesterov, Alexander I., Gurvitz, Shmuel, and Sayre, Richard T. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes. United States: N. p., 2016. Web. doi:10.1007/s00285-016-1016-2.
Berman, Gennady P., Nesterov, Alexander I., Gurvitz, Shmuel, & Sayre, Richard T. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes. United States. https://doi.org/10.1007/s00285-016-1016-2
Berman, Gennady P., Nesterov, Alexander I., Gurvitz, Shmuel, and Sayre, Richard T. 2016. "Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes". United States. https://doi.org/10.1007/s00285-016-1016-2. https://www.osti.gov/servlets/purl/1304705.
@article{osti_1304705,
title = {Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes},
author = {Berman, Gennady P. and Nesterov, Alexander I. and Gurvitz, Shmuel and Sayre, Richard T.},
abstractNote = {Here, we analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the “damaging” and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In this model, both damaging and “dissipative” charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. Moreover, these equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Finally, our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.},
doi = {10.1007/s00285-016-1016-2},
url = {https://www.osti.gov/biblio/1304705}, journal = {Journal of Mathematical Biology},
issn = {0303-6812},
number = 1-2,
volume = 74,
place = {United States},
year = {Sat Apr 30 00:00:00 EDT 2016},
month = {Sat Apr 30 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Modeling charge transfer in the photosynthetic reaction center
journal, December 2003


Coherent nuclear dynamics at room temperature in bacterial reaction centers.
journal, December 1994


Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature
journal, February 2010


Spectroscopic Properties of Reaction Center Pigments in Photosystem II Core Complexes: Revision of the Multimer Model
journal, July 2008


Electron transfers in chemistry and biology
journal, August 1985


Electron transfer reactions: generalized spin-boson approach
journal, December 2012


On the relationship between non-photochemical quenching and photoprotection of Photosystem II
journal, May 2012


Kinetic Modeling of Charge-Transfer Quenching in the CP29 Minor Complex
journal, October 2008


Noise-assisted quantum electron transfer in photosynthetic complexes
journal, July 2013


Noise-assisted energy transfer in quantum networks and light-harvesting complexes
journal, June 2010


On the analysis of non-photochemical chlorophyll fluorescence quenching curves
journal, June 2013


Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization
journal, May 2010


Protein dynamics and 1/f noise
journal, August 1992


Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature
journal, October 2009


Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime.
journal, March 1995


On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer
journal, June 2009


Understanding the Energy Transfer Function of LHCII, the Major Light-Harvesting Complex of Green Plants
journal, January 2001


Super-radiant dynamics, doorways and resonances in nuclei and other open mesoscopic systems
journal, September 2011


Open system of interacting fermions: Statistical properties of cross sections and fluctuations
journal, September 2007


Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting
journal, April 2003


A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence
journal, February 2011


Modeling of exciton quenching in photosystem II
journal, January 2009


Discrete and Continuum Spectra in the Unified Shell Model Approach
journal, February 2005


Charge-Transfer State as a Possible Signature of a Zeaxanthin−Chlorophyll Dimer in the Non-photochemical Quenching Process in Green Plants
journal, July 2003


An ancient light-harvesting protein is critical for the regulation of algal photosynthesis
journal, November 2009


A Structure-Based Model of Energy Transfer Reveals the Principles of Light Harvesting in Photosystem II Supercomplexes
journal, June 2013


Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
journal, April 2007


Dissipative Exciton Motion in a Chlorophyll a / b Dimer of the Light Harvesting Complex of Photosystem II:  Simulation of Pump−Probe Spectra
journal, January 1996


Towards a structure-based exciton Hamiltonian for the CP29 antenna of photosystem II
journal, January 2014


Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins
journal, June 2014


Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence
journal, June 2007


Dynamics of a chlorophyll dimer in collective and local thermal environments
journal, January 2016


Electronic pathway in reaction centers from Rhodobacter sphaeroides and Chloroflexus aurantiacus
journal, January 2010


Regulation of plant light harvesting by thermal dissipation of excess energy
journal, March 2010


Direct observation of energy transfer in a photosynthetic membrane: chlorophyll b to chlorophyll a transfer in LHC
journal, December 1989


Super-radiance and open quantum systems
conference, January 2005


A pigment-binding protein essential for regulation of photosynthetic light harvesting
journal, January 2000


Theoretical Investigation of the Role of Strongly Coupled Chlorophyll Dimers in Photoprotection of LHCII
journal, October 2008


Noise breaking the twofold symmetry of photosynthetic reaction centers: Electron transfer
journal, August 2001


Non-Hermitian approach for modeling of noise-assisted quantum electron transfer in photosynthetic complexes
journal, June 2012


Chlorophyll fluorescence quenching by xanthophylls
journal, January 2003


Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria
journal, May 1997


Sensing and Responding to Excess Light
journal, June 2009


Effect of the conformational transitions on electron transfer in biological systems
journal, October 2004


Noise-Induced Förster Resonant Energy Transfer between Orthogonal Dipoles in Photoexcited Molecules
journal, May 2012


Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein
journal, May 2008


Förster Resonant Energy Transfer in Orthogonally Arranged Chromophores
journal, December 2010


A non-Hermitian Hamilton operator and the physics of open quantum systems
journal, March 2009


On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex
journal, March 2016


Laser-induced continuum structure
journal, June 1990


Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation
journal, February 2014


Two-dimensional spectroscopy of electronic couplings in photosynthesis
journal, March 2005


Transition from isolated to overlapping resonances in the open system of interacting fermions
journal, January 2008


Toward an Understanding of the Mechanism of Nonphotochemical Quenching in Green Plants
journal, July 2004


Natural strategies for photosynthetic light harvesting
journal, June 2014


Long-lived quantum coherence in photosynthetic complexes at physiological temperature
journal, July 2010


Primary charge separation in the bacterial reaction center: Validity of incoherent sequential model
journal, January 2003


Role of protein fluctuation correlations in electron transfer in photosynthetic complexes
journal, April 2015


How Quantum Coherence Assists Photosynthetic Light-Harvesting
journal, January 2012


A kinetic model of non-photochemical quenching in cyanobacteria
journal, December 2011


Coherent Picosecond Exciton Dynamics in a Photosynthetic Reaction Center
journal, October 2012


Non-Photochemical Quenching. A Response to Excess Light Energy
journal, April 2001


Structure, Dynamics, and Function in the Major Light-Harvesting Complex of Photosystem II
journal, January 2012


Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model
journal, April 2014


Arabidopsis Mutants Define a Central Role for the Xanthophyll Cycle in the Regulation of Photosynthetic Energy Conversion
journal, July 1998


An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light
journal, October 2010


A kinetic model of rapidly reversible nonphotochemical quenching
journal, August 2012


Dynamics of quantum systems
journal, August 2001


The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy
journal, January 2014


Long-range exchange contribution to singlet-singlet energy transfer in a series of rigid bichromophoric molecules
journal, January 1988


Dynamics of Light Harvesting in Photosynthesis
journal, May 2009


Carotenoid Radical Cations as a Probe for the Molecular Mechanism of Nonphotochemical Quenching in Oxygenic Photosynthesis
journal, April 2007


The photoprotective molecular switch in the photosystem II antenna
journal, January 2012


Environment-assisted quantum transport
journal, March 2009


Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii
journal, January 2011


Models and measurements of energy-dependent quenching
journal, June 2013


A Theoretical Investigation of the Photophysical Consequences of Major Plant Light-Harvesting Complex Aggregation within the Photosynthetic Membrane
journal, October 2010


Quantum nonequilibrium approach for fast electron transport in open systems: Photosynthetic reaction centers
journal, November 2011


Berechnung der nat�rlichen Linienbreite auf Grund der Diracschen Lichttheorie
journal, January 1930


Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting
journal, March 2012


Fluctuations in Biological and Bioinspired Electron-Transfer Reactions
journal, March 2010


Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29
journal, June 2009


Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes
journal, September 2015


Lessons from nature about solar light harvesting
journal, September 2011


Characterisation of triplet states in isolated Photosystem II reaction centres: Oxygen quenching as a mechanism for photodamage
journal, June 1990


Dissipative pathways in the photosystem-II antenna in plants
journal, November 2015


Role of electron-transfer quenching of chlorophyll fluorescence by carotenoids in non-photochemical quenching of green plants
journal, August 2005


Characteristic noise features in light transmission across membrane protein undergoing photocycle
journal, February 2011


Excitation Dynamics in Phycoerythrin 545: Modeling of Steady-State Spectra and Transient Absorption with Modified Redfield Theory
journal, July 2010