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Exit-time for Brownian motion

I Define the exit-time random variable

Tx := inf{t : Xt ∈ ∂Ωd ⊆ ∂Ω & X0 = x ∈ Ω}

for the diffusion starting at x ∈ Ω

I The density of particles that have not yet exited Ω to
∂Ωd ⊆ ∂Ω

ut = b · ∇u + 2D∆u on Ω

u = 0 on ∂Ωd

u(x ,0) = δ(x) on Ω
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Mean exit-time

I Given the solution of the u of the diffusion equation, the
mean exit-time is given by

E(Tx ) =

∫ ∞
0

u(x , t) dt

I We can also determine this mean as the solution of the
steady-state problem{(

b · ∇+ 2D∆
)
E(Tx ) = −1 on Ω

u = 0 on ∂Ωd

I Repeated integration of the steady-state problem
determines all the moments
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Comments

These are classical results; the exit-time problem assumes
I backward Kolmogorov equation (the adjoint of the

Fokker-Planck equation)
I diffusion hits the boundary upon exiting Ω

I the mean (and other moments) are finite
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Markov jump process

Consider the class of Markov jump processes, described by the
master equation

ut (x , t) =

∫
Rn
γ(y , x) u(y , t) dy −

∫
Rn
γ(x , y) u(x , t) dy

The process...
I can be approximated as a continuous-time Markov chain,

or an off-lattice CTRW with an exponential jump-rate,
I is spatially inhomogeneous when the jump-rate is not

invariant under translations
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Finite range Markov jump process

What if we want to consider
I the exit-time problem and link with a deterministic

equation?
I jump at most a finite distance away?

My presentation explains how to do exactly this, that the
problem is well-posed and that high-quality discretizations are
available
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Finite range jump processes

I Jump-rate γ(x , y) is of compact support for each x ; particle
can jump at most a finite distance away, e.g., let ν be an
asymmetric finite Lévy measure

γ(x , y) = 1Ω(x)1Ω(y)ν(x − y)

is spatially inhomogenous
I Such a Markov jump process has no “heavy tails”
I Then EX 2

t ∝ t , i.e., finite mean, MSD
I Fluctuations can take on various forms; discontinuous

sample path (of the particle) can be of three types
I “Nonlocal convection” associated with asymmetric rate
γ(x , y) 6= γ(y , x)
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Diffusion applications

I transport in
heterogeneous media,
heat conduction

I disease transmission,
foraging or migrating
animals

Brownian motion may not be
appropriate due to

I Heterogeneity of the
underlying medium

I Nonlocal dispersion,
transmission mechanisms
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Exit-time via the master equation

I Define the exit-time random variable

Tx := inf{t : Xt ∈ Ωd ⊆ ΩI & X0 = x ∈ Ω}

for the diffusion starting at x ∈ Ω

I The density of particles that have not yet exited Ω to
Ωd ⊆ ΩI

ut (x , t) =

∫
Ω∪Ωd

(
u(y , t)γ(y , x)− u(x , t)γ(x , y)

)
dy x ∈ Ω

u(x , t) = 0 x ∈ Ωd

u(x ,0) = δ(x) x ∈ Ω
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Formulation of volume-constrained problems

ut (x , t) =

∫
Ω∪ΩI

(
u(y , t)γ(y , x)− u(x , t)γ(x , y)

)
dy x ∈ Ω

Ω
ΩI

I Constraints on u over the volume ΩI ⊆ Rn \ Ω—boundary
conditions are NOT well-defined because sample path, with
probability 1, jumps out of Ω into ΩI (Millar 1975)

I ΩI is the “interaction region”

I A link with a deterministic equation can be established
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Absorbed/censored process

∅ 6= Ωd  ΩI is a mixed process with a mixed volume
constraint; nonlocal analogue of a mixed Dirichlet, Neumann
boundary value problem

Ω
Ωd

Ωd
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Mean exit-time cases

Ωd ≡ ΩI
I Absorbed process with a homogenous Dirichlet volume

constraint problem
I Probability is conserved over Ω ∪ Ωd , i.e., the process is

either in Ω or has exited to Ωd

Ωd ≡ ∅
I Censored process with a pure Neumann volume constraint

problem; particle confined to a box
I Probability is conserved over Ω, i.e., the process remains

in Ω
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Escape probabilities

I Volume-constrained problems allow for “non-standard”
domains, e.g., unconnected domains

Ω

Ω Ω
Ω

ΩI

I

I Decomposition into escape probabilities∫
Ω

u(x , t) dx = 1−
∑

k

∑
j

M
ΩIk
Ωj

(t)
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Mathematical Analysis

I Goal: show that the nonlocal diffusion equation for the
exit-time problem is well-posed

I Introduce a nonlocal vector calculus, an alternative to
fractional derivatives—forward and backward Kolmogorov
equations are then easily determined

I Show that the steady-state equation is well-posed
I Then, standard results demonstrate that the nonlocal

diffusion equation is well-posed
I Stable, robust numerical methods offer an alternative to

Monte-Carlo simulation
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Steady-state nonlocal diffusion

{
−Lu = b on Ω ⊆ Rn

u = 0 on ΩI ⊆ Rn \ Ω,

where

Lu(x) =

∫
Ω∪ΩI

(
u(y , t)γ(y , x)− u(x , t)γ(x , y)

)
dy

ΩI = Ωd
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Nonlocal divergence

I Let α, f : R3 × R3 → R3,α(x , y) = −α(y , x)

D(f)(x) :=

∫
R3

(
f(x , y) + f(y , x)

)
·α(x , y) dy

where D(f) : R3 → R
I Only the symmetric part of f matters
I D is a distributional divergence because

α(x , y) = − ∂

∂y
δ(y − x) =⇒ D(f)(x) ≡ ∇ · f(x , x)
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Adjoint operator

I Recall that α(x , y) = −α(y , x) and define

D∗(u)(x , y) := −
(
u(y)− u(x)

)
α(x , y)

where D∗u : R→ R3

I D∗ is a distributional gradient because

α(x , y) = − ∂

∂y
δ(y − x) =⇒

∫
R3
D∗u dy = −∇u

I Can show D∗ is the adjoint to D via a nonlocal Green’s first
identity
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Steady-state nonlocal diffusion via the nonlocal
calculus

{
−Lu = b on Ω ⊆ Rn

u = 0 on ΩI ⊆ Rn \ Ω ,

or 
D · f = b on Ω ⊆ Rn

f = µu + ΘD∗u
u = 0 on ΩI ⊆ Rn \ Ω ,

where

Lu =

∫
Ω∪ΩI

(
u(y , t)γ(y , x)− u(x , t)γ(x , y)

)
dy

= D
(
D∗u

)
(x) +D

(
µu
)
(x)

γ(x , y) = α(x , y) ·
(
Θ(x , y)α(x , y)

)
− µ(x , y) ·α(x , y)

(1)
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Nonlocal divergence theorem

I The definition of the nonlocal divergence grants∫
Ω
D(f) dx = −

∫
ΩI

D(f) dx

I Immediate consequence is the well-formulated
conservation law

d
dt

∫
Ω

u dx = −
∫
Ω
Lu dx =

∫
ΩI

D(D∗u − µu) dx︸ ︷︷ ︸
probability flux out of Ω into ΩI

I A well defined notion of a flux is equivalent to the
antisymmetry in x , y of the integrand, and action-reaction,
and lack of self-interaction
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Nonlocal integration by parts

I Nonlocal Green’s first identity∫
Ω

vD(D∗u) dx −
∫
Ω∪ΩI

∫
Ω∪ΩI

D∗v · D∗u dy dx

= −
∫
ΩI

v D(D∗u) dx

Compare with the classical version∫
Ω

v∆u dx +

∫
Ω
∇v · ∇u dx =

∫
∂Ω

v
(
∇u · n

)
ds

I Can show that∫
ΩI

v D(D∗u) dx =

∫
∂Ω

v
(
D∗u · n

)
dS ∀v ∈ C∞0
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Nonlocal variational problem

I Find u ∈ V such that

a(u, v) =

∫
Ω

u b dx ∀ v ∈ V

where

a(u, v) =

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗u ·ΘD∗v dy dx −
∫
Ω
D
(
µu
)

v dx

I Lax-Milgram theorem implies that the Euler-Lagrange
equations are well-posed, the energy is bounded by the
data ∫

Ω∪ΩI

∫
Ω∪ΩI

|D∗u|2 dy dx ≤ C
∫
Ω

b2 dx
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Comments

I Can identify space V with square integrable functions or a
fractional Sobolev space given conditions on the
integrability of the jump-rate γ

I In particular, for infinite activity and finite variation sample
path⇐⇒

∫
|y | γ(x , y) dy <∞, we have a first of a kind

result
I If γ(x , y) = γ(y , x) then the variational problem is the

Euler-Lagrange equation for

min
V

1
2

a(u, v)−
∫
Ω

u b dx

I Volume constraint is crucial for the mathematical analysis
and link with the Markov jump process; boundary
conditions may not be meaningful
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