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InGaN QD Single Photon Source




Motivation for InGaN Quantum Dot (QD) Emitters

* Long wavelength visible emitters:

* Nanostructure (NWs, QDs) can incorporate more indium

* High efficiency yellow, orange, and red emission

 RGB and RYGB emitters require high efficiency yellow to red emitters
* Visible QD diode lasers:

 Lasers for lighting is gaining momentum

* Low threshold, high efficiency, better temperature performance
« Monodisperse QDs

Monodisperse QD Distributions

Impact on device performance |

InGaN QD laser:
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Single Photon Source: Photon Statistics
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source: J.S. Lundeen

Classical light sources: g(2)(t=0)=1

- Bunched or random photons (Laser, LED, thermal source)
Quantum light source: ¢(2)(t=0) <1

- Anti-bunched photons (Quantum optics theoretical treatment)

Applications:
- Quantum key distribution

- Attenuated laser can be used
- SPS is the gold standard for QKD
- Future QKD involving quantum repeaters

- Quantum metrology
- Quantum computing with photons
- True random number generation
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Single Photon Sources in the Literature

Faint Laser
- Not a quantum light source ( g?@(0) = 1)

On-Demand Single Photon Sources:

- Single atoms/ions/molecules - .
- g1?(0) = 0.015, cryogenic temperatures Ideal Single Photon Source:

- Color centers (nitrogen vacancy) » Triggered (on-demand)
- g?(0) = 0.07, 300K > g@(0)=0

- InAs quantum dots > Indistinguishable photons
- g@)(0) = 0.02, 5K, electrically injected

- CdSe/ZnS quantum dots > High repetition rate
- g@(0) = 0.004, 300K, 5% extraction » Room temperature
- GaN-based SPSs » Electrically injected

- g@(0) = 0.4, 200K
- g@(0) = 0.16, 10K, Electrically injected :
- g(z)(o) = 0.13, 300K > Chlp-scale
Heralded Single Photon Sources:
- Parametric down conversion
- g@(0) < 0.01, 300K, pulsed laser
- FWM in optical fibers
- g@(0) ~ 0.01, 300K, pulsed laser

*M.D. Eisaman, et al. Rev. Sci. Instrum. 82, 071101 (2011)
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Single Photon Source based on Quantum Dots

AFM image of InAs QDs

a)

_— Optical cavity
On-demand AU
single photon (—( ]I —

Single g
Emitter

Single two-level
Quantum Emitter

QD Single Photon Source:

*|solate emission from a singe quantum dot
*Only one photon can be emitted
» Absorption of one photon saturates transition
» Can be excited using many photons

* Deterministic Source: on demand 7 » 9
- Triggered emission within radiative lifetime Sandia 2D photonic Crystal Cavity
« Short emitter lifetime ( ~ 1 ns) - Fast rep. rate

 Path to electrical-injection/chip-scale integration
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Single Emitters Inside and Optical Cavity

Why do we need an optical cavity? )Jf'
» Improve photon collection efficiency ng‘“t”m
» Light collection: emission into specific spatial modes V\,\,&
» Limit spectral content-> indistinguishable photons
» Generate photons with a specific polarization
* Increase radiative rate, efficiency via Purcell effect ( < . > 1"\’\’\)
* Theoretically study QD strong coupling physics
» Coherent and incoherent interaction with phonon bath Directional emission

Sandia llI-Nitride Nanostructure Fabrication

Nanoletters 11, 4591 (2011)
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InGaN Quantum Dot SPS Development

= Goal: Room temperature, electrically-injected,
chip-scale single photon source

Green InGaN LEDs

= Qur approach:

= MOCVD-grown InGaN QWs - PEC etched InGaN QDs
= Design a PhC cavity for InGaN QD SPSs

= Advantages to this approach
= |nGaN QDs can operate at high temperatures
= Si detectors work well in the blue/green
= Free space data links: Reduce the size of optical telescopes
= Plastic optical fiber at blue/green wavelengths
= Deterministic placement of InGaN QDs
= Leverage expertise in lll-nitrides and photonic crystals

GaN nanowire arrays InGaN photonic crystal LEDs

D000

180 nm diameter
610 nm deep
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Introduction to InGaN PEC Etching

Photoelectrochemical (PEC) Etching:
* Very few wet etches work for lll-nitrides
* Band gap selective (Etch InGaN over GaN)
* Dopant selective, light intensity dependent, etch current can be monitored
* Laser or lamp excitation (Xe arc lamp, tunable ps Ti:S)
* KOH (~0.1M) typically used as electrolyte

®—||l| PEC etched InGaN/GaN QWS

Pt
Electrode

A E.
S VAVAYA
GaN InGaN DV~
Eg E, VIV

E,

Fiber-coupled
light source
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Fabrication of InGaN QDs via PEC etching

[ Quantum Size Control: Use size quantization to control QD size ]

Self-limiting PEC etch process:

(@)  “Large” nanostructure Quantum nanostructure
%y, Lk -
4| 28ev 2 10
Y lh ¢ photo- 2-:;"
itati phato-
"‘a"‘ (aove | LA excitation
bandgap) {below
bandgap)
Absorption: PEC etching occurs No Absorption: PEC etching self-terminates

* For QDs, band gap depends on size

* As etch proceeds,
* QD size gets smaller, band gap goes up
* Etch terminated for E; > E; 1,, Pump

 Self-terminating etch process

* QD size depends on PEC wavelength
* Monodisperse QD distributions ??

* Prof. Torimoto- colloidal QDs
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G. Pellegrini, et al., Journal of Applied
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Sandia
National _
Laboratories



MOCVD-grown InGaN samples

U d single InGaN QW
neapped sing’e IS4 « Grown by MOCVD on sapphire substrates

* 5-20 nm thick InGaN layer
* No InGaN underlayer is used in this sample
» Uncapped single QW sample (14% In):
« Amenable to surface characterization of QDs
« TEM, AFM characterization
* Luminescence weaker than capped sample

Sapphire

Capped single InGaN QW
« Grown by MOCVD on sapphire substrates

* 3nm InGaN QW, 10 nm GaN cap
* InGaN underlayer (~2% In) used in this sample
» Capped single QW sample (14% In):

» AFM is not useful for capped samples

* Luminescence brighter than uncapped samples
Sapphire  Etch is thought to proceed via pits, dislocations

Sandia
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Atomic Force Microscope (AFM) Measurements

Uncapped InGaN QW

* Samples etched for two hours at 420 nm and 445 nm
- * Laser power density: ~ 3 m\W/cm?
* High dot density: 10"/cm?

» Some big dots (10-20 nm) remain: due to dislocations?
* QD size depends on PEC etch wavelength

Sapphire

200, /a=445nm
A =420 nm / \
100 - . /J\- / \
'i/ \. ./ .\
\ \
\ \
0 : L TN R Y a0
o 2 4 6 8 10 12

Maximum grain height (nm)
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Transmission Electron Microscope (TEM) Images

Uncapped InGaN QW - High-angle annular dark-field (HAADF) TEM images
- » Samples etched at 420 nm and 445 nm
* Energy dispersive x-ray mapping
Sapphire * QDs on surface are InGaN
* Red = indium, green=gallium

*InGaN QDs are epitaxial to the underlying GaN
*No underlayer, no cap = PL is not very bright

445 nm PEC etch
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Transmission Electron Microscope Images

Capped InGaN QW

_ » High-angle annular dark-field (HAADF) TEM images

InGaN underlayer ° Sample etched at 420 nm

_ - EDX mapping shows that dots are InGaN

*InGaN QDs are epitaxial to the underlying GaN

Sa ire
pph *2% InGaN underlayer + GaN cap - PL is much brighter
- GaN cap provides partial passivation
InGaN QD after PEC etch

before PEC etch after PEC etch
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Photoluminescence from fabricated InGaN QDs

Capped InGaN QW As narrow as 6 nm FWHM is consistent with

_ a narrowing of the QD size distribution

InGaN underlayer

Sapphire

—— 410nm PEC etch |_|
420nm PEC etch
——430nm PEC etch | |
440nm PEC etch
Unetched

1.0

0.8

0.6

Photoluminescence (PL) data:

* 375 nm pump (ps pulsed)

* 10K PL data

* PL wavelength determined by
PEC etch wavelength

* PL linewidth: 24 nm - 6 nm \/\{/\/\—\,\
)

 Quantum size-controlled PEC 00— ... Y A
etching works! 390 400 410 420 430 440 450 460 470 480

Wavelength (nm)

0.4

0.2

Normalized PL Intensity

Nanoletters 14, 5616 (2014)
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Deterministically positioned InGaN QDs

Standard lll-nitride 2.) Fabrication of device plus PhC etch
device fabrication

1.) Epitaxial layer structure

200 o.o.o. p-type ring
eoo0o00
hole contact

array
Single InGaN

Transparent
quantum well (8%)

contact

SiO, current

aperture
—

5 InGaN quantum
wells (16%)

-

n-type contact
_— yp

sapphire side
view
*Specially design epitaxial 2:22(’:':3 I;r?;fa?;'::::_:n
structure for PEC etching *defect cavit a? rhe centgr
-InGaN QWs with 8% and : y
o/ i ls *Requires current aperture
16% indium
*Use transparent contact
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Deterministically positioned InGaN QDs

4.) Second photoelectrochemical etch

PEC etch of
InGaN QWs

3.) First photoelectrochemical etch :.:.:..:.:.:.:

Single InGaN QD

PhC slab Optimally located
a/2 ~100 nm

side
view

*Use 450 nm laser for PEC etch

*Area under contacts will not etch

*8% InGaN QW will not etch *Use 405 nm laser for PEC etch

+Self limiting PEC etch

*Size quantization in QD will raise
energy level above 405 nm

Sandia
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FDTD Photonic Crystal Modeling

20000 OOGOOS
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» Calculations done using Lumerical
* Need resonance with anti-node at center (res1)
*No Substrate: Q = 941 for this design
*a=170 nm, d=0.7a, d'=0.45a, t=0.5a
* Design is not fully optimized (higher Qs are possible)
*Need lattice constant in the range from 170 — 200 nm

Wavelength (nm)

s
v
o

s
o
o

w
u
o

300

¢ resl_lam
mres2_lam

res3_lam

140

170 180 190 200
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FDTD Modeling: Spacer Layer Thickness

» Determine thickness for air gap

* Calculations done using Lumerical

*For d(gap) < a mode leaks out into substrate

* 10 or more sacrificial InGaN QWs required

sub * Air gap should be at least one lattice
constant in thickness

Q. ~+

ko]
Q.

a=170nm
d.., =0.95a d=0.7a d.,, =0.6a
d’ =0.45a
| T t=0.5a .
A=421.35nm . A =420.765 nm

Q = 866 : Q=237

& .
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Calculated far-field patterns for InGaN SPS

* Performed FDTD calculation for different cavities

* Calculations show that the highest Q cavities tend to have a resonance
with a node at the center

* Cavities for PEC-etched InGaN QDs should have a field maximum at
the center of the cavity

* FDTD calculation show that light extraction can be enhanced (~ 5X) by
collecting at large angles relative to surface normal

Design for InGaN SPS: Far-f_ield mode 2
Profile: #

Single
InGaN
QD

ps

side
view

sapphire

InGaN QD Single Photon Source
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PL from single InGaN QDs

Capped InGaN QW

InGaN underlayer

Sapphire

*Narrow PL emission (<1 nm FWHM) observed

- Better ratio of single QD mission to background

*Posts (150 — 200 nm) patterned with e-beam lithography
* Thicker GaN capping layer (~ 30 nm)

*May be pumping more than one post (2 micron pitch)

single QDs.

InGaN
Qw

Submicron Post Samples
* Intermediate test structure
+ Test PEC etching,, demonstrate

PEC
etch

<>

Single
InGaN
QD

SEM image of posts
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InGaN QD emission:

Intensity (arb. units)

\__

Emission
from a i
single QD ]

400 405 410 415 420 425 430 435 440

Wavelength (nm)
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Single Photon Measurement: HBT experiment

) - -

Photon
Source

Beam Splitter

PMT

Start

@ Stop

Counter/Timer

Thermal
Source

9(2)(0) > 1

>

Quantum
Source

gt?)(0) < 1

Number of Events

Number of Events

9@)(1) = 1

00 02 04 06 08 10 12 14 16 18 20

Time Interval (arb. units)

9@)(1) = 1

00 02 04 06 08 10 12 14 16 18 20

Time Interval (arb. units)

* Non-polarizing beamsplitter to split intensity between detectors

* Single photon counting required
* Use PMTs or avalanche photodiodes
* Single photon counting modules

* Measure correlation between detected photons
* Detectors: low QE, speed, and dark counts

LABORATORY DIRECTED RESEARCH & DEVELOPMENT
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Single Photon Measurement: HBT experiment

*Set up a Hanbury-Brown and Twiss measurement

Demonstrated a g2 ~ 0.5 for PEC-etched InGaN QDs

* Signal-to-noise ratio could be better
* Expect improvements with recent changes to g2 set-up

*Improved light collection will help measurement

HBT Experimental Set-up

Beam Splitter

Source [
|

PMT

O] Start

@ Stop

Counter/Timer
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Counts

Pulsed g2 data

9000
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7000 ;
6000 ;
5000 [
4000 ;
3000 ;
2000 [

1000 F
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Summary/Conclusions

= Quantum size controlled PEC etching
= TEM EDX mapping shows we have InGaN QDs
= Quantum wells are etched to make QDs

= QD size and emission A determined by PEC wavelength

= Design for InGaN QD single photon source
= Deterministic placement of a single InGaN QD in a
photonic crystal cavity
= FDTD modeling: cavity resonances and far field patterns
= Emission from single InGaN QDs in post samples
= Narrow linewidth emission (<0.3 nm)
= Pulsed g2 measurement showing g2 ~ 0.5

Emission

from a ]
“ g ingle QD

400 405 410 415 435 440

420 425 430
Wavelength (nm)

R National _
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Single
11]) InGaN
IIII IIII

5nm sapphire

InGaN QD Single Photon Source

Intensity (arb. units)
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SNL [lI-Nitride Capabilities

= |Leverage Work on Previous lll-nitride Emitters Green InGaN LEDs
= EFRC, Previous LDRDs, multiple EERE programs R RPRATNN

= Three MOCVD reactors growing lll-nitride materials

= Previous work in lllI-nitride photonic crystal structures

GaN nanowire arrays

Ny

InGaN photonic crystal LEDs

D000

180 nm diameter
610 nm deep
t | Spot D| Tit an Mag nm
5114| 52.0° | H4526s | 120 KX

Surface plasmon enhanced LEDs

Metal contact Surface plasmon mode

SECANT QKD EAB Meeting Dec 17, 2013
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InGaN QD internal quantum efficiency

Capped InGaN QW

InGaN underlayer

Sapphire

QD PL Efficiency

* Compare 10K and RT PL efficiency

* Assumes 10K PL is 100% efficient

* PL Intensity drops by >100X after QD etching
*IQE goes up by almost 10X after QD etching
*QDs are expected to have better IQE

Internal Quantum Efficiency
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Time-resolved PL data from InGaN QDs

Capped InGaN QW

InGaN underlayer

TRPL data:
* 405 nm pump (~ 2 ps, pulsed)

Sapphire

* Resonant pumping into InGaN

-—
TTTT]

 Room temperature TRPL data
« Hamamatsu streak camera data

°
-

» 17X change in PL lifetime

- Lifetime is expected to be much
shorter for QDs

« Shows that we have
fundamentally changed the
InGaN material

« QW - QDs

0.01}

Normalized PL Intensity

1E-3

0 5 10
Time (ns)
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Single Photons for Weak absorption Measurements

* Perfectly coherent light source has shot noise
* Poissonian photon statistics (random)
* Single photon source can beat the photon shot limit
* Sub-Poissonian photon statistics (anti-bunched)
* Regular emission of single photons is very low noise
* Single photon sources deliver amplitude squeezed light
* Uncertainly relationship between amplitude and phase
* Field amplitude if precisely known, but phase is unknown
* Low noise source allows very precise absorption measurement
* For large transmissions and good detectors

I(t)/\ St.Dev(Coherent) = VxMT
Photon bunches St. Dev(Single photon) = /xMT(1 — xT)

M = number of incident photons
T = transmission coefficient
x = detector QE

Var T (SP)
Fewer photons Var T (C) 1+T
> 1
Analysis from B. Lounis et al., “Single Photon
Adapted from “Quantum Optics: An Introduction” by Mark Fox Sources,” Rep. Prog. Phys. 68, 1129 (2005).
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requency Conversion: 480 nm to 1.5 um

Quantum Frequency Conversion:

738 nm to 1557 nm

73% Quantum Efficiency

(a)

Trigger + Delay

CW Ti:Sa
| 738 nm
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S. Zaske et al.,

Slide #30

Optics Express 19, 12825 (2011)

* Quantum frequency

conversion is possible
73% efficiency demonstrated
Single photon statistics are
preserved

Conversion is desired since
single photon detectors work
best in the visible.

Use periodically-poled lithium
niobate

Requires a high power pump
laser

QD-based SPS

* 64% Quantum Efficiency
* 711 nm - 1313 nm
» S. Zaske et al., PRL 109, 147404 (2012).

Frequency conversion could be

incorporated on chip
Sandia
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D entangled photons: Biexciton cascade

Pump laser

Tuning laser

H([110])

v ([110])

5 Ty |
Photon pair emission

—

- -

Tuning laser intensity

(c)

Emission intensity

XX

:
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i M«v
lJ 1 : — |
H '
!
x| 21, \
! | > I

|
|
= ' = | \
i I |
\ —
' 0 ; E
|

T
326.761

T
326.771

T T
327.212

Frequency (THz)

327.222

A. Muller et al., PRL 103, 217402 (2009)

Slide #31

- Biexciton cascade: two bound
excitons decay radiatively

« Can create a polarization entangled
photon pair

 Exciton fine structure can destroy
entanglement

» Use external perturbation to align

levels

* Applied Electric field

* Applied Stress

* Incident CW Laser

» Strong coupling- Cavity QED

* Only demonstrated for InAs QDs at
low temperature

* Should be possible for GaN (RT?)

» Potential for chip-based
entangled photons
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