

Climate Adaptation Heuristics and the Science/Policy Divide

Benjamin L Preston*

Senior Research Scientist

Climate Change Science Institute and Environmental Sciences Division

Oak Ridge National Laboratory

Building 2040, Room E239, MS-6301

PO Box 2008

One Bethel Valley Road

Oak Ridge, TN 37831-6253 USA

Phone: +1 865 456 6531

Fax: +1 865 574 9501

Email: prestonbl@ornl.gov

Johanna Mustelin

Postdoctoral Research Fellow

Griffith Climate Change Response Program

School of Environment

Griffith University

Gold Coast Campus

G39 Southport 4222, Queensland, Australia

Email: j.mustelin@griffith.edu.au

Megan C. Maloney

Research Associate

Climate Change Science Institute and Environmental Sciences Division

Oak Ridge National Laboratory

Oak Ridge, TN 37831-6253 USA

Email: maloneymc@ornl.gov

*Corresponding Author

Acknowledgements

Benjamin Preston and Megan Maloney's contributions to this research were sponsored through Oak Ridge National Laboratory's Laboratory Directed Research and Development Program. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Johanna Mustelin's contributions were supported through a Griffith University Postgraduate Research Scholarship. The authors also acknowledge the constructive comments of Richard J.T. Klein on an earlier draft of this paper.

1 **Abstract**

2 The adaptation science enterprise has expanded rapidly in recent years, presumably in response to growth
3 in demand for knowledge that can facilitate adaptation policy and practice. However, evidence suggests
4 such investments in adaptation science have not necessarily translated into adaptation implementation.
5 One potential constraint on adaptation may be the underlying heuristics that are used as the foundation for
6 both adaptation research and practice. Here, we explore the adaptation academic literature with the
7 objective of identifying ‘adaptation heuristics’, assessing the extent to which they have become
8 entrenched within the adaptation discourse, and discussing potential weaknesses in their framing that
9 could undermine adaptation efforts. This investigation is supported by a multi-method analysis that
10 includes both a quantitative content analysis of the adaptation literature that evidences the use of
11 adaptation heuristics and a qualitative analysis of the implications of such heuristics for enhancing or
12 hindering the implementation of adaptation. Results demonstrate that a number of heuristic devices are
13 commonly used in both the peer-reviewed adaptation literature as well as within grey literature designed
14 to inform adaptation practitioners. Furthermore, the apparent lack of critical reflection upon the
15 robustness of these heuristics for diverse contexts may contribute to potential cognitive bias with respect
16 to the framing of adaptation by both researchers and practitioners. We discuss this phenomenon by
17 drawing upon heuristic-analytic theory, which has explanatory utility in understanding both the origins of
18 such heuristics as well as the measures that can be pursued toward the co-generation of more robust
19 approaches to adaptation problem-solving.

20 **Key Words:** adaptation, climate change, heuristics, cognitive reasoning, science-policy interface

21

22 **1. Introduction**

23 The pursuit of climate adaptation has expanded rapidly in recent years due to increasing
24 awareness of its potential value with respect to reducing societal and ecological vulnerability to current
25 climate variability while managing the risks posed by future climate change (Adger et al. 2007; Adger et
26 al. 2009b; Schipper and Burton 2009a). Whereas once adaptation was viewed as a ‘taboo’ topic (Pielke et
27 al. 2007; Burton 2009a), adaptation is now being institutionalized at a range of geopolitical scales.
28 Adaptation, and particularly adaptation finance, has become a major subject of debate within international
29 negotiations under the United Nations Framework Convention on Climate Change (UNFCCC), and
30 various funding mechanisms have been developed to support adaptation in developing nations (Schipper
31 and Burton 2009a; Grasso 2010; Hulme et al. 2011; Petherick 2012). National governments of developed
32 nations have also initiated strategic thinking regarding adaptation as represented by the United Kingdom’s
33 Climate Change Act (UK Stationary Office 2008), Australia’s National Climate Change Adaptation
34 Framework (DCC 2007), and the Obama Administration’s Executive Order 13514 (The White House
35 2009), which requires U.S. federal agencies to assess and manage the risks posed by climate change to
36 agency missions. Such top down approaches to adaptation are complemented by a broad range of bottom
37 up efforts represented by local/municipal, and state/district adaptation planning (Lindseth 2005; Saavedra
38 and Budd 2009; Dedekorkut et al. 2010; Preston and Kay 2010; Burton and Mustelin 2011; Measham et
39 al. 2011).

40 This growth in adaptation practice has been accompanied by a concomitant growth in adaptation
41 science, which we define broadly as research that generates knowledge that can inform adaptation and its
42 implementation. Despite such investments, evidence suggests those investments have not necessarily
43 translated into the implementation of adaptation policies and measures that reduce vulnerability (Repetto
44 2008; Schipper and Burton 2009b; Wilby and Vaughan 2011). Rather, a number of authors have noted
45 that an ‘adaptation deficit’ exists in both developed and developing nations (Adger et al. 2007; Repetto
46 2008; Burton 2009a; Moser 2009a). Meanwhile, although anticipatory adaptation is widely cited as a
47 cost-effective approach to managing climate risk, evidence suggests that experience with extreme events
48 in the present day is a more common trigger of adaptation planning (Moench 2009; Næss et al. 2005;
49 Simonsson et al 2011). In addition, multiple examinations of adaptation planning suggest that investments
50 in adaptation are predominantly focused on non-structural measures as opposed to more substantive
51 actions to reduce vulnerability (Ford et al. 2011; Preston et al. 2011a; Lesnikowski, et al. 2013). Hence,
52 institutions are expressing an intention to adapt, but are not necessarily adapting (Berrang-Ford et al.
53 2011; Ford and Berrang-Ford 2011). The slow pace of adaptation implementation is explained by an
54 expanding academic literature that identifies potential constraints on, and limits to, adaptation (Adger et

55 al. 2007 2009a; Moser 2009a; Moser and Ekstrom 2010; Measham et al. 2011; Gero et al. 2012). Little of
56 this discussion of constraints and limits, however, questions the underlying assumptions regarding
57 adaptation science and practice and the most effective means by which knowledge can be used to
58 facilitate adaptation.

59 Core assumptions that guide adaptation may be encapsulated within heuristic devices. Ravetz
60 (1972) suggests that each scientific field develops a set of standardized facts over time that is used to
61 explain the core characteristics and the nature of the issue under scrutiny. When those facts are
62 disseminated into the public sphere (e.g., via publication), they are stripped of nuance and “*some
63 important but subtle aspects of the assertions or its objects, are smoothed over or forgotten*” (Ravetz
64 1972, p. 200-201). While this process is necessary (Ravetz 1972), over time these facts become common
65 sense, and are no longer questioned. Such ‘rules of thumb’ or heuristics are both useful and fundamental
66 in establishing a common practice (Slovic et al. 1982; Kuhn 1996; Evans 2003, 2006; Osman 2004).
67 However, once particular assumptions are established, it becomes increasingly difficult to recognize
68 which of these are useful in guiding effective practice and which function as potential constraints or
69 cognitive biases. In fact, if such deeply ingrained assumptions are left unexamined and unchallenged, they
70 might continue influencing choices in particular policy pathways even when the practical realities might
71 not warrant such courses of action (Patt 2012). In the context of integrated coastal zone management,
72 Billè (2008, p. 1) calls such spurious assumptions ‘illusions’. Similarly, Moser and Dilling (2007) have
73 identified nine ‘myths’ that are commonly used to explain and justify certain modes of cognitive
74 reasoning and decision-making on how to address climate change.

75 Given the argument of Ravetz (1972), one would anticipate that, as with other disciplines and
76 arenas of public discourse, the evolution of adaptation would lead to the development and
77 institutionalization of heuristics that distill adaptation knowledge into general principles. While heuristics
78 can play a valuable role in facilitating adaptation, if those heuristics fail to be robust (i.e., applicable for a
79 diversity of adaptation contexts), they have the potential to impede adaptation efforts. Hence, the
80 objectives of the current study were to identify a number of putative ‘adaptation heuristics’, assess the
81 extent to which they have become entrenched within the adaptation discourse, and discuss potential
82 weaknesses in their framing that could undermine adaptation research and practice. In pursuing these
83 objectives we first define the concept of an adaptation heuristic and then describe a set of heuristics that
84 we argue are particularly common in the adaptation discourse. We then report the methods and results of
85 a systematic content analysis of the adaptation literature to identify documents containing exemplary
86 language associated with these heuristics, discuss the extent to which they endorse or critique their use,
87 and the implications for adaptation. We conclude by discussing both the theoretical and practical origins

88 of such heuristics and the mechanisms by which they can be rigorously critiqued so they can become a
89 more robust foundation for adaptation discourse.

90 **2. Methods**

91 To explore the manifestation of adaptation heuristics within the adaptation literature, we first
92 defined an adaptation heuristic as a common sense, rule of thumb guiding the conceptual framing of
93 adaptation, the prioritization of adaptation policies and measures, and/or the pathways by which they are
94 implemented. As such, the use of a heuristic device is often characterized by the absence of critical
95 analysis of its validity or relevance. Rather, it is invoked as an appeal to accepted conventional wisdom or
96 as a self-evident truth based upon *a priori* knowledge and experience. In the context of this definition, we
97 subsequently identified a set of eight putative heuristics based on arguments and criticisms appearing in
98 our own research (Table 1; Preston and Stafford Smith 2009; Preston 2009; Preston et al. 2011a, b,
99 Preston et al. 2013; Burton and Mustelin 2013; Mustelin et al. 2010, 2013; Mustelin 2013) as well as that
100 of other adaptation researchers (e.g., Burton 2008; Dessai et al. 2009; Hulme et al. 2011). While not a
101 comprehensive list of all heuristic devices that may be used in adaptation research and practice, they
102 reflect a useful starting point for exploring the extent to which different heuristics manifest in the
103 literature and for drawing attention to the role of heuristics in the discourse of climate adaptation. To
104 explore the use of such heuristics in the adaptation literature, we applied a multi-method approach that
105 included both a quantitative content analysis of the adaptation literature as well as a qualitative analysis of
106 the implications of such heuristics for enhancing or hindering the implementation of adaptation.

107 Our quantitative analysis focused on identifying instances within the adaptation literature when
108 different adaptation heuristics were invoked. We identified putative applications of adaptation heuristics
109 by using a series of focused key word searches with the Google Scholar™ internet search engine. Google
110 Scholar enables searches for exact phrases within entire documents (as opposed to just titles, abstracts, or
111 keywords) and captures a broader range of literature compared to other conventional databases such as
112 ISI's Web of Science™. In addition, Google Scholar allows 'wild card' searches that enable multiple
113 variants of search terms to be captured with a single search. Using Google Scholar, we searched for
114 documents (excluding citations and patents) published over the past ten years (2003–2012). Search terms
115 were comprised of three components. The first two were identical across each search and consisted of the
116 phrase "climate change" and the word "adaptation". These components were designed to aid in focusing
117 the search on documents with some association with climate adaptation. The third search term component
118 varied to reflect both different heuristics as well as different language by which a given heuristic could be
119 expressed (see Appendix). Specific words used in the third component were developed by identifying
120 language within specific documents known to the authors that was considered illustrative of a particular

121 heuristic. That language was then used as the foundation for a brainstorming exercise to develop a list of
122 alternative search terms designed to capture similar language and context. For each of the eight heuristics,
123 the goal was to identify a minimum of 100 documents containing text that was potentially consistent with
124 the various heuristics. Documents that were retained included peer-reviewed journal articles and masters
125 and doctoral theses as well as grey literature comprised of conference papers, books and book chapters,
126 institutional and project reports, as well as policy briefs. Documents that were presentations, abstracts for
127 presentations, products of university course work, or for which the origins of the document could not be
128 identified were excluded. In addition, searches that resulted in multiple version of the same document
129 were reconciled to avoid duplication. Most documents were available (usually in portable document
130 format) directly through the internet or through the authors' institutional journal licenses. For journal
131 articles for which an institutional license was not available, an attempt was made to acquire the article
132 through the authors' institutional inter-library loan (ILL) system. Documents that could not be sourced
133 through ILL without charge were excluded. For books and book chapters, text was often identified using
134 Google Books™, which was used to search within books for the relevant text and accompanying page
135 number(s).

136 For those documents that were identified as potentially containing heuristic devices, the specific
137 passage of text within the document containing the specific search term was excised from the document
138 and entered into a database. The language was then reviewed to a) validate that it was in fact consistent
139 with the specific heuristic and b) if so, to evaluate whether that language endorsed the heuristic, was
140 critical of the heuristic, or was neutral. Documents were classified as endorsing or critiquing a heuristic
141 based upon *a priori* characteristics (Table 1). Documents were classified as being neutral for three
142 reasons: a) spurious searches whereby the identified document didn't contain the search terms (e.g., the
143 search phrase was split across two different sentences); b) the identified text was not germane in that it
144 didn't address climate adaptation specifically; or c) the identified language did not make a clear statement
145 endorsing or critiquing a particular heuristic (e.g., definitions of different concepts within adaptation). All
146 documents and corresponding text associated from all search term variants for a given heuristic were
147 compiled. This data set was used as the basis for quantitative analysis of heuristics within the adaptation
148 literature. The quantitative analysis provides evidence of the use of heuristics in the adaptation literature
149 as well as the relative frequency with which those heuristics are critiqued rather than endorsed. However,
150 such quantification doesn't necessarily provide insights regarding the implications of the use of heuristics.
151 Hence, the qualitative analysis focused on a deeper exploration of this issue. We used a subset of
152 publications that were identified in the quantitative analysis as well as other examples to further evidence
153 how such heuristics are applied in the adaptation literature. We then juxtapose those examples against

154 literature that is more critical of the underlying assumptions such heuristics represent and discuss the
155 potential consequences of relying upon heuristics that are contested.

156 **3. Results**

157 **3.1. Adaptation is Novel**

158 The literature frequently refers to adaptation as being a novel challenge. For example, adaptation
159 has been described as a “*new and developing discipline*” (McCarthy 2012, p. 31), “*a relatively new*
160 *research domain*” (Leith 2011, p. 101), “*a rather new phenomenon*” (Simonsson et al. 2011, p. 325) or “*a*
161 *new issue*” (DCC 2010, p. 6). Of the 152 documents initially identified as containing language consistent
162 with this heuristic, 126 (83%) were found to endorse its use and just 2 (1%) were critical (Figure 1).
163 Adoption of this heuristic suggests that new institutions, policies and measures, and research are all
164 needed to enable adaptation. However, while evidence suggests many actors may be unfamiliar with
165 adaptation conceptually (e.g., Smith et al. 2008), in practice, climate risk management is, and always has
166 been, a key concern for climate-sensitive enterprises (Adger et al. 2009b). Sheffer (2010, p. 12) states
167 “*there is a false assumption that adaptation planning is a ‘new’ idea that is yet to establish credibility or*
168 *consensus in key practices*,” and Lambrou and Paina (2006, p. 8) argue that adaptation doesn’t need to
169 “*start from scratch*”, but instead builds upon past experience. The introduction of the adaptation lexicon
170 into decision-making processes does not necessarily alter actors’ management objectives or options. As a
171 case-in-point, the options available for adapting coastal systems to the effects of climate change and sea-
172 level rise (e.g., hard and soft protection measures, retreat options, accommodation, habitat protection;
173 Klein et al. 2001; U.S. EPA 2009) have long been in use by coastal managers. Neither the hazards nor the
174 management options are new (Dovers 2009), and much of our knowledge regarding adaptation has
175 evolved from understanding how institutions have responded to climate variability and extreme events in
176 the past.

177 The emphasis on the novelty of adaptation unnecessarily encourages its separation from other
178 existing risk management efforts rather than mainstreaming adaptation into existing policies and measures
179 (Reisinger et al. 2011) and, in effect, places the cart before the horse (Schipper 2007). New policy issues
180 face a regulatory commons problem (Burkett 2011), where confusion easily abounds as to who should
181 deal with the issue. Some have also cautioned that the emphasis on adaptation is leading toward a new
182 and separate ‘epistemic community’ (Dovers and Hezri 2010), which has the potential to dismiss the
183 lessons already learned from different management policy fields (Dovers 2009). It can also undermine
184 stakeholder demand by posing adaptation as an additional management burden that competes with other
185 priorities on the policy agenda (Smith et al. 2008; Measham et al. 2011). The novelty heuristic has the

186 potential to pull attention away from the fundamental challenges of adaptation, which are associated with
187 how to reform decision-making processes to better manage uncertainty over long time-scales and rapid
188 rates of change, who has responsibility for implementing those reforms and the equitability with which
189 transaction costs are distributed (Grasso 2010; Hulme et al. 2011; Petherick 2012). In the narrow context
190 of climate change, such concerns may be new for policymakers (Li and Dovers 2011). Yet, given the
191 dominant role that political will, leadership and social capital appear to play advancing adaptation
192 objectives (Adger 2003; Pelling and High 2005; Berkes et al. 2009; Wolf et al. 2010; Ford et al. 2011),
193 adaptation appears to largely entail reconciling competing values regarding current and future risk. In the
194 broader context of public policy, however, this challenge is hardly a novel one.
195

196 **3.2.Adaptation is Local**

197 A strong emphasis on the context-specificity of adaptation has engrained the perception that
198 adaptation is a local process. Our search initially identified 129 documents containing language consistent
199 with this heuristic of which 76 (59%) endorsed its use while 10 (8%) were critical (Figure 1). Various
200 studies in the literature, for example, argue that argue “*most adaptation is local*” (Tol 2005, p. 577),
201 “*almost all adaptation is local*” (Satterthwaite et al. 2007, p.74), and “*adaptation is necessarily local*”
202 (Corfee-Morlot et al. 2011, p. 170). The proliferation of this heuristic has contributed to an increasing
203 focus on adaptation planning and responses at the local scale (Li and Dovers 2011). In terms of public
204 policy, the emphasis on local adaptation has often translated into local actors (public and private) having
205 the lead responsibility for adaptation. For example, the Australian Government’s perspective on
206 adaptation is that “*State, Territory and Local Governments . . . deliver more services and manage more*
207 *assets than the Commonwealth Government. They will therefore have a bigger role in direct adaptation*
208 *action*” (DCC 2010, p. 9).

209 While, practical implementation of adaptation may be undertaken at the local level (Grasso
210 2010), the evidence that the local scale is best placed to govern adaptation is less apparent. Rather,
211 reliance upon local actors to drive adaptation appears to manifest when higher levels of government are
212 incapable or unwilling to participate in facilitating adaptation (Measham and Preston 2012). Hence,
213 Burton (2008, p. 1) argues that “*the ‘adaptation is local’ mantra is no longer valid.*” Instead, Raymondi et
214 al. (2010, p. 16) note that local adaptation “*can be supported, coordinated, or mediated through a*
215 *network of international funding, national initiatives, and regional collaboration between NGOs and*
216 *communities.*” Adaptation by local actors is often constrained by the structure and interactions of
217 governance systems and their capacity to support adaptation at lower levels of social, economic and
218 political organization (Lindseth 2005; Urwin and Jordan 2008; Keskitalo and Kulyasova 2009; Keskitalo

219 2010). Lemos and Tompkins (2008, p. 60) therefore argue that “*while all adaptation is local, adaptive*
220 *capacity is not*” (see also Huntjens et al. 2010; Sprague 2012). For example, case studies from Australia
221 document how adaptation at the scale of Local Government is constrained by acts of both omission and
222 commission by State and Federal Governments (Smith et al. 2008, Preston and Kay 2010; Measham et al.
223 2011). A more robust way forward could be to pursue a process of multi-scale policy harmonization in
224 which policies and measures at different scales are integrated to enhance the realization of adaptation
225 objectives (Preston 2009). However, to date, such an approach remains largely theoretical. Nevertheless, a
226 more nuanced understanding of adaptation as a multi-scaled, multi-actor process may assist in enabling
227 researchers and practitioners to better identify scale-specific opportunities and constraints (Gero et al.
228 2012).

229

230 3.3. ‘No Regrets’ Adaptation

231 The potential costs (economic, social and environmental) associated with implementing
232 adaptation policies and measures represent one of the key constraints on adaptation action (Adger et al.
233 2007; Moser and Ekstrom 2010), particularly in resource limited, developing nations. When combined
234 with uncertainty about the benefits of adaptation, such costs create significant policy risk for adaptation
235 actors. This policy risk acts as a constraint on adaptation, which may partly explain the relatively slow
236 progress on adaptation implementation to date (Adger et al. 2007; Berrang-Ford et al. 2011; Ford et al.
237 2011; Preston et al. 2011a; Lesnikowski, et al. 2013). One widely advocated means of circumventing such
238 constraints is by adopting a ‘no regrets’ approach. Hay and Mimura (2006, p. 29), for example, state that
239 “*adaptation should pursue ‘no regrets’ measures and ‘win-win’ options.*” Our search identified 108
240 documents with language indicative of this heuristic (including similar language of ‘low regrets’ and ‘win
241 win’ options), of which 71 (66%) endorsed this perspective and 3 (3%) were more critical (Figure 1).
242 However, varying meanings of ‘no regrets’ appear in the literature. For example, Burton et al. (2001, p.
243 890) describe ‘no regrets’ actions as those that “*not only address current hazards but may be additionally*
244 *beneficial for other reasons*” (i.e., actions that yield co-benefits). Perhaps a more common understanding
245 is that such actions yield “*net social benefits under all future scenarios of climate change*” (i.e., actions
246 that are robust to climate uncertainty; Heltberg et al. 2009, p. 89 ; see also Campbell-Lendrum 2007;
247 Carter 2007; IPCC 2007, 2012; Hallegatte 2009). The observation that different researchers and
248 practitioners frame the concept of regret differently and are vague regarding whose regret is being
249 considered suggest some conceptual weaknesses of the ‘no regrets’ heuristic.

250 A more profound and practical challenge associated with ‘no regrets’ approaches is their limits
251 with respect to delivering successful adaptation outcomes. If one accepts that adaptation is, in fact, urgent
252 (Section 3.4), ‘no regrets’ measures appear incommensurate with the scale of required adaptation.
253 Meanwhile, it is difficult to conceive of options that are truly ‘no regrets’ (Rietbergen-McCracken 2007;
254 Sadauskis 2011; Susanne C. Moser, personal communication, May 31 2012), because they imply any
255 opportunity costs or externalities are acceptable (or offset via co-benefits) and assume a high degree of
256 stakeholder consensus regarding the appropriateness of the option. Patt et al. (2005) argue that
257 expectations of potential future reductions in vulnerability for adaptation are not a sufficient criterion for
258 labeling adaptation options as ‘no regrets’. Rather, “*they should be evaluated on their more certain
259 payoffs*” (p. 422). Furthermore, due to their inherently conservative nature, ‘no regrets’ measures are
260 likely to rapidly encounter adaptation limits and must therefore be followed promptly by more ambitious
261 measures. The IPCC’s (2012, p. 16) SREX report, for example, identified ‘low regrets’ measures as
262 “*starting points for addressing projected trends in exposure, vulnerability, and climate extremes*”. Yet,
263 encouraging practitioners to take the first steps without explicitly identifying follow-on actions enables
264 ‘single action bias’ where the demand for adaptation erodes after one measure is implemented (Weber
265 2010). While adaptation practitioners should be encouraged to undertake ‘no regrets’ measures, the reality
266 is that successful adaptation, particularly in the absence of robust mitigation efforts, may often necessitate
267 accepting significant policy risk in order to maintain management objectives or enable system
268 transformations (Kates et al. 2012).

269 **3.4. Adaptation is Urgent**

270 The rapid escalation of adaptation in both research and practice reflects an undercurrent of
271 urgency (Corfee-Merlot et al. 2011). We identified 96 documents containing language regarding urgency,
272 of which 79 (82%) endorsed this heuristic, while 6 (6%) took a more cautious stance (Figure 1). Of the
273 former, adaptation has been described as an “*urgent need*” (Ziervogel et al. 2006, p. 294; Jerneck and
274 Olsson 2008, p. 171) and an “*urgent challenge*” (NISTPASS 2011, p. 11). Meanwhile, the literature on
275 the economics of adaptation suggests that hundreds of billions of dollars will be needed per year in the
276 near future to address adaptation costs (World Bank 2006; UNFCCC 2007a; UNDP 2007; Parry et al.
277 2009). Certainly, it is hard to argue against the notion of planning in the present to manage the risks of the
278 future (Tol et al. 2008). However, if one recognizes adaptation as a process (Moser and Ekstrom 2010;
279 Preston et al. 2011a; Park et al. 2012), a more nuanced understanding is needed of what elements of
280 adaptation are urgent and for whom. For example, much of the rhetoric regarding the urgency of
281 adaptation is raised in the context of vulnerable populations, particularly in least developed nations.
282 Hence, finance mechanisms for adaptation have become a critical element of international negotiations

283 under the UNFCCC. Yet the urgency of adaptation for vulnerable nations in the developing world is
284 largely a function of development deficits, rather than needs arising from climate change alone.
285 Meanwhile, Buys et al. (2012) note that many stakeholders simply don't perceive climate change to be an
286 urgent risk.

287 A critical concern regarding the emphasis on urgency is that given high uncertainty, limited
288 attribution (Hartzell-Nichols 2011; Hulme et al. 2011) and poor consensus among values (O'Brien and
289 Wolf 2010), rushed, short-term and crises-based decision-making can lead to maladaptation (Barnett and
290 O'Neill 2010, Tompkins et al. 2010, Scott and Baehler 2010; Thomsen et al. 2012). Evidence suggests
291 such rushed policy responses to climate change are already occurring (Moench 2009; Barnett and O'Neill
292 2010). Even in the least developed nations, where vulnerability is most acute, questions have been raised
293 regarding the robustness and appropriateness of National Adaptation Programs for Action (NAPAs),
294 which guide the most urgent in-country adaptation priorities (MFAD and GEF 2009; Preston et al.
295 2011a). Given such challenges, Streilein (2008) argues for the need to first better understand the
296 motivations and concerns of actors to enable the design of effective interventions. The tools and
297 frameworks to enable actors to distinguish between adaptive and maladaptive responses are in their
298 infancy (Hedger et al. 2008; GIZ 2011a, b; Lamhauge et al. 2012) – a fact which only underscores the
299 pitfalls of forcing the issue. While the assessment of and strategic planning for the potential implications
300 of climate change is urgent, the timing of implementation is context-dependent. Delaying certain
301 decisions may create, or at least preserve, future opportunities (Barnett and O'Neill 2010; Tompkins et al.
302 2010).

303

304 **3.5. Participation in Adaptation**

305 Adaptation research and practice focuses extensively on the analysis of adaptation under fairly
306 optimal conditions of implementation. Such optimism is evident within environmental management at
307 large, with Andersson and Ostrom (2008) noting prevailing assumptions regarding the willingness of
308 actors to govern common pool resources effectively and equitably. A similar presumption is discernible in
309 adaptation where actors are assumed to be ready, willing and able to adapt. This willingness to participate
310 is particularly important given the belief that such participation “*...is needed in all the processes that*
311 *increase resilience of, and decrease reliance on, vulnerable sectors...*” (UNFCCC 2007b, p. 8). Often this
312 willingness is implicit within the rhetoric of adaptation being “*a shared responsibility*” (Hammer 2004;
313 DCC 2010; Yusoff 2011; Thompson et al. 2012) that necessitates participation by any and every
314 stakeholders with a stake in the process or its outcomes. Literature invoking the concept of participation
315 was readily identified, with 204 documents containing language initially consistent with a heuristic of

316 participation (Figure 1). However, a significant fraction (40%) of these documents was spurious in that
317 documents were not specific to climate adaptation. This was likely a function of participation being a key
318 theme in environmental science and management generally. Nevertheless, 112 (55%) and 10 (5%) of
319 documents initially retrieved were found to either endorse or critique, respectively, conventional wisdom
320 regarding the role of participation. Ebi (2011, p. 124) notes that “*stakeholders should be engaged in all*
321 *steps*” of adaptive management efforts regarding public health and climate change. Similarly, Wilhelm et
322 al. (2010, p. 5), challenge “*the researcher and public health practitioner to engage the public at multiple*
323 *levels.*” Often, different elements of the governance network are seen as predisposed to participation in
324 such policy-making processes (Arnstein 1969; Fisher 2003; Forester 1999). This is evident, for example,
325 within Australian local governments’ adaptation planning where the concept of shared responsibility is
326 used to distribute responsibilities among different actors (Burton and Mustelin 2013).

327 In practice, however, many potential adaptation actors will simply choose not to participate,
328 either because they have no interest (Burton 2009b), because they are preoccupied with more significant
329 priorities (Tol et al. 2008; Handmer and Dovers 2009; Moench 2009; Smith et al. 2008; Measham et al.
330 2011), or because adaptation is simply not relevant to their management objectives. While the
331 opportunities for participation should be enhanced for those members of the public who want to engage in
332 decision-making processes, it cannot be assumed that more participation is always better or results in
333 better policy outcomes (Richardson 1983, Burton 2009b, Burton and Mustelin 2013). Several authors
334 have noted that stakeholder engagement efforts are often poorly structured, resulting in *ad hoc* or biased
335 participation (Weinestedt 2009; Brown et al. 2011; Rinner et al. 2011; Cromp et al. 2012; Brick et al.
336 2013). For example, Catchpole (2008) and McKinney et al. (2010) cite instances of disagreement
337 regarding which stakeholders should or should not included in participatory processes. Given the lack of
338 empirical evidence to track the benefits and outcomes of participation, confusion as to which actors and
339 stakeholders should be involved and how (Burton 2009b), and potential fear of policymakers to involve
340 the public (Wesselink et al. 2008), placing unvalidated faith in the utility of broad participation in
341 adaptation appears premature. Even in cases where willingness is present, adaptation constraints impede
342 action (Berkhout et al. 2006; Moser and Ekstrom 2010; Measham et al. 2011), suggesting potential
343 disconnects between willingness to adapt and actual adaptation (Berrang-Ford et al. 2011b; Preston et al.
344 2011b). By exploring the nuances of how climate adaptation may or may not interact with actors’
345 objectives and business models, adaptation policy can be guided by a more refined understanding of
346 which actors are critical to particular adaptation strategies and which may act as potential barriers.

347

348

349 **3.6. Predict and Respond**

350 As adaptation has traditionally been framed as adjustments to anticipated changes in future
351 climate conditions (IPCC 2001), adaptation research places a strong emphasis on developing insights
352 regarding future climatic and socioeconomic states and trends. These insights can largely be classified
353 into three categories: a) projections of future climate conditions; b) projections of future societal and/or
354 ecological vulnerability; and c) projections of the costs/benefits of different adaptation options. Our
355 exploration of the adaptation literature retrieved 98 documents which contained language consistent with
356 a predict and respond approach to adaptation (Figure 1). Of these, 61 (62%) endorsed this approach, while
357 3 (3%) were critical. The vast majority of documents adopting a predict and respond stance referred to the
358 need for improvements in climate projections/predictions generally, and, in particular, the use of
359 downscaling methods to improve regional-scale analysis. Prober (2012, p. 244) notes that the
360 management of ecosystem impacts is “*constrained by high uncertainty, and a better understanding of*
361 *non-linear relationships and thresholds, coupled with improved climate prediction, is needed.*” Biringer
362 (2005, p. 157) states “*the first step in examining climate change effects on biodiversity requires*
363 *downscaling of GCM [general circulation model] data.*” The pursuit of predictions conforms to the
364 emphasis on ‘evidence-based’ decision-making that adopts (implicitly or explicitly) a ‘knowledge deficit’
365 or ‘rational actor’ model of decision-making (Wynne 1991, 2006; Schön and Rein 1994; Stokes 1997;
366 Hansen et al. 2003; Godin 2006; Trench 2008; Heazle 2010). The assumed policy-relevance of improved
367 prediction has also been expressed in the science policy and adaptation practitioner arenas. For example,
368 the Australian Department of Climate Change (DCC 2009, p. 6) justifies its investments as climate
369 science by arguing that it is “*the essential system knowledge without which adaptation strategies and*
370 *mitigation strategies cannot readily be built*”. Meanwhile, Hickox and Nichols (2003), argue that
371 “*reducing uncertainty in projections of future climates is critical to progress [on adaptation].*”

372 Reliance upon the predict and respond heuristic to guide adaptation practice effectively paints
373 practitioners into a corner, because uncertainty cannot be eliminated. Several authors have been critical of
374 the assumption that more accurate/precise information about future climate is needed to adapt to climate
375 change (Adger et al. 2009a; Dessai et al. 2009), as well as the utility of vulnerability assessment methods
376 and metrics for informing adaptation decision-making (Barnett et al. 2008; Klein 2009; Preston et al.
377 2009; Hinkel 2011; Preston et al 2011b). For example, Barnett and O’Neill (2010) argue that recent large-
378 scale infrastructure solutions for managing water resource insecurity in Melbourne, Australia, which were
379 justified in part on long-term climate projections of declining rainfall, were maladaptive (see also
380 Productivity Commission 2011). Todd et al. (2010) argue that reducing uncertainty about future
381 hydroclimatological conditions is unlikely due to the long-term stability in estimates of global climate

382 sensitivity and the tendency for the incorporation of additional processes and/or downscaling methods to
383 introduce additional uncertainty into climate predictions. Similarly, Graeff et al. (2012, p. 7) assert that
384 increasing climate model resolution could be counterproductive as “*model performance might get worse at smaller scales.*” This suggests the need for researchers and practitioners to be more circumspect in
385 assessing the utility of prediction for adaptation. Rather than literal, direct applications of predictions in
386 decision-making, such predictions can be used for their diagnostic and pedagogical value with respect to
387 elucidating system sensitivities and thresholds (Jones 2001; Dessai et al. 2004), facilitating deliberation
388 (Preston et al. 2009; Yuen et al. 2012) and contributing to the weight-of-evidence that may inform
389 possible adaptation responses. This framing, however, significantly alters the mental model of how such
390 information should be used to facilitate adaptation from predict and respond to predict and learn.
391

393 **3.7. Reactive Adaptation**

394 The adaptation literature has long made a distinction between reactive adaptation and planned
395 adaptation. These terms are often used synonymously with those of autonomous and anticipatory
396 adaptation, respectively, although at times distinctions are made (e.g., Gilbert et al. 2010). One common
397 heuristic device which appears in the literature is to frame reactive adaptation as being less efficient, more
398 costly, and more prone to failure than planned adaptation. Our search of the adaptation literature for
399 language consistent with this perspective retrieved 227 documents (Figure 1). However, the majority
400 (59%) of these simply defined reactive and planned adaptation as two general approaches with little
401 discussion of their relative merits. The remaining 41% were evenly split with half endorsing reactive
402 adaptation as inadequate or suboptimal and half critiquing this assumption and/or identifying conditions
403 under which reactive adaptation is particularly important. The argument against reactive adaptation is
404 exemplified by Church et al. (2010, p. 414) who state “*planned adaptation is more cost effective and less*
405 *disruptive than forced adaptation in response to the impacts of extreme events*”. Similarly, Price and
406 Neville (2003, p. 80) consider it “*very unlikely that adaptation after the fact could prove successful*” and
407 Repetto (2008, p. 2) asserts that reactive adaptation “*will be especially costly.*” Collectively, these
408 perspectives reflect an underlying objective of seeking the least-cost path to adaptation, under relatively
409 optimal conditions of foresight and efficient institutions.

410 Both adaptation research and practice have demonstrated, however, that such optimal conditions
411 are unlikely to materialize. Some researchers are now shifting away from assuming optimal conditions
412 toward ‘second best’ climate change policy responses (Bennear and Stavins 2007; Richels et al. 2009;
413 Bauer et al. 2011). This perhaps explains why documents offering a critical perspective on this heuristic
414 were just as numerous as those endorsing it. One common critique is that limits to human foresight pose

415 significant constraints on the ability of actors to plan efficiently. Burton et al. (2006, p. 10), for example,
416 state, “*uncertainties in the extent, timing, and distribution of impacts make it harder to determine the*
417 *appropriate level of investment.*” Meanwhile, Hall and Weiss (2012, p. 324) argue that reactive adaptation
418 may be a better option than “*proactive projects with uncertain value.*” Similarly, Kolev (2012, p. 47)
419 notes that as an immediate or near-term response, reactive adaptation “*is less directly affected by the*
420 *choice of discount rates.*” Despite its inefficiencies, there is ample evidence of public institutions acting
421 in a mode of reactive policy-making (Easterling 2004; Burton et al. 2006), and others have argued that
422 adaptation, too, is unlikely to proceed purely as responses to anticipated climate change (Adger et al.
423 2007; Ford et al. 2011). Hence, reactive adaptation may, in itself, be adaptive in the context of complex
424 democratic governance systems where values are continually being traded-off against one another.
425 Finally, as suggested by Grasso (2010), the traditional dichotomy of reactive and anticipatory adaptation
426 may be a false one, with adaptation processes rather being a more dynamic interaction among experience
427 and foresight, constraints and opportunities and reactive and anticipatory framings. While this
428 reconceptualizing of adaptation may reduce the marginalization of reactive adaptation, it also suggests
429 that appropriate conditions need to be created to allow reactive adaptation to occur in effective ways.
430

431 **3.8.Residual Risk**

432 Adaptation is often not framed as a stand-alone strategy for risk management, but rather as a
433 means of addressing the residual consequences that cannot be avoided through greenhouse gas mitigation
434 efforts (Jones 2004). Of the 158 documents we identified with language consistent with this heuristic, 69
435 (44%) were judged to endorse its use, while 12 (8%) were critical (Figure 1). That left a significant
436 fraction that was not directly relevant to climate adaptation. Moser et al. (2009c; p. 62), illustrate this
437 heuristic in citing the need to adapt “*to the impacts that cannot be avoided.*” Hence, adaptation is
438 complementary to mitigation and thus its utility is assumed to be directly linked to mitigation efforts. In
439 this context, MacLellan (2009, p. 46) argues that “*adaptation and mitigation are complementary*
440 *responses to climate change, and we are entreated to consider them together.*” Similarly, Kpadonou et al.
441 (2012, p. 185) state “*adaptation alone cannot eliminate all the negative impacts and mitigation is crucial*
442 *to limit changes in the climate system.*”

443 Other authors, however, note that while adaptation and mitigation are considered complementary
444 within some disciplines, “*the economic literature offers almost opposite views*” (Buob and Stephan; 2008,
445 p. 5), because “*they inevitably involve tradeoffs in a world of limited resources*” (Lin 2012, p. 28). If
446 actors are forced into making choices between investments in mitigation and adaptation, this alters the
447 perception of adaptation as a treatment for residual risk after mitigation. Furthermore, according to Jones

448 et al. (2007, p. 687), “*the fact that [mitigation and adaptation] manage different aspects of climate risk*
449 *may not matter to stakeholders*,” as decision-makers seeking to manage local risks posed by climate
450 change are unlikely to consider future mitigation potential in their planning. In fact, in the absence of a
451 robust international framework for mitigation, the residual risk heuristic reduces adaptation to an attempt
452 to hit a moving climate target, with some suggesting the need to adapt to much higher magnitudes of
453 climate change than previously considered (e.g., Fung et al. 2011; Stafford Smith et al. 2011; Thornton et
454 al. 2011). Hence, while the scale of mitigation efforts will certainly influence adaptation needs and
455 demand, scaling adaptation efforts to assumptions about future mitigation does not currently appear to be
456 a robust strategy for risk management.

457 **4. Discussion**

458 Many of the core principles, methods, and tools relevant to climate adaptation are based upon rules of
459 thumb that have become established through the natural process of disciplinary development. Such
460 heuristics have an important role to play in providing the building blocks for advances in adaptation
461 research and for guiding adaptation actors in the challenging effort of decision-making under uncertainty.
462 In fact, as indicated by Ravetz (1972), the establishment of a set of common assumptions may in fact be a
463 critical process in the development of rigorous research as well as robust practice. When decision
464 problems are complex and/or when knowledge is limited or ambiguous, heuristic reasoning may be
465 employed “*...to reduce difficult mental tasks to simpler ones*” (Slovic et al. 1982, p. 464), or to translate
466 theories regarding the rules that govern complex system into conventional wisdom. Adaptation cannot
467 advance if conceptual understanding of adaptation processes must be rediscovered and renegotiated at the
468 onset of every research endeavor or planning process.

469 As evidenced in our exploration of the adaptation literature, heuristic devices can be readily
470 identified that serve as the *a priori* points of departure for investigations of adaptation processes or for
471 adaptation planning and implementation. In this capacity, however, it is imperative that heuristics are
472 relevant and robust to the contexts to which they are applied. Otherwise, they can act to constrain rather
473 than facilitate adaptation. Arguing, for example, that adaptation is local can shift responsibility for
474 adaptation to local actors who are often not well-resourced to undertake adaptation. This problem of
475 adaptive capacity at the local level is one reason why mechanisms have been established (e.g., Least
476 Developed Country Fund) to provide assistance to national governments of least developed countries for
477 adaptation efforts. The novelty heuristic contributes to the perception of knowledge deficit, which can
478 become an excuse to push decisions further into the future. Meanwhile, arguing that adaptation
479 implementation is contingent upon reduced uncertainty in climate prediction is inconsistent with the
480 evidence that adaptation is already occurring (Adger et al. 2007). Hence, there appears to be room for

481 improvement with respect to the various adaptation heuristics currently in use. To this end, it is useful to
482 explore alternative framings for heuristics that are more robust given current criticisms and limitations
483 (Table 2).

484 Realizing such improvement, however, requires understanding the manner in which heuristics enter
485 the adaptation discourse. The origins of heuristics can be found within theories of cognitive reasoning –
486 modes of argumentation and evidence that people use to make sense of their world (Kahneman et al.
487 1982; Slovic et al. 1982; Newstead et al. 2002; Evans 2003 2006; Osman 2004; Hadjichristidis et al.
488 2007). Information processing occurs through associative and affective reasoning or through analytic
489 reasoning (Weber 2010, Osman 2004). The affective and associative reasoning focuses on personal
490 experience, is innate and relies on quick associations (Weber 2010, Evans 2003). Analytic reasoning, in
491 contrast, is generally slow and methodical, controlled rather than automatic or instinctive, and susceptible
492 to the introduction of new evidence and information (Evans and Over 1996; Stanovich 1999; Weber
493 2010). As an academic enterprise, one would assume that adaptation science is largely entrenched within
494 an analytic reasoning framework, yet adaptation researchers clearly make frequent use of heuristics.
495 Meanwhile, because the dynamics of decision-making in policy environments, which may be short-term
496 and opportunistic rather than deliberate (Handmer and Dovers 2009), adaptation practice may rely more
497 heavily upon heuristic reasoning. In addition, those involved in adaptation practice are more likely to rely
498 upon experiential knowledge and alternative ways of knowing than the direct transfer of scientific
499 knowledge into practice (Bäckstrand 2004; Goldstein 2009; Opperman 2011). Yet, adaptation practice is
500 a key venue in which heuristics can be put to the test and critically evaluated for their utility.

501 On a more practical level, adaptation heuristics are socialized among researchers and practitioners
502 through individual and social learning. This includes constructionist experiential learning (Hagmann and
503 Chuma 2002; Blackmore 2007; Yuen et al. 2012), whereby heuristics are developed based upon an
504 individual's framing of experience and its assigned meanings. The 'availability heuristic', for example,
505 represents a phenomenon in which individuals' perceptions of the future risk of an event are shaped by
506 their experience and the ease with which a comparable event can be recalled (Slovic et al. 1982; Godwa
507 1999; Moser 2009b; Leiserowitz 2005; Corfee-Merlot et al. 2011; Weber 2010). Similarly, Smith et al.
508 (2008) and Measham et al. (2011) report that local government staff in Sydney, Australia often equated
509 energy conservation and greenhouse gas reduction measures with adaptation due to an extensive prior
510 experience with mitigation. However, heuristics are not learned simply through experience. In many
511 instances, they are taught and reinforced through didactic learning (Lorenzoni et al. 2000; Irandoost 2009;
512 Burandt and Barth 2010). Formal scientific assessment processes such as those conducted under the
513 auspices of the Intergovernmental Panel on Climate Change are frequently framed as vehicles by which
514 policy-relevant scientific knowledge is delivered into the hands of decision-makers. Similarly, the current

515 study identified a broad range of heuristics that appeared not just in the peer-reviewed literature, but also
516 in guidance for practitioners regarding the planning and implementation of adaptation from the World
517 Bank (Agrawal et al. 2008; Kuriakose et al. 2009), the United Nations Development Programme (Lim et
518 al. 2005), as well as national government agencies (UK Stationary Office 2010; Brown et al. 2011).

519 The current study evidences the continual critique of conventional wisdom by researchers and/or
520 practitioners. For each heuristic explored through our literature search, it was possible to identify
521 documents in which the heuristic was viewed through a critical lens. Such reflexive application of
522 analytical reasoning to heuristics arises when evidence emerges that accepted conventional wisdom fails
523 to explain observed behavior or outcomes. Triggering analytic reasoning is dependent on the interaction
524 between science and policy as actors in both spheres contribute to the creation and subsequent use of
525 heuristics (Dilling and Lemos 2011). For example, the persistent inability for climate modelers to
526 constrain future uncertainties in climate prediction may cause practitioners to reevaluate whether
527 investing in such predictive tools is in fact the most robust approach to informing adaptation decision-
528 making. Subsequently, modelers may begin to question their own assumptions and seek more innovative
529 ways of extracting utility from model results. Alternatively, research regarding methods used by public
530 institutions to engage stakeholders in adaptation planning and implementation may reveal insights that
531 lead to reforms in how such engagements are structured. Capturing the learning from adaptation practice
532 is therefore a critical pathway for the development of more robust heuristics (e.g., Hedger et al. 2008; GIZ
533 2011b; Lamhauge et al. 2012). However, adaptation research should undergo similar scrutiny given its
534 role in defining what is accepted as conventional wisdom.

535 These interactions between research and decision-making as well as between heuristic and analytical
536 reasoning suggest the need for greater integration of adaptation science and practice, rather than treating
537 each as a separate enterprise (Moser and Ekstrom 2010; Preston et al. 2013). Strong precedents and
538 arguments in favor of such collaborative approaches to learning and decision-making can be found in the
539 policy sciences and adaptive governance literature (Clark 2002; Brunner et al. 2005; Folke et al. 2005;
540 Nelson et al. 2007, 2008; Lynch et al. 2008; Brunner and Lynch 2010). In this collaborative context, it is
541 important to acknowledge the underlying heuristics that are being used to guide adaptation processes and
542 continually question their legitimacy. This form of reflexive or ‘double loop’ learning is necessary to
543 ensure both researchers and practitioners have appropriately framed their adaptation problems and are
544 relying upon robust heuristics to guide their decision-making (Flood and Romm 1996; Groot and
545 Maarleveld 2000; Leeuwis and Pyburn 2002; Yuen et al. 2012). Otherwise, heuristics can become a
546 constraint rather than an enabling tool, which can lead to inefficiency, inefficacy, and maladaptation
547 (Barnett and O’Neill 2010).

548 5. **Conclusions**

549 This paper began with the assertion that although adaptation science has evolved relatively rapidly in
550 recent years, significant challenges persist in the translation of that science into robust policy and practice.
551 There is evidence that the conceptual models, tools and methods developed by the research community
552 have either not sufficiently evolved or have not been effectively delivered to guide adaptation (Klein and
553 Juhola 2013). While the limitations or even failures of applied adaptation science eventually become
554 evident leading to more critical appraisal of research methods, in the meantime, that knowledge is
555 employed by practitioners and other researchers, often with less of an analytical and reflexive lens. We
556 find that the heuristic reasoning employed in adaptation research and practice often fails to reflect the
557 nuances associated with the practical pursuit of adaptation. Hence, while heuristics have proven useful in
558 framing and clarifying the characteristics of climate change adaptation, they need to be accompanied by
559 critical reflection and evaluated for their robustness. While it is possible to identify literature critiquing
560 the use of some common heuristics, such critiques are often in the minority. In order to adequately
561 evaluate whether particular heuristics are useful and robust, there is an increasing need for critical mutual
562 reflection between scientists and practitioners as to which assumptions, heuristics, and adaptation
563 principles enable ‘successful’ adaptation in practice. In this endeavor, we would do well to promote
564 coproduction of knowledge in both theory and practice as crucial factors in increasing our own adaptive
565 capacity to advance and further develop the relevance, practicality and effectiveness of adaptation
566 research.

567

568 **References**

569 Adger WN (2003) Social capital, collective action, and adaptation to climate change. *Econ Geogr*
570 79(4):387–404

571 Adger WN, Agrawala S, Mirza MMQ et al (2007) Assessment of adaptation practices, options,
572 constraints and capacity. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE
573 (eds), *Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group*
574 *II to the fourth assessment report of the Intergovernmental Panel on Climate Change*. Cambridge
575 University Press, Cambridge

576 Adger WN, Dessai S, Goulden M et al (2009a) Are there social limits to adaptation to climate change?
577 *Clim Change* 93:335– 354

578 Adger WN, Lorenzoni I, O'Brien K (2009b) Adaptation now. In: Adger WN, Lorenzoni I, O'Brien K
579 (eds), *Adapting to climate change: Thresholds, values, governance*. Cambridge University Press,
580 Cambridge

581 Agrawal A, Kononen M, Perrin N (2008) The role of local institutions in adaptation to climate change.
582 Social Development Working Paper Series, Number 118, World Bank, Washington, DC.
583 Available via
584 <http://siteresources.worldbank.org/EXTSOCIALDEVELOPMENT/Resources/244362-1164107274725/sdp118.pdf>. Cited August 14, 2013.

586 Andersson K, Ostrom E (2008) Analyzing decentralized resource regimes from a polycentric perspective.
587 *Pol Sci* 41(1):71–93

588 Arnstein SR (1969) A ladder of citizen participation. *J Am Inst Plan* 35(4):216–224

589 Bäckstrand K (2004) Scientisation vs. civic expertise in environmental governance: Eco-feminist, eco-
590 modern and post-modern responses. *Environ Polit* 13(4):695–714

591 Barnett J, Lambert S, Fry I (2008) The hazards of indicators: insights from the Environmental
592 Vulnerability Index. *Ann Assoc Am Geogr* 98(1):102–119

593 Barnett J, O'Neill S (2010) Maladaptation. *Glob Environ Change* 20(2):211–213

594 Bauer N, Baumstark L, Leimbach M (2011) The REMIND-R model: The role of renewables in the low-
595 carbon transformation-the first-best vs. second-best worlds. *Clim Change* 114(1):146–168.

596 Bennear L, Stavins R (2007) Second-best theory and the use of multiple policy instruments. *Environ*
597 *Resour Econ* 37(1):111–129

598 Berkes F (2009) Evolution of co-management: role of knowledge generation, bridging organizations, and
599 social learning. *J Environ Manage* 90(5):1692–1702

600 Berkhout F, Hertin J, Jordan A (2002) Socio-economic futures in climate change impact assessment:
601 using scenarios as ‘learning machines’. *Glob Environ Change* 12(2):83–95

602 Berrang-Ford L, Ford JD, Paterson J (2011) Are we adapting to climate change? *Glob Environ Change*
603 21(1):25–33

604 Billé R (2008) Integrated coastal zone management: Four entrenched illusions. *Surv Perspect Integr*
605 *Environ Soc* 1(2):1–12

606 Biringer J, Guariguata MR, Locatelli B et al. (2005) Biodiversity in a changing climate: a framework for
607 assessing vulnerability and evaluating practical responses. In: Robledo C, Kanninen M, Pedroni
608 L (eds), *Tropical forests and adaptation to climate change: In search of synergies*. CIFOR, Bogor
609 Barat.

610 Blackmore C (2007) What kinds of knowledge, knowing and learning are required for addressing
611 resource dilemmas?: A theoretical overview. *Environ Sci Pol* 10(6):512–525

612 Brick, K., Van der Hoven, Z., & Visser, M.(2013). Cooperation and climate change. Can communicaiton
613 facilitate the provision ofp ublic goods in heterogenous settings. EfD DP 12-14, Environment for
614 Development Discussion Paper Series. University of Gothenburg and Resources for the Future,
615 Gothenburg and Washington, DC. Available at
616 <http://manage.www.efdinitiative.org.zope.sizeit.se/www.efdinitiative.org/research/publications/p>
617 [publications-repository/cooperation-and-climate-change-can-communication-facilitate-the-](http://manage.www.efdinitiative.org.zope.sizeit.se/www.efdinitiative.org/research/publications/p)
618 [provision-of-public-goods-in-heterogeneous-settings/files/EfD-DP-12-14.pdf](http://manage.www.efdinitiative.org.zope.sizeit.se/www.efdinitiative.org/research/publications/p). Cited August 14,
619 2013

620 Brown A, Gawith M, Lonsdale K et al. (2011) Managing adaptation: Linking theory and practice. UK
621 Climate Impacts Programme, Oxford. Available via http://www.ukcip.org.uk/wordpress/wp-content/PDFs/UKCIP_Managing_adaptation.pdf. Cited August 14, 2013.

622 Brunner RD, Lynch AH (2010) Adaptive governance and climate change. American Meteorological
623 Society, Boston

624 Brunner RD, Steelman TA, Coe-Juell L et al (2005) Adaptive governance: Integrating science, policy,
625 and decision-making. Columbia University Press, New York

626 Buob, S., & Stephan, G. (2008). Global climate change and the funding of adaptation. Discussion Papers,
627 08-04, Bern University, Bern. Available at <http://www.vwl.unibe.ch/papers/dp/dp0804.pdf>. Cited
628 August 14, 2013

629 Burandt S, Barth M (2010) Learning settings to face climate change. *J Clean Prod* 18(7):659–665

630 Burkett, M. 2011. In *Search of Refuge: Pacific Islands, Climate-Induced Migration and the Legal*
631 *Frontier*. In: Norris LK (ed), *Asia Pacific Issues. Analysis from the East-West Centre*, Nr 98,
632 East-West Center, University of Hawaii, Honolulu. Available via
633 <https://www.eastwestcenter.org/sites/default/files/private/api098.pdf>. Cited August 14, 2013

634 Burton, I. (2008). Beyond borders: The need for strategic global adaptation. *Sustainable Development*
635 *Opinion Policy Brief*. December. International Institute for Environment and Development,
636 London. Available via <http://pubs.iied.org/pdfs/17046IIED.pdf>. Cited August 14, 2013

637

638 Burton I (2009a) Climate change and the adaptation deficit. In: Schipper ELF, Burton I (eds), The
639 Earthscan reader on adaptation to climate change. Earthscan, London and Sterling

640 Burton I, Challenger B, Huq S et al (2001) Adaptation to climate change in the context of sustainable
641 development and equity. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds),
642 Climate change 2001: Impacts, adaptation and vulnerability. Contribution of working group II to
643 the third assessment report of the Intergovernmental Panel on Climate Change, Cambridge
644 University Press, Cambridge

645 Burton I, Diringer E, Smith J (2006) Adaptation to climate change: International policy options. Center
646 for Climate Change and Energy Solutions, Arlington. Available via
647 http://www.c2es.org/docUploads/PEW_Adaptation.pdf. Cited August 14, 2013

648 Burton P (2009b) Conceptual, theoretical and practical issues in measuring the benefits of public
649 participation. Evaluation 15(3):263–284

650 Burton P, Mustelin J (2013) Planning for climate change: Is greater public participation the key to
651 success? Urban Pol Res. DOI 10.1080/08111146.2013.778196

652 Buys L, Miller E, van Megen K (2012) Conceptualising climate change in rural Australia: community
653 perceptions, attitudes and (in) actions. Reg Environ Change 12(1): 237–248.

654 Campbell-Lendrum D, Corvalán C, Neira M (2007) Global climate change: implications for international
655 public health policy. WHO Bull 85(3):235–237

656 Carter TR (2007) Local climate change impacts, adaptation and vulnerability. Paper presented at the
657 conference the future climatic window: local impacts of climate change, Seggau Castle, Leibnitz,
658 25–27 January 2007.

659 Catchpole R (2008) Current status of the practical implementation of ecological networks in England.
660 State Institute for Nature Protection, Zagreb. Available via
661 <http://www.ecologicalnetworks.eu/documents/publications/ken/CroatiaKENWP2.pdf>. Cited
662 August 14, 2013

663 Church JA, Aarup T, Woodworth PL et al (2010) Sea-level rise and variability: synthesis and outlook for
664 the future. In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds), Understanding sea-level
665 rise and variability. Blackwell Publishing Ltd., Oxford

666 Clark TW (2002) The policy process: A practical guide for natural resource professionals. Yale
667 University Press, New Haven and London

668 Corfee-Morlot J, Cochran I, Hallegatte S et al. (2011) Multilevel risk governance and urban adaptation
669 policy. Clim Change 104(1):169–197

670 Cromp D, Cheadle A, Solomon L et al (2012) Kaiser Permanente's farmers' market program:
671 Description, impact, and lessons learned. J Ag Food Sys Comm Dev 2(2):29–36.

672 DCC (Department of Climate Change) (2007) National Climate Change Adaptation Framework,
673 Department of Climate Change, Canberra. Available via
674 http://www.climatechange.gov.au/sites/climatechange/files/documents/03_2013/nccaf.pdf. Cited
675 August 14, 2013

676 DCC (Department of Climate Change) (2009) Australian climate change science: A national framework.
677 Department of Climate Change, Canberra. Available via
678 http://www.climatechange.gov.au/sites/climatechange/files/documents/03_2013/national-framework-climate-change-science.pdf. Cited August 14, 2013

680 DCC (Department of Climate Change) (2010) Adapting to climate change in Australia - An Australian
681 government position paper. Department of Climate Change, Canberra. Available via
682 http://www.climatechange.gov.au/sites/climatechange/files/documents/03_2013/adapt-climate-change-position-paper.pdf. Cited August 14, 2013

684 Dedekorkut A, Mustelin J, Howes M et al (2010) Tempering growth: planning for the challenges of
685 climate change and growth management in SEQ. *Austral Plan*, 47(3):203–215

686 Dessai S, Adger WN, Hulme M et al (2004) Defining and experiencing dangerous climate change. *Clim
687 Change* 64:11–25

688 Dessai S, Hulme M, Lempert et al (2009) Climate prediction: a limit to adaptation? In: Adger WN,
689 Lorenzoni I, O'Brien KL (eds), *Adapting to climate change: Thresholds, values, governance*.
690 Cambridge University Press, Cambridge

691 Dilling L, Lemos MC (2011) Creating usable science: Opportunities and constraints for climate
692 knowledge use and their implications for science policy. *Glob Environ Change* 21:680-689

693 Dovers S (2009) Normalizing adaptation. *Glob Environ Change* 19(1):4–6

694 Dovers SR, Hezri AA (2010) Institutions and policy processes: the means to the ends of adaptation.
695 *WIREs Clim Change* 1(2):212–231

696 Easterling W, Hurd B, Smith J (2004) Coping with climate change: The role of adaptation in the United
697 States. Center for Climate Change and Energy Solutions, Arlington. Available at
698 <http://www.c2es.org/docUploads/Adaptation.pdf>. Cited August 14, 2013

699 Ebi KL (2011). Overview: Adaptive management for the health risks of climate change. In: Ford JD,
700 Berrang-Ford L (eds), *Climate change adaptation in developed nations*. Springer, Netherlands.

701 Evans J (2006) The heuristic-analytic theory of reasoning: Extension and evaluation. *Psychon Bull Rev*
702 13(3):378–395

703 Evans JSBT (2003) In two minds: Dual-process accounts of reasoning. *Trends Cogn Sci* 7(10):454–459

704 Evans JSBT, Over DE (1996) *Rationality and reasoning*. Psychology Press, Hove

705 Fisher F (2003) *Reframing public policy - Discursive politics and deliberative practices*. Oxford
706 University Press, New York

707 Flood R, Romm N (1996) Diversity management: Triple loop learning. Wiley, West Sussex

708 Folke, C, Hahn T, Olsson P et al (2005) Adaptive governance as social-ecological systems. *Annu Rev*
709 *Environ Resour* 30:441-473

710 Ford JD, Berrang-Ford, L (2011) Introduction. In: Ford JD, Berrang-Ford L (eds), *Climate change*
711 *adaptation in developed nations*. Springer, Netherlands.

712 Ford JD, Berrang-Ford L, Paterson J (2011) A systemic review of observed climate change adaptation in
713 developed nations. *Clim Change* 106:327–336

714 Forester J (1999) *The deliberative practitioner: Encouraging participatory planning processes*. MIT Press,
715 Cambridge

716 Fung F, Lopez A, New M (2011) Water availability in +2°C and +4°C worlds. *Phil Trans R Soc A*
717 369(1934), 99–116

718 Gero A, Kuruppu N, Mukheibir P (2012) Cross-scale barriers to climate change adaptation in local
719 government, Australia – Background report. Institute for Sustainable Futures, University of
720 Technology, Sydney. Available via
721 <http://www.isf.uts.edu.au/publications/geroetal2012climatebarrierslocalgovbackgrd.pdf>. Cited
722 August 14, 2013.

723 GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit) (2011a) *Adaptation to climate change: New findings, methods and solutions*. Deutsche Gesellschaft für Internationale Zusammenarbeit, Eschborn. Available via <http://www2.gtz.de/dokumente/bib-2011/giz2011-0159en-climate-change.pdf>. Cited August 14, 2013

727 GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit) (2011b) *Making adaptation count: Concepts and options for monitoring and evaluation of climate change adaptation*. Deutsche Gesellschaft für Internationale Zusammenarbeit, Eschborn. Available via http://pdf.wri.org/making_adaptation_count.pdf. Cited August 14, 2013

731 Godin B (2006) The linear model of innovation: the historical construction of an analytical framework. *Sci Technol Hum Values* 31(6):639–667

733 Godwa M (1999) Heuristics, biases, and the regulation of risk. *Pol Sciences* 32(1):59–78

734 Goldstein B (2009) Resilience to surprises through communicative planning. *Ecol Soc* 14(2):33

735 Grasso M (2010) *Justice in funding adaptation under the international climate change regime*. Springer, Netherlands.

737 Graeff S, Link J, Binder J et al. (2012) Crop models as decision support systems. In: Sharma P, Abrol V
738 (eds), *Crop production technologies*. InTech, Rijeka

739 Groot A, Maarleveld M (2000) Demystifying facilitation in participatory development. *Gatekeeper Series*
740 no. 89, International Institute for Environment and Development, London. Available via
741 <http://pubs.iied.org/X188IIED.html?a=M%252520Maarleveld>. Cited August 14, 2013

742 Hadjichristidis C, Handley S, Sloman S et al (2007) Iffy beliefs: Conditional thinking and belief change.
743 *Memory Cogn*, 35(8):2052–2059

744 Hagmann J, Chuma E (2002) Enhancing the adaptive capacity of the resource users in natural resource
745 management. *Agric Syst* 73(1):23–39

746 Hall M, Weiss D (2012) Avoiding adaptation apartheid: Climate change adaptation and human rights
747 law. *Yale J Int Law* 37:310–366

748 Hallegatte S (2009) Strategies to adapt to an uncertain climate change. *Glob Environ Change* 19(2):240–
749 247

750 Hallegatte S, Dumas P (2009) Can natural disasters have positive consequences? Investigating the role of
751 embodied technical change. *Ecol Econ* 68(3):777–786

752 Hammer SG (2004) How can we deal better with climate risk in agriculture? Paper presented at the
753 Outlook 2004 conference, Australian Bureau of Agricultural and Resource Economics,
754 Canberra, 2 March, 2004

755 Handmer JW, Dovers S (2009) A typology of resilience: Rethinking institutions for sustainable
756 development. In: Schipper ELF, Burton I (eds), *The Earthscan reader on adaptation to climate
757 change*. Earthscan, London

758 Hansen J, Holm L, Frewer L et al (2003) Beyond the knowledge deficit: recent research into lay and
759 expert attitudes to food risks. *Appetite* 41:111–121

760 Hartzell-Nichols L (2011) Responsibility for meeting the costs of adaptation. *WIREs Clim Change*
761 2(5):687–700

762 Hay J, Mimura N (2006) Supporting climate change vulnerability and adaptation assessments in the Asia-
763 Pacific region: an example of sustainability science. *Sustain Sci* 1(1):23–35.

764 Heazle M (2010) Uncertainty in policy making: Values and evidence in complex decisions. Earthscan,
765 London and Washington, DC

766 Hedger MM, Mitchell T, Leavy J et al (2008) Desk review: Evaluation of adaptation to climate change
767 from a development perspective. Institute of Development Studies, Brighton. Available via
768 http://www.preventionweb.net/files/7845_GEF20final20report20Oct20081.pdf. Cited August 14,
769 2013

770 Heltberg R, Siegel PB, Jorgensen SL (2009) Addressing human vulnerability to climate change: toward a
771 'no regrets' approach. *Glob Environ Change* 19(1):89–99

772 Hickox WH, Nichols MD (2003) Climate research. *Iss Sci Technol* Spring. Available via
773 <http://www.issues.org/19.3/forum.htm>. Cited August 14, 2013

774 Hinkel J (2011) Indicators of vulnerability and adaptive capacity: towards a clarification of the science-
775 policy interface. *Glob Environ Change* 21(1):198–208

776 Hulme M, O'Neill SJ, Dessai S (2011) Is weather event attribution necessary for adaptation funding?
777 *Science*, 334(6057):764–765

778 Hulme M, Pielke Jr RN, Dessai S (2009) Keeping prediction in perspective. *Nature Rep Clim Change*.
779 DOI:10.1038/climate.2009.110

780 Huntjens P, Pahl-Wostl C, Grin J (2010) Climate change adaptation in European river basins. *Reg*
781 *Environ Change* 10(4):263–284

782 IPCC (Intergovernmental Panel on Climate Change) (2001) Climate change 2001: Synthesis report.
783 Watson RT, Albritton DL, Barker T, Bashmakov IA, Canziani O, Christ R, Cubasch U, Davidson
784 O, Gitay H, Griggs D, Houghton J, House J, Kundzewicz Z, Lal M, Leary N, Magadza C,
785 McCarthy JJ, Mitchell JFB, Moreira JR, Munasinghe M, Noble I, Pachauri R, Pittock AB, Prather
786 M, Richels RG, Robinson JB, Sathaye J, Schneider SH, Scholes R, Stocker T, Sundararaman N,
787 Swart R, Taniguchi T, Zhou, D (eds), Cambridge University Press, Cambridge

788 IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: Impacts, adaptation
789 and vulnerability. Contribution of working group II to the fourth assessment report of the
790 Intergovernmental Panel on Climate Change. Parry ML, Canziani OF, Palutikof JP, van der
791 Linden PJ, Hanson CE (eds), Cambridge University Press, Cambridge

792 IPCC (Intergovernmental Panel on Climate Change) (2012) Managing the risks of extreme events and
793 disasters to advance climate change adaptation. A special report of working groups I and II of the
794 Intergovernmental Panel on Climate Change. Field, CB, Barros V, Stocker TF, Qin D, Dokken
795 DJ, Ebi KL, Mastrandrea M., Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds),
796 Cambridge University Press, Cambridge

797 Irandoost S (2009) Sustainable development in the context of climate change: a new approach for
798 institutions of higher learning. *Sustain Sci* 4(2):135–137

799 Jerneck A, Olsson L (2008) Adaptation and the poor: development, resilience and transition. *Clim Pol*
800 8(2):170–182

801 Jones RN (2001) An environmental risk assessment/management framework for climate change impact
802 assessment. *Nat Haz* 23(2-3):197–230

803 Jones RN (2004) Incorporating agency into climate change risk assessments. *Clim Change* 67(1):13–36.

804 Jones RN, Dettmann P, Park G et al. (2007) The relationship between adaptation and mitigation in
805 managing climate change risks: A regional response from North Central Victoria, Australia. *Mitig*
806 *Adapt Strat Glob Change* 12(5):685–712

807 Kahneman D, Slovic P, Tversky A (1982) Judgment under uncertainty: Heuristics and biases. Cambridge
808 University Press, Cambridge

809 Kates RW, Travis WR, Wilbanks TJ (2012) Transformational adaptation when incremental adaptations to
810 climate change are insufficient. *Proc Natl Acad Sci USA*. DOI10.1073/pnas.1115521109

811 Keskitalo ECH (ed) (2010) Developing adaptation policy and practice in Europe: Multi-level governance
812 of climate change. Springer, Dordrecht

813 Keskitalo ECH, Kulyasova AA (2009) The role of governance in community adaptation to climate
814 change. *Polar Res* 28(1):60–70

815 Klein RJT (2009) Identifying countries that are particularly vulnerable to the effects of climate change: an
816 academic or political challenge? *Carbon Clim Law Rev* 3:284–291.

817 Klein RJT, Juhola S (2013) A framework for Nordic actor-oriented climate adaptation research. NORD-
818 STAR Working Paper 2013-01, Nordic Centre of Excellence for Strategic Adaptation Research,
819 Herning. Available via www.nord-star.info/workingpapers/wp-2013-01.pdf. Cited August 14,
820 2013

821 Klein RJT, Nicholls RJ, Ragoonaden S et al (2001) Technological options for adaptation to climate
822 change in coastal zones. *J Coast Res* 17(3):531–543

823 Kolev A (2012) Mitigate, adapt or endure: A question of balance. In: Kolev A, Riess A-D, Zachmann G,
824 Calthrop E, Investment and growth in the time of climate change. European Investment Bank and
825 Bruegel, Luxemborg and Brussels. Available via
826 http://www.eib.org/attachments/thematic/investment_and_growth_in_the_time_of_climate_change_en.pdf. Cited August 14, 2013

828 Kpadonou RAB, Adégbola PY, Tovignan SD (2012) Local knowledge and adaptation to climate change
829 in Ouémé valley, Benin. *African Crop Sci J* 20(2):181–192.

830 Kuhn TS (1996) The structure of scientific revolutions. University of Chicago Press, Chicago

831 Kuriakose A, Bizikova L, Bachofen CA (2009) Assessing vulnerability and adaptive capacity to climate
832 risks: methods for investigation at local and national levels. Social Development Working Paper
833 Series, Number 116, World Bank, Washington, DC. Available via
834 <http://siteresources.worldbank.org/EXTSOCIALDEVELOPMENT/Resources/244362-1164107274725/sdp116.pdf>. Cited August 14, 2013

836 Lambrou Y, Paina G (2006) Gender: The missing component of the response to climate change. Food and
837 Agriculture Organization of the United Nations (FAO), Rome. Available via
838 <ftp://ftp.fao.org/docrep/fao/010/i0170e/i0170e00.pdf>. Cited August 14, 2013

839 Lamhauge N, Lanzi E, Agrawala S (2012) Monitoring and evaluation for adaptation: Lessons from
840 development co-operation agencies. OECD Environment Working Papers, No. 38, OECD
841 Publishing, Paris. Available via http://www.climate-expert.in/attachments/article/40/OECD%202012_ME%20for%20Adaptation.pdf. Cited August
842 14, 2013

844 Leeuwis C, Pyburn R (eds) (2002) Wheelbarrows full of frogs: social learning in rural resource
845 management. Koninklijke Van Gorcum, Assen

846 Leiserowitz AA (2005) American risk perceptions: is climate change dangerous? *Risk Anal* 25(6):1433–
847 1442

848 Leith P (2011) Public engagement with climate adaptation: an imperative for (and driver of) institutional
849 reform? In: Whitmarsh L, Lorenzoni I, O'Neill S (eds), *Engaging the public with climate change:*
850 *Behaviour change and communication*. Earthscan, London

851 Lemos MC, Tompkins, EL (2008) Creating less disastrous disasters. *IDS Bull* 39(4):60–66.

852 Lesnikowski AC, Ford JD, Berrang-Ford L et al (2013) How are we adapting to climate change? A global
853 assessment. *Mitig Adapt Strat Glob Change*. DOI 10.1007/s11027-013-9491-x

854 Li G, Dovers S (2011) Integrated assessment of climate change impacts on urban settlements: lessons
855 from five Australian cases. In: Ford JD, Berrang-Ford L (eds), *Climate change adaptation in*
856 *developed nations*. Springer, Netherlands

857 Lim B, Spanger-Siegfried E, Burton I et al. (2005) *Adaptation policy frameworks for climate change:*
858 *developing strategies, policies, and measures*. Cambridge University Press, Cambridge

859 Lin A (2012) Does geoengineering present a moral hazard? *Ecol Law Quart* in press.

860 Lindseth G (2005) Local level adaptation to climate change: discursive strategies in the Norwegian
861 context. *J Environ Pol Plan* 7(1):61–83

862 Lorenzoni I, Jordan A, O'Riordan T et al (2000) A co-evolutionary approach to climate change impact
863 assessment: Part II. A scenario-based case study in East Anglia (UK). *Glob Environ Change*
864 10:145–155

865 Lynch AH, Tryhorn L, Abramson R (2008) Working at the boundary: facilitating interdisciplinarity in
866 climate change adaptation research. *Bull Am Met Soc*, February, 169–179

867 MacLellan JI (2007) A bibliographic review of the climate change adaptation literature. *Adaptation and*
868 *Impacts Research Division, Environment Canada*, Toronto. Available via
869 <http://projects.upei.ca/climate/files/2012/10/UTSC-Paper-71.pdf>. Cited August 14, 2013

870 McCarthy PD (2012) Climate change adaptation for people and nature: a case study from the US
871 Southwest. *Adv Clim Change Res* 3(1):22–37

872 McKinney M, Baker L, Buvel AM et al. (2010) Managing transboundary natural resources: An
873 assessment of the need to revise and update the Columbia River Treaty. *Hastings W NW J*
874 *Environ Law Pol* 16(2):307

875 Measham T, Preston BL (2012) Vulnerability analysis, risk and deliberation: the Sydney climate change
876 adaptation initiative. In: Measham T, Lockie S (eds), *Risk and social theory in environmental*
877 *management*. CSIRO Publishing, Collingwood

878 Measham T, Preston B, Smith, T et al (2011) Adapting to climate change through local municipal
879 planning: barriers and challenges. *Mitig Adapt Strat Glob Change* 16(8):889–909

880 Meinshausen M, Meinshausen N, Hare W et al (2009) Greenhouse-gas emission targets for limiting
881 global warming to 2°C. *Nature* 458:1158-63

882 MFAD (Ministry of Foreign Affairs of Denmark) and GEF (Global Environment Facility) (2009)
883 Operation of the least developed countries fund for adaptation to climate change. Ministry of
884 Foreign Affairs of Denmark, Copenhagen. Available via
885 http://www.thegef.org/gef/sites/thegef.org/files/documents/GEF.LDCF_.SCCF_.7.Inf4_.pdf.
886 Cited August 14, 2013

887 Moench M (2009) Adapting to climate change and the risks associated with natural hazards: methods for
888 moving from concepts to action. In: Schipper ELF, Burton I (eds), *The Earthscan reader on*
889 *adaptation to climate change*. Earthscan, London

890 Moser SC (2009a) Governance and the art of overcoming barriers to adaptation. IHDP Update Issue 3,
891 International Human Dimensions Programme, Bonn. Available via
892 http://www.ihdp.unu.edu/file/Update+3-2009/Update+3-2009_p31_Moser.pdf. Cited August 14,
893 2013

894 Moser S (2009b) Making a difference on the ground: the challenge of demonstrating the effectiveness of
895 decision support. *Clim Change*, 95(1):11–21

896 Moser SC (2010) Communicating climate change: history, challenges, process and future directions.
897 *WIREs Clim Change* 1(1):31–53

898 Moser SC, Dilling L (2007) Toward the social tipping point: creating a climate for change. In: Moser SC,
899 Dilling L (eds) *Creating a climate for change: communicating climate change and facilitating*
900 *social change*. Cambridge University Press, Cambridge.

901 Moser S, Ekstrom J (2010) A framework to diagnose barriers to climate change adaptation. *Proc Natl*
902 *Acad Sci USA* 107(51):22026–22031

903 Moser S, Franco G, Pittiglio S et al. (2009c) The future is now: An update on climate change science
904 impacts and response options for California. California Energy Commission Public Interest
905 Energy Research Program CEC-500-2008-071. Available via
906 <http://www.energy.ca.gov/2008publications/CEC-500-2008-077/CEC-500-2008-077.PDF>. Cited
907 August 14, 2013

908 Mustelin J (2013) Ideal ideals or pragmatic reality? An exploration of the role of adaptation theory in
909 policy and practice. Dissertation, School of Environment, Griffith University

910 Mustelin J, Klein R, Assaid B et al (2010) Understanding current and future vulnerability in coastal
911 settings: community perceptions and preferences for adaptation in Zanzibar, Tanzania. *Popul*
912 *Environ* 31(5):371–398

913 Mustelin J, Kuruppu N, Kramer AM et al (2013) Climate adaptation research for the next generation.
914 *Clim Dev*. DOI 10.1080/17565529.2013.812953

915 Næss LO, Bang G, Eriksen S et al (2005) Institutional adaptation to climate change: Flood responses at
916 the municipal level in Norway. *Glob Environ Change* 15(2):125–138

917 Nelson DR, Adger WN, Brown K (2007) Adaptation to environmental change: contributions of a
918 resilience framework. *Annu Rev Environ Resour* 32:395–419

919 Nelson R, Howden M, Stafford Smith M (2008) Using adaptive governance to rethink the way science
920 supports Australian drought policy. *Environ Sci Pol* 11(7):588–601

921 Newstead S, Thompson V, Handley S (2002) Generating alternatives: a key component in human
922 reasoning? *Memory Cogn* 30(1):129–137

923 Nielsen JØ, Reenberg A (2010) Cultural barriers to climate change adaptation: a case study from
924 Northern Burkina Faso. *Glob Environ Change* 20(1):142–152

925 NISTPASS (National Institute for Science and Technology Policy and Strategy Studies) (2011) CC
926 resilience planning in Vietnam - Experience from ACCCRN Vietnam. Paper presented at the
927 Second World Congress on Cities and Adaptation to Climate Change, Bonn, 3–5 June, 2011

928 Norgaard KM (2009) Cognitive and behavioural challenges in responding to climate change. The World
929 Bank, Washington, DC. Available via http://www-wds.worldbank.org/servlet/WDSContentServer/WDSP/IB/2009/05/19/000158349_20090519142931/Rendered/PDF/WPS4940.pdf. Cited August 14, 2013

932 O'Brien KL, Wolf J (2010) A values-based approach to vulnerability and adaptation to climate change.
933 *WIREs Clim Change* 1(2):232–242

934 Oppermann E (2011) The discourse of adaptation to climate change and the UK Climate Impacts
935 Programme: de-scribing the problematization of adaptation. *Clim Development* 3(1):71–85

936 Osman M (2004) An evaluation of dual-process theories of reasoning. *Psychon Bull Rev* 11(6):988–1010

937 Park SE, Marshall NA, Jakku E et al (2012) Informing adaptation responses to climate change through
938 theories of transformation. *Glob Environ Change* 22(1):115–126

939 Parry M, Arnell N, Berry P et al (2009) Assessing the costs of adaptation to climate change: A review of
940 the UNFCCC and other recent estimates. International Institute for Environment and
941 Development and Grantham Institute for Climate Change, London. Available via
942 <http://pubs.iied.org/pdfs/11501IIED.pdf>. Cited August 14, 2013

943 Patt A (2012) Multi-level climate adaptation policy and causation narratives. *Dan J Geogr* 112(2):174–
944 182.

945 Patt A, Klein RJ, de la Vega-Leinert A (2005) Taking the uncertainty in climate-change vulnerability
946 assessment seriously. *Comptes Rendus Geosci* 337(4):411–424.

947 Pelling M, High C (2005) Understanding adaptation: what can social capital offer assessments of adaptive
948 capacity? *Glob Environ Change* 15(4):308–319

949 Petherick A (2012) Market watch: a note of caution. *Nature Clim Change* 2:144–145

950 Pielke Jr RA, Prins G, Rayner S et al (2007) Climate change 2007: lifting the taboo on adaptation. *Nature*
951 445:597–598

952 Preston BL (2009) Equitable climate policy in a dangerous world. In: Moss, J (ed) *Climate change and*
953 *social justice*. Melbourne University Press, Carlton

954 Preston BL, Brooke C, Measham, TG (2009) Igniting change in local government: Lessons learned from
955 a bushfire vulnerability assessment. *Mitig Adapt Strat Glob Change* 14(3):251–283.

956 Preston BL, Kay RC (2010) Managing climate risk in human settlements. In: Jubb, I, Holper, P, Cai, W
957 (eds), *Greenhouse 2009*. CSIRO Press, Collingwood

958 Preston BL, Rickards L, Dessai S et al. (2013) Water, seas, and wine: Science for successful adaptation. In:
959 Moser S, Boykoff M (eds), *Successful adaptation to climate change*, Routledge, New York

960 Preston BL, Stafford-Smith M (2009) Framing vulnerability and adaptive capacity assessment: Working
961 Paper 2, CSIRO Climate Adaptation National Research Flagship, Canberra. Available via
962 <http://www.csiro.au/org/ClimateAdaptationFlagship.html>. Cited August 14, 2013

963 Preston BL, Westaway R, Yuen E (2011a) Climate adaptation planning in practice: an evaluation of
964 adaptation plans from three developed nations. *Mitig Adapt Strat Glob Change* 16(4):407–438

965 Preston BL, Yuen E, Westaway R (2011b) Putting vulnerability to climate change on the map: a review
966 of approaches, benefits, and risks. *Sustain Sci* 6:177–202

967 Price MF, Neville GR (2003) Designing strategies to increase the resilience of alpine/montane systems to
968 climate change. In: Hansen LJ, Biringer JL, Hoffman JR (eds), *Buying time: A user's manual for*
969 *building resistance and resilience to climate change in natural systems*. WWF, Berlin. Available
970 via http://awsassets.panda.org/downloads/buyingtime_unfe.pdf. Cited August 14, 2013

971 Prober SM, Thiele KR, Rundel PW et al. (2012) Facilitating adaptation of biodiversity to climate change:
972 a conceptual framework applied to the world's largest Mediterranean-climate woodland. *Clim*
973 *change* 110(1-2):227–248

974 Productivity Commission (2011) Australia's urban water sector. Report No. 55, Final Inquiry Report,
975 Productivity Commission, Canberra. Available via <http://www.pc.gov.au/projects/inquiry/urban-water/report>. Cited August 14, 2013

977 Ravetz JR (1972) *Scientific knowledge and its social problems*. Penguin, Harmondsworth

978 Raymond AM, Arias SD, Elder RC (2012) Technological solutions for climate change adaptation in the
979 Peruvian highlands. In: Chhetri N (ed), *Human and social dimensions of climate change*. InTech,
980 Rijeka

981 Reisinger A, Wratt D, Allan S et al (2011) The role of local government in adapting to climate change:
982 lessons from New Zealand. In: Ford JD, Berrang-Ford L (eds), *Climate change adaptation in*
983 *developed nations*. Springer, Netherlands

984 Repetto R (2008) The climate crisis and the adaptation myth. Working Paper 13, Yale School of Forestry
985 and Environmental Studies, New Haven. Available via
986 <http://www.climateneeds.umd.edu/pdf/ClimateCrisisAdaptationMyth.pdf>. Cited August 14, 2013

987 Richardson A (1983) Participation. Routledge and Kegan Paul, London

988 Richels RG, Blanford GJ, Rutherford TF (2009) International climate policy: a "second best" solution for
989 a "second best" world? *Clim Change* 97:289–296

990 Rietbergen-McCracken J, Maginnis S, Sarre A (eds) (2007). The forest landscape restoration handbook.
991 Earthscan, London

992 Rinner C, Kumari J, Mavedati S (2011) A geospatial web application to map observations and opinions in
993 environmental planning. In: Li S, Dragicevic S, Veenendaal B (eds), Advances in webGIS,
994 mapping services and applications. ISPRS book series No. 9, Taylor and Francis, London

995 Saavedra C, Budd WW (2009) Climate change and environmental planning: working to build community
996 resilience and adaptive capacity in Washington State, USA. *Habitat Internat*, 33(3):246–252

997 Sadauskis R (2011) Building resilience to climate-driven regime shifts. Dissertation, Stockholm
998 Resilience Centre, Stockholm University

999 Satterthwaite D, Huq S, Pelling M et al. (2007) Adapting to climate change in urban areas: the
1000 possibilities and constraints in low-and middle-income nations. Human Settlements Discussion
1001 Paper Series, International Institute for Environment and Development, London. Available via
1002 <http://pubs.iied.org/pdfs/10549IIED.pdf>. Cited August 14, 2013

1003 Schipper ELF (2007) Climate change adaptation and development: Exploring the linkages. Tyndall
1004 Centre for Climate Change Research Working Paper 107, Tyndall Centre for Climate Change
1005 Research, Norwich. Available via http://www.preventionweb.net/files/7782_twp107.pdf. Cited
1006 August 14, 2013

1007 Schipper ELF, Burton I (eds) (2009a) The Earthscan reader on adaptation to climate change. Earthscan,
1008 London

1009 Schipper ELF, Burton I (2009b) Understanding adaptation: origins, concepts, practice and policy. In:
1010 Schipper, ELF, Burton, I (eds), The Earthscan reader on adaptation to climate change. Earthscan,
1011 London

1012 Schön DA, Rein M (1994) Frame reflection: Toward the resolution of intractable policy controversies.
1013 BasicBooks, New York

1014 Scott C, Baehler K (2010) Adding value to policy analysis and advice. University of New South Wales
1015 Press Ltd., Sydney

1016 Sheffer T (2010) The key role of regional coastal adaptation planning in the United States. Dissertation,
1017 Virginia Polytechnic Institute and State University

1018 Simonsson L, Swartling ÅG, André K et al (2011) Perceptions of risk and limits to climate change
1019 adaptation: case studies of two Swedish urban regions. In: Ford, JD, Berrang-Ford, L (eds),
1020 Climate change adaptation in developed nations. Springer, Netherlands

1021 Slovic P, Fischhoff B, Lichtenstein S (1982) Facts versus fears: Understanding perceived risk. In:
1022 Kahneman, D, Slovic, P, Tversky, A (eds), Judgment under uncertainty: Heuristics and biases.
1023 Cambridge University Press, Cambridge

1024 Smith TF, Brooke C, Measham T et al (2008) Case studies of adaptive capacity. Prepared for the Sydney
1025 Coastal Councils Group, Sydney. Available via
1026 <http://www.sydneycoastalcouncils.com.au/sites/default/files/systapproachphasethreereport.pdf>.
1027 Cited August 14, 2013.

1028 Sprague A (2012) Applied stormwater management workshop participants report. Ecology Action Centre,
1029 Halifax. Available via
1030 <http://www.ecologyaction.ca/files/images/file/Coastal/stormwater/AppliedStormwaterManage>
1031 nParticipants_Report.pdf. Cited August 14, 2013

1032 Stafford Smith M, Horrocks L, Harvey A et al. (2011) Rethinking adaptation for a 4°C world. Phil Trans
1033 Roy Soc A 369(1934):196–216

1034 Stanovich KE (1999) Who is rational? Studies of individual differences in reasoning. Erlbaum, Mahway,
1035 NJ

1036 Stokes DE (1997) Pasteur's quadrant—Basic science and technological innovation. Brookings Institution
1037 Press, Washington, DC

1038 Strelein AS (2008) Making sense of change: how place-specific cultural models and experiential
1039 influencers are shaping understandings of climate change in two BC coastal communities.
1040 Dissertation, University of British Columbia

1041 Thomsen DC, Smith, TF, Keys, N (2012) Adaptation or manipulation? Unpacking climate change
1042 response strategies. Ecol Soc 17(3):20

1043 Thornton PK, Jones PG, Erickson PJ et al (2011) Agriculture and food systems in sub-Saharan Africa in a
1044 4°C world. Phil Trans R Soc A 369(1934):117–136

1045 Todd MC, Taylor RG, Osborne T et al (2010) Quantifying the impact of climate change on water
1046 resources at the basin scale on five continents—a unified approach. Hydrol Earth Syst Sci Discuss,
1047 7:7485–7519

1048 Tol RS (2005) Adaptation and mitigation: Trade-offs in substance and methods. Environ Sci Pol 8(6):
1049 572-578.

1050 Tol RJS, Klein RJT, Nicholls RJ (2008) Towards successful adaptation to sea-level rise along Europe's
1051 coasts. J Coast Res 24(2):432–442

1052 Tompkins EL, Adger WN, Boyd E et al (2010) Observed adaptation to climate change: UK evidence of
1053 transition to a well-adapting society. *Glob Environ Change* 20(4):627–635

1054 Trench B (2008) Towards and analytical framework of science communication models. In: Cheng, D,
1055 Claessens, M, Gascoigne, T, Metcalfe, J, Schiele, B, Shi, S (eds), *Communicating science in*
1056 *social Contexts. Nw models, new practices*. Springer, New York

1057 UK Stationary Office (2008) Climate change act 2008. The Stationery Office Limited, London. Available
1058 via <http://www.legislation.gov.uk/ukpga/2008/27/contents>. Cited August 14, 2013

1059 UK Stationary Office (2010) Adapting institutions to climate Change. 28th Report, The Royal
1060 Commission on Environmental Pollution, The Stationary Office Limited, London. Available via
1061 http://www.ukcip.org.uk/wordpress/wp-content/PDFs/RCEP_adaptation_final_report.pdf. Cited
1062 August 14, 2013

1063 UNDP (United Nations Development Programme) (2007) Human development report 2007/08. Palgrave
1064 McMillan, New York. Available via
1065 http://hdr.undp.org/en/media/HDR_20072008_EN_Complete.pdf. Cited August 14, 2013.

1066 UNFCCC (United Nations Framework Convention on Climate Change) (2007a) Investment and financial
1067 flows to address climate change. Climate Change Secretariat, Bonn. Available via
1068 http://unfccc.int/resource/docs/publications/financial_flows.pdf. Cited August 14, 2013

1069 UNFCCC (United Nations Framework Convention on Climate Change) (2007b) Synthesis of information
1070 on economic diversification submitted by Parties. Climate Change Secretariat, Bonn. Available
1071 via <http://unfccc.int/resource/docs/2007/sbsta/eng/14.pdf>. Cited August 14, 2013.

1072 Urwin K, Jordan A (2008) Does public policy support or undermine climate change adaptation?
1073 Exploring policy interplay across different scales of governance. *Glob Environ Change*
1074 18(1):180–191

1075 U.S. EPA (US Environmental Protection Agency) (2009) Synthesis of adaptation options for coastal
1076 areas. Climate Ready Estuaries, U.S. Environmental Protection Agency, Washington, DC.
1077 Available via http://water.epa.gov/type/oceb/cre/upload/CRE_Synthesis_1-09.pdf. Cited August
1078 14, 2013

1079 Walker WD, Lieb D, Gilbert L et al. (2010) Adapting to climate change: Why adaptation policy is more
1080 difficult than we think (and what to do about it). Adaptation Working Group Report, Wisconsin
1081 Initiative on Climate Change Impacts, University of Wisconsin System. Available via
1082 <http://www.wicci.wisc.edu/report/Adaptation.pdf>. Cited August 14, 2013

1083 Weber EP (2008) Facing and managing climate change: assumptions, science, and governance responses.
1084 *Pol Sci* 60(1):133–149

1085 Weber EU (2010) What shapes perceptions of climate change? *WIREs Clim Change* 1:332–342

1086 Weinestedt H (2009) Stakeholder analysis as a tool for working with social responsibility: Developing a
1087 stakeholder analysis method for ISO 26000. Dissertation, Stockholm University

1088 Wesselink A, Paavola J, Quillacq P et al (2008) Attitudes affect implementation of participation in WFD:
1089 GoverNat project finds lack of enthusiasm for participatory approaches. Helmholtz-Centre for
1090 Environmental Research, Leipzig. Available via
1091 http://www.governat.eu/files/files/inbo_paper_governat.pdf. Cited August 14, 2013

1092 The White House (2009) Executive order 13514. Federal leadership in environmental energy and
1093 economic performance. Office of the Press Secretary, The White House, Washington, DC.
1094 Available via http://www.whitehouse.gov/assets/documents/2009fedleader_eo_rel.pdf. Cited
1095 August 14, 2013

1096 Wilbanks TJ, Kane SM, Leiby PN et al (2003) Possible responses to global climate change: integrating
1097 mitigation and adaptation. *Environment* 45:28–38

1098 Wilby RL, Vaughan K (2011) Hallmarks of organisations that are adapting to climate change. *Water*
1099 *Environ J* 25(2):271–281

1100 Wilhelm OV, Hayden MH (2010) Connecting people and place: a new framework for reducing urban
1101 vulnerability to extreme heat. *Environ Res Lett*, 5(1):014021

1102 Wolf J, Adger WN, Lorenzoni I et al (2010) Social capital, individual responses to heat waves and
1103 climate change adaptation: an empirical study of two UK cities. *Glob Environ Change* 20:44–52

1104 World Bank (2006) Clean energy and development. Towards an investment framework. World Bank,
1105 Washington DC. Available via
1106 [http://siteresources.worldbank.org/DEVCOMMINT/Documentation/20890696/DC2006-0002\(E\)-CleanEnergy.pdf](http://siteresources.worldbank.org/DEVCOMMINT/Documentation/20890696/DC2006-0002(E)-CleanEnergy.pdf). Cited August 14, 2013.

1108 Wynne B (1991) Knowledge in context. *Sci Technol Hum Values* 16(1):111–121

1109 Wynne B (2006) Public engagement as a means of restoring public trust in science—hitting the notes but
1110 missing the music? *Commun Genet* 9(3):211–220

1111 Yuen EJ, Stone Jovicich S, Preston BL (2012) Climate change vulnerability assessments as catalysts for
1112 social learning: four case studies in south-eastern Australia. *Mitig Adapt Strat Glob Change*
1113 18(5):567–590.

1114 Yusoff S (2011) Curbing climate change through a national development of climate change policy. In:
1115 Broniewicz E (ed), *Environmental management in practice*. InTech, Rijeka

1116 Ziervogel G, Bharwani S, Downing TE (2006) Adapting to climate variability: Pumpkins, people and
1117 policy. *Nat Resour Forum* 30: 294–305.

1118

1119

Table 1. Adaptation heuristics explored in the current study as well as the characteristics used for classifying content from the adaptation literature as endorsing or critiquing a given heuristic.

Heuristic	Endorse	Critique
Adaptation is Novel	<ul style="list-style-type: none"> Adaptation is a policy or research challenge with which individuals, organizations and/or institutions have little experience 	<ul style="list-style-type: none"> Adaptation is an inherent characteristic of human behavior Individuals and organizations have an extensive history of adjusting to variability and changes in weather and climate
Adaptation is Local	<ul style="list-style-type: none"> Adaptation needs, planning, and implementation are dictated by processes at the local level National and international organizations and institutions are not, or should not, be directly engaged in adaptation 	<ul style="list-style-type: none"> Adaptation requires collaboration among multiple actors at different scales Local adaptation influences and/or is influenced by adaptation actions at other scales
No Regrets Adaptation	<ul style="list-style-type: none"> No regrets and/or win win adaptation options are a desirable starting point for adaptation planning and implementation No regrets options can be identified that facilitate the implementation of robust adaptation options 	<ul style="list-style-type: none"> Few adaptation options will be perceived as no regrets by all stakeholders Adaptation actions should be evaluated based upon their efficacy with respect to achieving adaptation objectives There are limits to the effectiveness of no regrets options, particularly for high magnitudes of climate change
Adaptation is Urgent	<ul style="list-style-type: none"> Adaptation should be a priority consideration for individuals, organizations, and institutions Adaptation planning and implementation should proceed rapidly 	<ul style="list-style-type: none"> Rapid implementation of adaptation may increase the risk of maladaptation There may be value in delaying adaptation (i.e., real options)
Participation in Adaptation	<ul style="list-style-type: none"> Stakeholder are willing to participate in adaptation planning and implementation Stakeholder participation results in better adaptation outcomes 	<ul style="list-style-type: none"> Not all stakeholders are willing to participate in adaptation planning and implementation Participation by stakeholders in decision-making doesn't necessarily result in better adaptation outcomes
Predict and respond	<ul style="list-style-type: none"> Investments in science and assessment will reduce uncertainty about the future Knowledge about future conditions and trends will enable decision-making regarding adaptation policies and measures 	<ul style="list-style-type: none"> Future conditions are associated with some degree of irreducible uncertainty Adaptation planning and implementation can be pursued despite uncertainty about the future

Reactive Adaptation	<ul style="list-style-type: none"> Reactive and/or autonomous adaptation is less efficient and more costly than planned adaptation Planned adaptation should be implemented preferentially to reactive adaptation 	<ul style="list-style-type: none"> Reactive adaptation is important for reducing future vulnerability, particularly under conditions of high uncertainty Reactive adaptation can be efficient and cost-effective Reactive and anticipatory adaptation are both important for a robust adaptation response
Residual Risk	<ul style="list-style-type: none"> The utility of adaptation lies in its ability to address the residual risk from climate change after accounting for greenhouse gas mitigation efforts 	<ul style="list-style-type: none"> Adaptation efforts have societal and/or ecological benefits independent of mitigation efforts

Table 2. Proposed alternative framings of adaptation heuristics discussed in the current study. Heuristics can be transformed from their current dominant framing to an alternative framing that is potentially more robust to adaptation research and practice.

Heuristic	<i>Current</i>	<i>Alternative</i>
Adaptation is Novel	Climate change poses novel problems to actors due to the lack of previous experience	Climate change adaptation raises new concerns regarding familiar problems while simultaneously facilitating deeper reflections as to its novelty
Adaptation is Local	Adaptation is largely a local concern and solutions are most effective on local scale	Climate change vulnerability transcends multiple geopolitical scales making reliance on only local scale potentially ineffective
No Regrets Adaptation	Actors should focus on ‘no regrets’ and win-win adaptation to minimize potential constraints	Truly ‘no regrets’ actions may be difficult to identify and are likely to encounter limits with respect to their capacity to ensure the maintenance of critical values
Adaptation is Urgent	Adaptation actions need to be implemented urgently to manage climate risk and may require transformation	Critical appraisal of appropriate adaptation actions is needed over the near-term to establish flexibility in the timing of implementation of options
Participation in Adaptation	Actors are willing to adapt and take responsibility for adaptation and such actions will be supported and implemented by civil society	Participation in adaptation will be unequal and characterized by debate among actors regarding responsibilities
Predict and respond	More precise estimates of future climate change, vulnerability, and risk are critical for informing decision-making on the selection and implementation of adaptation measures	Exploration of alternative biophysical and socioeconomic futures and their implications for systems of value can be valuable for facilitating learning regarding adaptation, but uncritical application of such knowledge in decision-making can lead to maladaptation
Reactive Adaptation	Reactive adaptation is inefficient and thus subordinate to more anticipatory adaptation actions	All adaptation is reactive and reactive approaches may be rational and effective given the range of sociopolitical constraints experienced by actors

Residual Risk	Adaptation addresses the risks associated with climate change that cannot be avoided via greenhouse gas mitigation	Constraints and limits on adaptation may necessitate significant progress on mitigation if values and management objectives are to be maintained
----------------------	--	--

Figure Captions

Figure 1. Frequency with which language associated with different adaptation heuristics appeared in the Google Scholar™ internet search engine (see Appendix for additional details on search criteria). Stacked bars associated with each heuristic represent the percentage of identified documents classified (based upon characteristics in Table 1) as endorsing, critiquing or neutral with respect to that heuristic.

Appendix. Search criteria used with the Google Scholar search engine to identify documents containing putative language consistent with the use of adaptation heuristics as identified and defined in the current study. Each search term was comprised of three components: component A = “climate change”; component B = “adaptation” and component C which was variable. The tables below summarize the C components for each heuristic and the number of documents identified that were included in the current study and Figure 1.

Table a. Search criteria (component C) for the Adaptation is Novel heuristic (Search Date: 6/3/2013)

Search #	Search Terms	Number Included
A	"adaptation to climate change is new"	1
B	"adaptation to climate change is a new"	10
C	"adaptation to climate change is a _asterisk_ new"	20
D	"adaptation is a new"	30
E	"adaptation is a * new"	37
F	"adaptation * is new"	5
G	"adaptation * is a new"	8
H	"adaptation * are a new"	0
I	"adaptation to climate change is novel"	0
J	"adaptation to climate change is a novel"	1
K	"adaptation to climate change is a * novel"	1
L	"adaptation is novel"	0
M	"adaptation * is novel"	1
N	"adaptation is a * novel"	0
O	"adaptation is a novel"	0
P	"adaptation * is a novel"	0
Q	"adaptation * are a novel"	0
R	"adaptation * are a * novel"	0
S	"adaptation to climate change is an unfamiliar"	0
T	"adaptation to climate change is a * unfamiliar"	0
U	"adaptation is an unfamiliar"	0
V	"adaptation * is an unfamiliar"	0
W	"adaptation * are an unfamiliar"	0
X	"adaptation to climate change is an unprecedented"	0
Y	"adaptation to climate change is a * unprecedented"	0
Z	"adaptation is an unprecedented"	0
AA	"adaptation * is an unprecedented"	0
AB	"adaptation * are an unprecedented"	0
AC	"adaptation to climate change is an emerging"	2
AD	"adaptation is an emerging"	13
AE	"adaptation * is an emerging"	10
AF	"adaptation to climate change is a recent"	0
AG	"adaptation to climate change is a * recent"	2
AH	"adaptation is a recent"	2

AI	"adaptation is a * recent"	4
AJ	"adaptation * is a recent"	2
AK	"adaptation * is a * recent"	3
Total		152

Table b. Search criteria (component C) for the Adaptation is Local heuristic (Search Date: 3/10/2013)

Search #	Search Terms	Number Included
A	"adaptation is local"	47
B	"adaptation is * local"	58
C	"adaptation * be local"	5
D	"adaptation is place based"	5
E	"adaptation is * place based"	4
F	"adaptation * be place based"	0
G	"adaptation is community based"	1
H	"adaptation is * community based"	2
I	"adaptation * be community based"	0
J	"adaptation occurs at the local level"	3
K	"adaptation * occurs at the local level"	0
L	"adaptation * occur at the local level"	3
M	"adaptation * implemented at the local level"	1
N	"adaptation is * implemented at the local level"	0
Total		129

Table c. Search criteria (component C) for the No Regrets heuristic (Search Date: 3/14/2013)

Search #	Search Terms	Number Included
A	"* pursue no regrets *"	8
B	"* pursue low regrets *"	0
C	"* pursue win win *"	7
D	"* implement no regrets *"	13
E	"* implement low regrets *"	0
F	"* implement win win *"	7
G	"* investigate no regrets *"	2
H	"* investigate low regrets *"	0
I	"* investigate win win *"	0
J	"* consider no regrets *"	7
K	"* consider low regrets *"	0
L	"* consider win win *"	0
M	"* select no regrets *"	0
N	"* select low regrets *"	0
O	"* select win win *"	2

P	"* choose no regrets *"	1
Q	"* choose low regrets *"	0
R	"* choose win win *"	1
S	"no regrets * should be"	14
T	"no regrets * must be"	1
U	"low regrets * should be"	0
V	"low regrets * must be"	0
W	"win win * should be"	16
X	"win win * must be"	6
Y	"investigate * win win"	1
Z	"* considered low regrets"	1
AA	"* considered no regrets"	8
AB	"* considered no regret"	13
Total		108

Table c. Search criteria (component C) for the Adaptation is Urgent heuristic (Search Date: 3/13/2013)

Search #	Search Terms	Number Included
A	"adaptation is urgent"	15
B	"adaptation is an urgent"	5
C	"there is an immediate need for adaptation"	1
D	"immediate adaptation is needed"	1
E	"adaptation is needed immediately"	0
F	"adaptation will be needed immediately"	0
G	"adaptation is needed now"	5
H	"adaptation will be needed soon"	0
I	"adaptation is a priority"	30
J	"adaptation should be a priority"	4
K	"adaptation must be a priority"	2
L	"adaptation is a high priority"	3
M	"adaptation should be a high priority"	2
N	"adaptation must be a high priority"	0
O	"must prioritize adaptation"	1
P	"make adaptation a priority"	4
Q	"pressing need for adaptation"	14
R	"adaptation strategies are urgent"	0
S	"adaptation policy is urgent"	0
T	"adaptation options is urgent"	0
U	"adaptation options are urgent"	0
V	"adaptation * is urgent"	9
Total		96

Table d. Search criteria (component C) for the Participation in Adaptation heuristic (Search Date: 3/27/2013)

Search #	Search Terms	Number Included
A	"adaptation is a shared responsibility"	2
B	"climate risk management is a shared responsibility"	1
C	"there is a shared responsibility"	10
D	"stakeholders must be engaged"	18
E	"stakeholders should be engaged"	49
F	"stakeholders should be included"	23
G	"stakeholders must be included"	13
H	"engagement of stakeholders is "	11
I	"stakeholder engagement is critical"	8
J	"stakeholder engagement is important"	12
K	"stakeholder engagement is necessary"	2
L	"stakeholder participation is critical"	4
M	"stakeholder participation is necessary"	3
N	"stakeholder participation is essential"	16
O	"stakeholder participation is important"	9
P	"participation by stakeholders is critical"	1
Q	"participation by stakeholders is necessary"	0
R	"participation by stakeholders is essential"	0
S	"participation by stakeholders is important"	0
T	"participatory approaches are critical"	0
U	"participatory approaches are necessary"	2
V	"participatory approaches are essential"	4
W	"participatory approaches are important"	3
X	"stakeholder participation is vital"	7
Y	"stakeholder engagement is vital"	3
Z	"participation by stakeholders is vital"	0
AA	"participatory approaches are vital"	3
Total		204

Table e. Search criteria (component C) for the Predict and Respond heuristic (Search Date:3/20/2013)

Search #	Search Terms	Number Included
A	"improvements in climate * are needed"	0
B	"improvements in climate change * are needed"	0
C	"improved climate * is needed"	1
D	"improved climate * are needed"	1
E	"improved climate change * is needed"	0
F	"improved climate change * are needed"	0
G	"improvements in climate * are necessary"	0

H	“improvements in climate change * are necessary”	0
I	“improved climate * is necessary”	0
J	“improved climate * are necessary”	0
K	“improved climate change * is necessary”	0
L	“improved climate change * are necessary”	0
M	“improvements in climate * are required”	0
N	“improvements in climate change * are required”	0
O	“improved climate * is required”	0
P	“improved climate * are required”	0
Q	“improved climate change * is required”	0
R	“improved climate change * are required”	0
S	“better climate * are needed”	1
T	“better climate change * are needed”	1
U	“better climate * is needed”	1
V	“better climate change * is needed”	0
W	“need better climate *”	1
X	“need improved climate *”	0
Y	“requires improved climate *”	2
Z	“ “requires better climate *”	0
AA	“downscaling is necessary”	24
AB	“downscaling is essential”	3
AC	“downscaling is required”	20
AD	“requires downscaling”	26
AE	“higher resolution models are *”	12
AF	“higher resolution modeling is *”	4
AG	“requires higher resolution modeling*”	1
Total		98

Table f. Search criteria (component C) for the Reactive Adaptation heuristic (Search Date: 3/10/2013)

Search #	Search Terms	Number Included
A	“climate change” adaptation “reactive adaptation is *”	63
B	“climate change” adaptation “autonomous adaptation is *”	148
C	“climate change” adaptation “planned adaptation is more *”	6
D	“climate change” adaptation “anticipatory adaptation is more *”	4
E	“climate change” adaptation “reactive adaptation is less *”	2
F	“climate change” adaptation “autonomous adaptation is less *”	0
G	“climate change” adaptation “more * to pursue anticipatory adaptation”	0
H	“climate change” adaptation “more * to pursue planned adaptation”	0
I	“climate change” adaptation “less * to pursue reactive adaptation”	0
J	“climate change” adaptation “less * to pursue autonomous adaptation”	0

K	“climate change” adaptation “more * to implement anticipatory adaptation”	0
L	“climate change” adaptation “more * to implement planned adaptation”	0
M	“climate change” adaptation “less * to implement reactive adaptation”	0
N	“climate change” adaptation “less * to implement autonomous adaptation”	0
O	“climate change” adaptation “rather than autonomous adaptation”	0
P	“climate change” adaptation “rather than planned adaptation”	2
Q	“climate change” adaptation “instead of autonomous adaptation”	0
R	“climate change” adaptation “instead of reactive adaptation”	2
Total		227

Table f. Search criteria (component C) for the Residual Risk heuristic (Search Date: 3/10/2013)

Search #	Search Terms	Number Included
A	"climate change" adaptation "adaptation and mitigation are complementary"	17
B	"climate change" adaptation "mitigation and adaptation are complementary"	29
C	"climate change" adaptation "residual risk remaining"	7
D	"climate change" adaptation "residual risk after"	15
E	"climate change" adaptation "impacts that can't be avoided"	0
F	"climate change" adaptation "consequences that can't be avoided"	0
G	"climate change" adaptation "risks that can't be avoided"	0
H	"climate change" adaptation "impacts that cannot be avoided"	42
I	"climate change" adaptation "consequences that cannot be avoided"	5
J	"climate change" adaptation "risks that cannot be avoided"	4
K	"climate change" adaptation "impacts that could not be avoided"	3
L	"climate change" adaptation "consequences that could not be avoided "	0
M	"climate change" adaptation "risks that could not be avoided "	0
N	"climate change" adaptation "impacts that can't be prevented"	0
O	"climate change" adaptation "consequences that can't be prevented"	0
P	"climate change" adaptation "risks that can't be prevented"	0
Q	"climate change" adaptation "impacts that cannot be prevented"	4
R	"climate change" adaptation "consequences that cannot be prevented"	0
S	"climate change" adaptation "risks that cannot be prevented"	1
T	"climate change" adaptation "impacts that could not be prevented"	0
U	"climate change" adaptation "consequences that could not be prevented "	0
V	"climate change" adaptation "risks that could not be prevented "	0
W	"climate change" adaptation "impacts that can't be mitigated"	1
X	"climate change" adaptation "consequences that can't be mitigated"	0

Y	"climate change" adaptation "risks that can't be mitigated"	0
Z	"climate change" adaptation "impacts that cannot be mitigated"	9
AA	"climate change" adaptation "consequences that cannot be mitigated"	0
AB	"climate change" adaptation "risks that cannot be mitigated"	3
AC	"climate change" adaptation "impacts that could not be mitigated"	0
AD	"climate change" adaptation "consequences that could not be mitigated "	0
AE	"climate change" adaptation "risks that could not be mitigated "	0
AF	"climate change" adaptation "because of committed warming"	3
AG	"climate change" adaptation "due to committed warming"	1
AH	"climate change" adaptation "in response to committed warming"	0
AI	"climate change" adaptation "due to the warming commitment"	0
AJ	"climate change" adaptation "because of the warming commitment"	1
AK	"climate change" adaptation "impacts which cannot be avoided"	9
AL	"climate change" adaptation "consequences which cannot be avoided"	1
AM	"climate change" adaptation "risks which cannot be avoided"	2
AN	"climate change" adaptation "impacts which cannot be mitigated"	1
AO	"climate change" adaptation "consequences which cannot be mitigated"	0
Total		158