

Piston bowl geometry variation: status and planning

Steve Busch, Kan Zha
Wednesday, August 19, 2015

“Conventional”

“Stepped-lip”

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

Outline

- Status update
- Planned work: objectives and schedule
- Discussion: experimental objectives for squish and reverse squish interactions

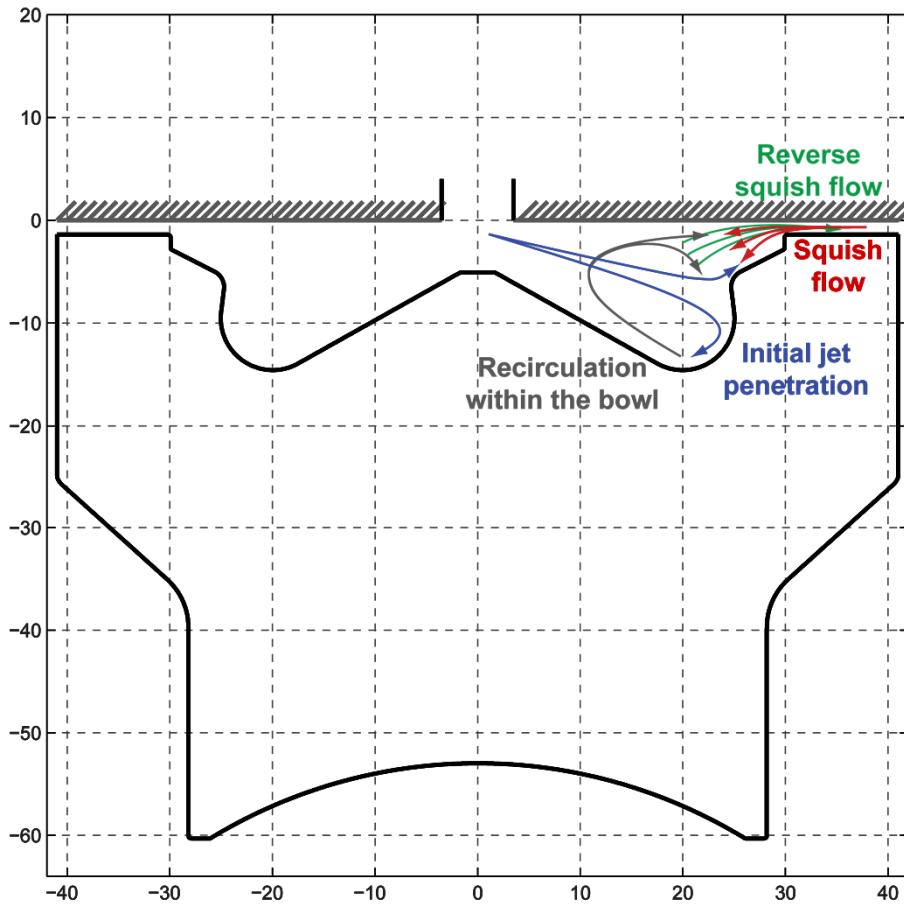
Status update: August 19, 2015

- New titanium piston (conventional bowl, flat top)
 - Arrived this week; will be assembled in the coming weeks
 - Necessary for a fair comparison with the stepped-lip piston
- Most recent lab activity: gas temperature measurements
 - Custom-built thermocouple probe to calibrate our GT-POWER model
 - This is a DOE deliverable
 - An evaluation of the current experimental setup and a few parametric variations should take about a week
- Next up: metal piston testing
 - Dial in operating points: LTC and conventional combustion
 - No extensive parameter sweeps at this stage
 - Full characterization for both piston geometries: AHRR, exhaust emissions
 - Injection rates to support simulation efforts
- Optical pistons (conventional bowl, flat top)
 - Necessary for a fair comparison with the stepped-lip piston
 - Scheduled to arrive in mid-October

Planned work: objectives

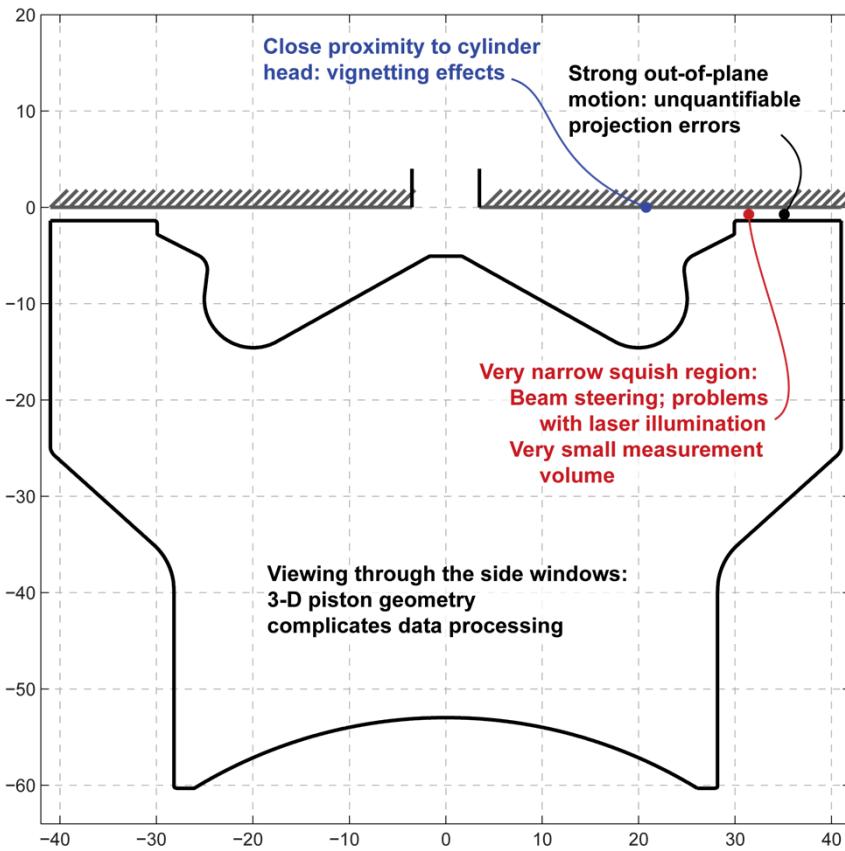
- Metal piston testing
 - Characterize operation with two different piston geometries for both LTC and conventional operating points
 - Ensure that trends measured at SNL match with expectations
- PLIF measurements
 - Characterize mixture formation behavior for both piston geometries
 - Provide calibration data for CFD simulations with DPRF58 fuel
 - Make best use of available optical pistons and test bench time
- CFD simulations: motored operation with both piston geometries
 - Can simulations predict measured trends in temporal development of swirl ratio during the compression stroke? Are more PIV measurements necessary?
- CFD simulations: fired operation with multiple injections
 - Opportunity to put latest improvements to the test (full grid, parallel code, improved spray models)
 - Comparison with measured data – improved understanding of combustion processes with a pilot injection

Planned work: schedule

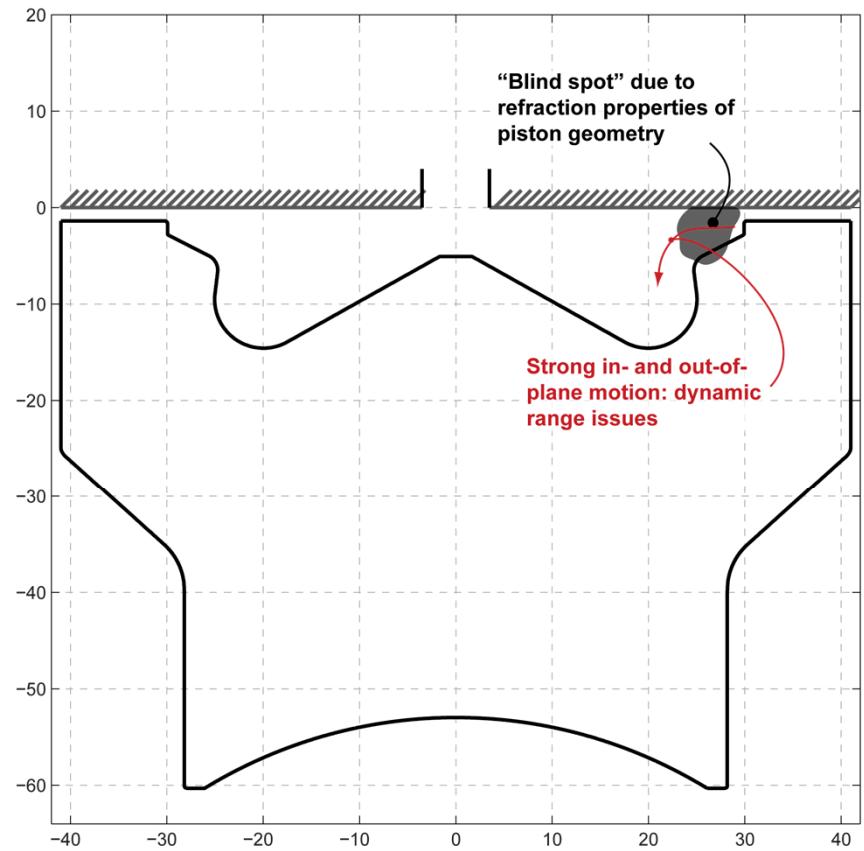

	2015						2016	
	August	September	October	November	December	January	February	
Experiments	AEC	Metal piston testing, TC measurements	PLIF setup	PLIF: stepped-lip piston bowl	Install new piston	PLIF: re-entrant bowl, flat top	Buffer	Characterize squish / reverse squish flow
Simulations & analysis	Motored flow	Bowl geometry comparison: cold flow; swirl development				PLIF processing		Multiple injections, conventional combustion
		Verify fired operation is as desired						
Planning		Develop techniques to measure squish and reverse squish flow interactions					TBD	

Discussion: experimental objectives for squish and reverse squish interactions

- Measuring squish flow interactions has been a goal for some time, but we have yet to succeed
- Squish flow measurements have been set as a specific EERE-VT deliverable for March 2016
- Goal of this discussion: ensure SNL (Steve and Kan) understands what interactions are of interest and what we hope to achieve with our experiments
- Next slides: cartoons to show the interactions that may be expected and challenges that measuring them presents


Discussion: squish/reverse squish flow interactions

- In-cylinder flows:
 - Bulk swirl flow
 - Squish flow induced by upward piston motion
 - Flow driven by the fuel injection
 - Recirculation and mixing within the bowl
 - Reverse squish induced by downward piston motion
- Are these the processes of interest?



Experimental challenges

Viewing through the side

Viewing through the bottom

 Viewing up through the piston

THANK YOU FOR YOUR SUPPORT!

Questions?

Project overview

		Swirl plane PIV: characterization of swirl and flow asymmetries	Metal piston testing: LTC and conventional compare combustion, emissions, etc.	Fuel tracer PLIF: comparison of mixture formation processes; simulation validation data	Reverse squish flow characterization: comparison of reverse squish flow behavior
Hardware					
Optical pistons	Conventional bowl w/ valve cutouts CR 16.7 : 1	Large dataset; processing mostly finished	N/A	Not currently planned	Measurement technique and specific experimental objectives not yet defined
	Conventional bowl no valve cutouts CR 15.8 : 1	New pistons expected in early Oct. 2015; expected duration: 4 weeks experiments, 4 weeks processing		Experiment design depends on metal engine testing results; new pistons expected in early Oct. 2015; expected duration: 6 weeks experiments, 4 weeks processing	
	Stepped-lip bowl no valve cutouts CR 15.8:1	Large dataset; processing in progress			
Metal pistons	Conventional bowl no valve cutouts CR 15.8 : 1	N/A	New titanium piston expected in late July 2015	N/A	N/A
	Stepped-lip bowl no valve cutouts CR 15.8:1		Piston available; expected duration for both geometries: 6 weeks experiments, 2 weeks processing		

Operating conditions: LTC

- Pistons have no valve cut-outs
 - Squish height is necessarily increased
 - Compression ratio: 15.8:1
- Intake charge flow rates & temperature will have to be adjusted to maintain TDC temperature and density
 - Use of GT-Power model to verify motored TDC conditions
- Fuel quantity will be adjusted to maintain load at the given injection timing

Engine speed	1500 rpm
Intake charge mole fractions	O ₂ : 10% CO ₂ : 9% N ₂ : 81%
Intake temperature	TBD
Intake pressure	TBD
IMEP _g	3.0 bar
Injected fuel	8.8 mg
Injection pressure	860 (500, 1000) bar
Global equivalence ratio	TBD
SSE	-26.6 CAD ATDC
SOI	-23.1 CAD ATDC
Injection duration	~6.4 CAD
Swirl ratio (Ricardo)	2.2 (1.5, 3.5, 4.5)
TDC density	20.9
TDC temperature	909

Operating conditions: conventional

- Intake charge flow rates & temperature will have to be adjusted to maintain TDC temperature and density
- Main injection quantity will be adjusted to maintain load at the given injection timing

Engine speed	1500 rpm
Intake charge mole fractions	O ₂ : 19.7% CO ₂ : 1.1% N ₂ : 79.2%
Intake temperature	TBD
Intake pressure	TBD
IMEP _g	9.0 bar
Injected fuel (P/M)	1.4 / ~22 mg
Injection pressure	800 bar
Global equivalence ratio	TBD
SSE _(pilot/main)	-15 / -1.5 CAD ATDC
SOI _(pilot/main)	-12.3 / 1.3 CAD ATDC
Main inj. duration	~10.3 CAD
Swirl ratio (Ricardo)	2.2
TDC density	21.8
TDC temperature	925

Fuel Injector

- Bosch CRI 2.2
 - 7 evenly spaced holes
 - Outlet diameter: 139 μm
 - k_s : 1.5 / 86
 - 149° included angle
 - Flow rate: 440 $\text{cm}^3/30\text{s}$
@100 bar

