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Exit-time for Brownian motion

» Define the exit-time random variable
T :=inf{t: X; € 0Qq C 0Q& Xy = x € Q}

for the diffusion starting at x € Q
» The density of particles that have not yet exited Q2 to

0Qq C 00
=b-Vu+2DAu on Q
u=20 on 90y
u(x,0) = o(x) on Q
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Mean exit-time

» Given the solution of the u of the diffusion equation, the
mean exit-time is given by

E(Tx) = /OOO u(x,t)dt

» We can also determine this mean as the solution of the
steady-state problem

(b-V +2DA)E(Ty) on Q
u=0 onodQy

» Repeated integration of the steady-state problem
determines all the moments
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Comments

These are classical results; the exit-time problem assumes

» backward Kolmogorov equation (the adjoint of the
Fokker-Planck equation)

» diffusion hits the boundary upon exiting Q
» the mean (and other moments) are finite
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Markov jump process

Consider the class of Markov jump processes, described by the
master equation

a0 = [ A0 uydy - [ sty uxndy

The process...

» can be approximated as a continuous-time Markov chain,
or an off-lattice CTRW with an exponential jump-rate,

» is spatially inhomogeneous when the jump-rate is not
invariant under translations
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Finite range Markov jump process

What if we want to consider

» the exit-time problem and link with a deterministic
equation?
» jump at most a finite distance away?

My presentation explains how to do exactly this, that the
problem is well-posed and that high-quality discretizations are
available
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Finite range jump processes

» Jump-rate v(x, y) is of compact support for each x; particle
can jump at most a finite distance away, e.g., let v be an
asymmetric finite Lévy measure

v(x,y) = La(x)La(y)v(x —y)

is spatially inhomogenous
» Such a Markov jump process has no “heavy tails”
» Then E X? « t, i.e., finite mean, MSD

» Fluctuations can take on various forms; discontinuous
sample path (of the particle) can be of three types

» “Nonlocal convection” associated with asymmetric rate

(X, y) # (Y, X)
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Diffusion applications

» transport in
heterogeneous media,
heat conduction

» disease transmission,
foraging or migrating
animals

Brownian motion may not be
appropriate due to
» Heterogeneity of the
underlying medium

» Nonlocal dispersion,
transmission mechanisms
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Exit-time via the master equation

» Define the exit-time random variable
Ty = mf{t Xt € Qg C QI&XO =Xc Q}

for the diffusion starting at x € Q

» The density of particles that have not yet exited Q2 to
Qg C Q7

ux D= [ (U020~ vk () xeQ

ux,t)=0 xeQq
u(x,0) = d(x) xeQ
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Formulation of volume-constrained problems

U(x, 1) = / (0 -l ey dy xeQ

Q

2

» Constraints on u over the volume Q7 C R”\ Q—boundary
conditions are NOT well-defined because sample path, with
probability 1, jumps out of Q into Q7 (Millar 1975)

» Q7 is the “interaction region”
» A link with a deterministic equation can be established
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Absorbed/censored process

0 # Qq & Q7 is a mixed process with a mixed volume
constraint; nonlocal analogue of a mixed Dirichlet, Neumann
boundary value problem
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Mean exit-time cases

Qd = QI
» Absorbed process with a homogenous Dirichlet volume
constraint problem

» Probability is conserved over Q U Qg, i.e., the process is
either in Q or has exited to Qg4

Qy=0
» Censored process with a pure Neumann volume constraint
problem; particle confined to a box

» Probability is conserved over Q, i.e., the process remains
in Q
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Escape probabilities

» Volume-constrained problems allow for “non-standard”
domains, e.g., unconnected domains

» Decomposition into escape probabilities

/u(x, t)dx =1 _ZZMSS;-IKU)
Q PR /
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Mathematical Analysis

» Goal: show that the nonlocal diffusion equation for the
exit-time problem is well-posed

» Introduce a nonlocal vector calculus, an alternative to
fractional derivatives—forward and backward Kolmogorov
equations are then easily determined

» Show that the steady-state equation is well-posed

» Then, standard results demonstrate that the nonlocal
diffusion equation is well-posed

» Stable, robust numerical methods offer an alternative to
Monte-Carlo simulation
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Steady-state nonlocal diffusion

—Lu=b onQCR"
u=0 onQz CR"\Q,

where

Culx) = /Q (Ul 7(.0) — ux 07(x.5) o
Q7 = Qy
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Nonlocal divergence

> Let o, f: R3 x R3 = R3 a(x,y) = —a(y, x)
DO = [ (6.9 +1(0.20) - alx.y) dy

where D(f) : R® — R
» Only the symmetric part of f matters
» D is a distributional divergence because

a(x,y) = —;yé(y —x) = D(f)(x) =V -f(x,x)
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Adjoint operator

» Recall that a(x, y) = —a(y, x) and define

D (u)(x,y) = —(u(y) — u(x)) a(x,y)

where D*u: R — R3
» D* is a distributional gradient because

a(x,y) = -ty = x) — / D*udy = —Vu
8y R3
» Can show D* is the adjoint to D via a nonlocal Green’s first

identity
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Steady-state nonlocal diffusion via the nonlocal
calculus

—Lu=b onQCR"
u=0 onQz CR"\Q,

or
D-f=b on Q CR”
f=pu+0Du
u=0 on Qr CR"\ Q,
where

cu= [ (uly. 09020 - u(x 09 (x.1)) o
QUQ T

=D(D*u)(x) + D(pu)(x)
V(va) = a(va) : (G(X7y)a(xay)) - IJ‘(va) : a(X>y)
re—y \2 Y
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Nonlocal divergence theorem

» The definition of the nonlocal divergence grants
/ D(f)dx = — D(f) dx
Q Q7

» Immediate consequence is the well-formulated
conservation law

d

/udx— /Ludx— D(D*u — pu)dx
dt Qr

probability flux out of Q into Q7

» A well defined notion of a flux is equivalent to the
antisymmetry in x, y of the integrand, and action-reaction,
and lack of self-interaction
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Nonlocal integration by parts
» Nonlocal Green’s first identity

/ vD(D*u)dx—/ / D*v-D*udy dx
Q QUQz JQUQ T

:—/ v D(D* u) dx
Q7

Compare with the classical version
/vAudx+/Vv~Vudx:/ v(Vu-n)ds
Q Q oQ

» Can show that

/ vD(D*u)dx:/ v(D*u-n)dS VveCy
Qr o
VAT g%
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Nonlocal variational problem

» Find u € V such that
a(u,v):/ubdx VveV
Q

where

a(u, v):/ / D*u-G)D*vdydx—/D(pu)vdx
Quoz Jauas Q

» Lax-Milgram theorem implies that the Euler-Lagrange
equations are well-posed, the energy is bounded by the

data
/ / DUl dy dx < c/ b dx
QUQz JQUQT Q
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Comments

» Can identify space V with square integrable functions or a
fractional Sobolev space given conditions on the
integrability of the jump-rate ~

» In particular, for infinite activity and finite variation sample
path <= [ |y|~v(x,y) dy < oo, we have a first of a kind
result

» If y(x,y) = v(y, x) then the variational problem is the
Euler-Lagrange equation for

1
m‘}nga(u, v)—/ﬂubdx

» Volume constraint is crucial for the mathematical analysis
and link with the Markov jump process; boundary
conditions may not be meaningful
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