

Repeated Play of the SVM Game as a Means of Adaptive Classification

SAND2015-6422C

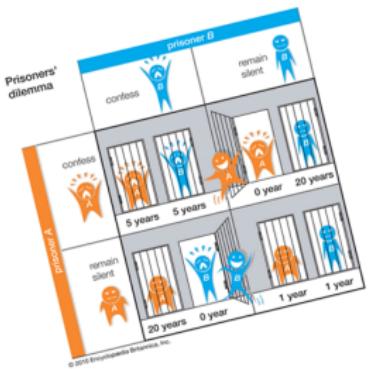
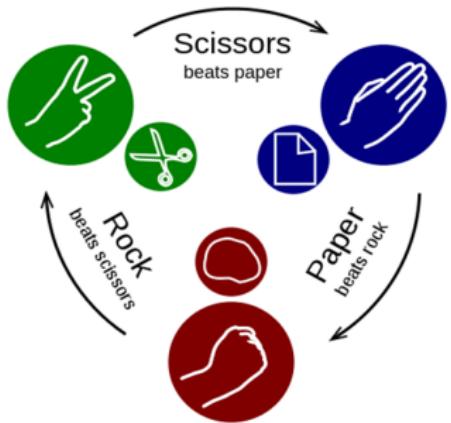
Craig M. Vineyard

Sandia National Laboratories

**Sandia
National
Laboratories**

Game Theory

- Game theory is a branch of applied mathematics to formally analyze the strategic interaction between competing players



- Algorithmic Game Theory is the intersection of game theory and computer science research
 - Nissan & Ronan
- 2 Perspective:
 - Analysis - analyzes algorithms from game-theoretic perspective, focus on properties such as equilibria
 - Design - focuses upon development of algorithms with desirable theoretical properties
- Research areas: equilibria analysis, multi-agent systems, routing, algorithmic mechanism design

Mechanism Design

- Game theory primarily analyses the strategic actions between players, focusing upon concepts such as strategies and equilibria
- Mechanism design is a sub-field of game theory that takes a different perspective
 - With a desired outcome or goal in mind, mechanism design seeks to develop a framework defining player actions and the effect of these actions to try and attain the desired goal

Mechanism Design

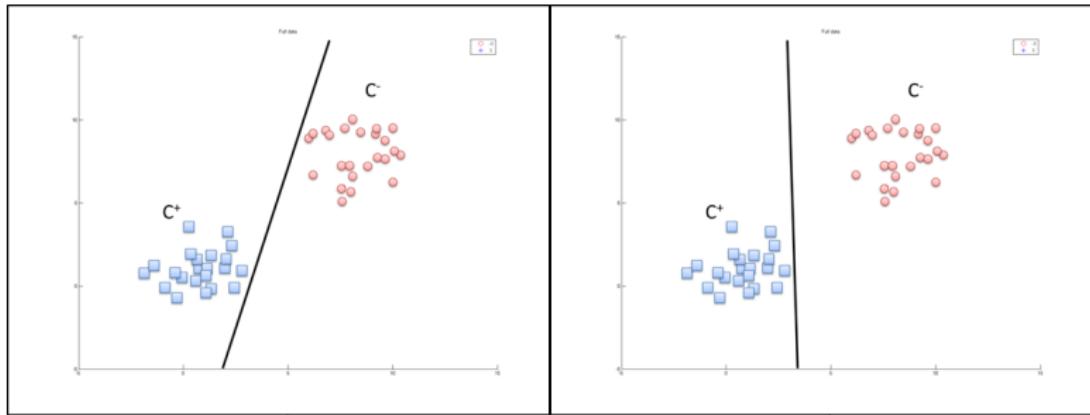
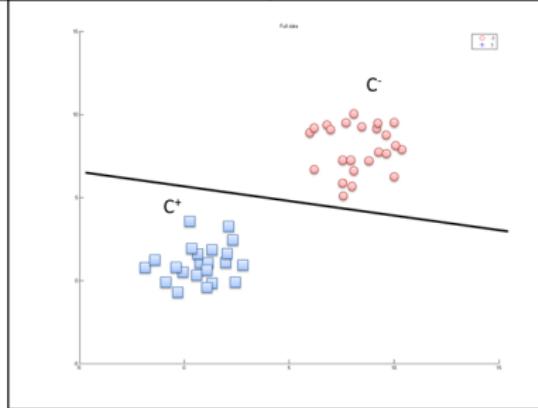
- Commonly, a social choice function implements the desired outcome, operating upon player actions or preferences
 - Social choice theory studies collective decision making - how should we aggregate the preferences of the members of a group to obtain a social preference
 - i.e. Designing an auction and deciding if the bidding mechanism is first-price sealed-bid, vickrey, english, etc.

Mechanism Design Applied to Machine Learning

Two-class pattern classification problem

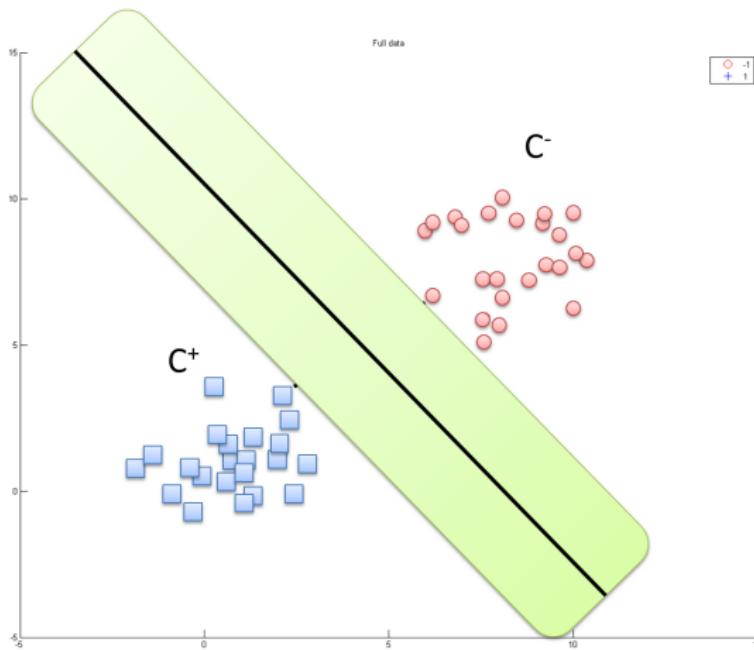
- A sample S of known example patterns are supplied from the classes \mathcal{C}^+ and \mathcal{C}^- ,
- Based on S , one must produce a learning machine that will later classify unknown example patterns also drawn from \mathcal{C}^+ and \mathcal{C}^-
- Let $C^+ = \{c \in S \mid c \in \mathcal{C}^+\}$ and $C^- = \{c \in S \mid c \in \mathcal{C}^-\}$
 - Assume all example patterns are drawn from \Re^n
- From the perspective of designing a classifier (while inanimate objects like data points may not seem to have preferences), each and every data point innately imposes a constraint on the resulting discriminant
 - We want to aggregate representative features of data to design a good classifier

A good classifier discriminant?



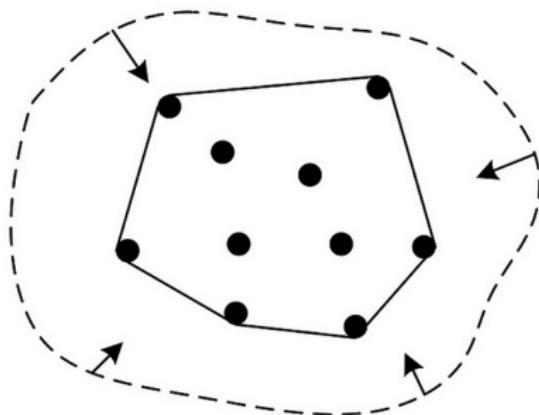
Support Vector Machine (SVM)

- In support vector machine (SVM) training, the goal is to find a separating hyperplane that maximizes the margin between the patterns in C^+ and C^- that serve as support vectors



Geometric SVM

- Geometric interpretation
 - Construct convex hulls around the sets C^+ and C^-
 - Find the closest points c^+ and c^- on each convex hull
 - Construct a line segment between these points and the discriminant is the perpendicular bisector of this line



Game Theoretic Classifier

The geometric SVM interpretation suggests a simple game:

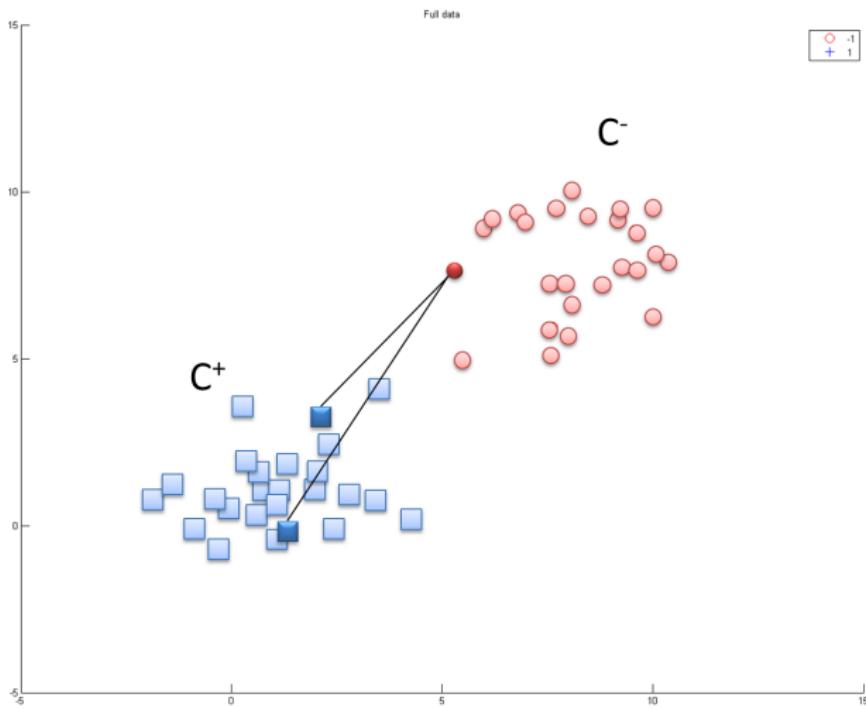
- This is a two player iterated game
 - Data patterns are the players
 - All players start with an initial equal quantity of α for each pattern class
- Each iteration of the game:
 - Randomly select two players from the same class and one data pattern from the opposing class
 - Each player has two possible actions, to pass (transferring some of its α to the other player), or to hold (keeping its own α)
 - A player must pass when it is further than its opponent from the other class data pattern
- As an iterated game, this same game procedure may be repeated for as many rounds as desired

Coalitional SVM Game

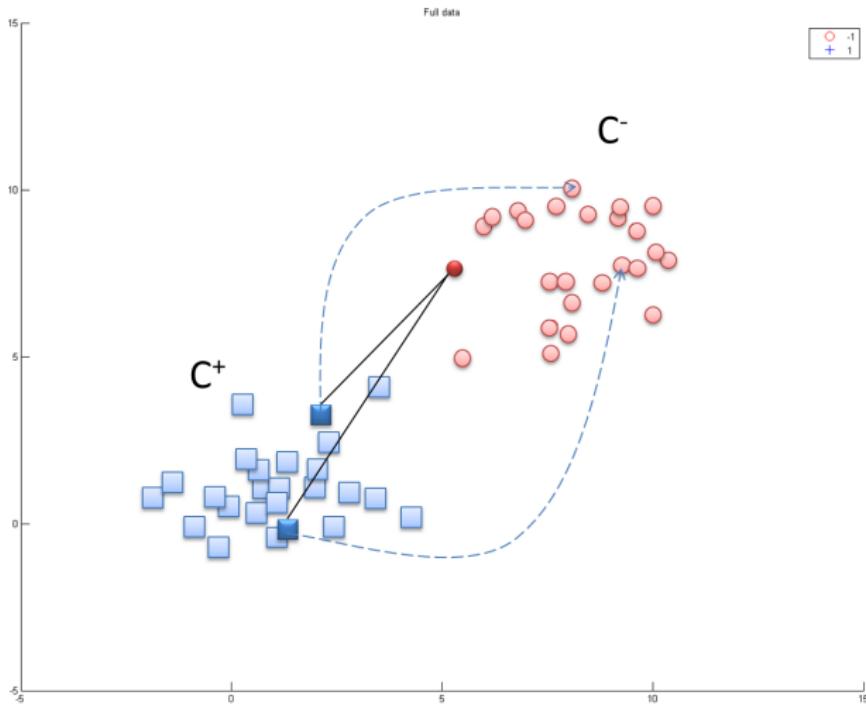
Adding coalitions to the basic SVM Game

- Each player (data point) has a coalition partner
 - Member of the opposing class believed to be closest to
- Many to one pairing
- Builds coalitions within a given class of the like-minded players who all agree upon the preferred (closest) player of the opposing class
- Each iteration of the Coalitional SVM, interacting players consider their relative distance to both the reference point from the opposing class as well as their coalition partner
- Provably adds stability to the SVM Game

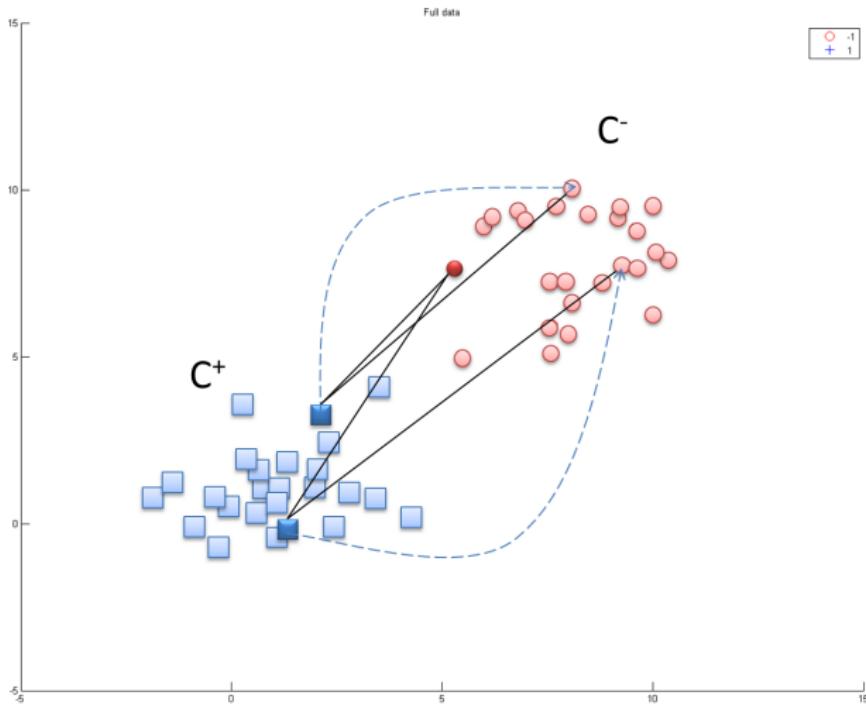
Coalitional SVM Game



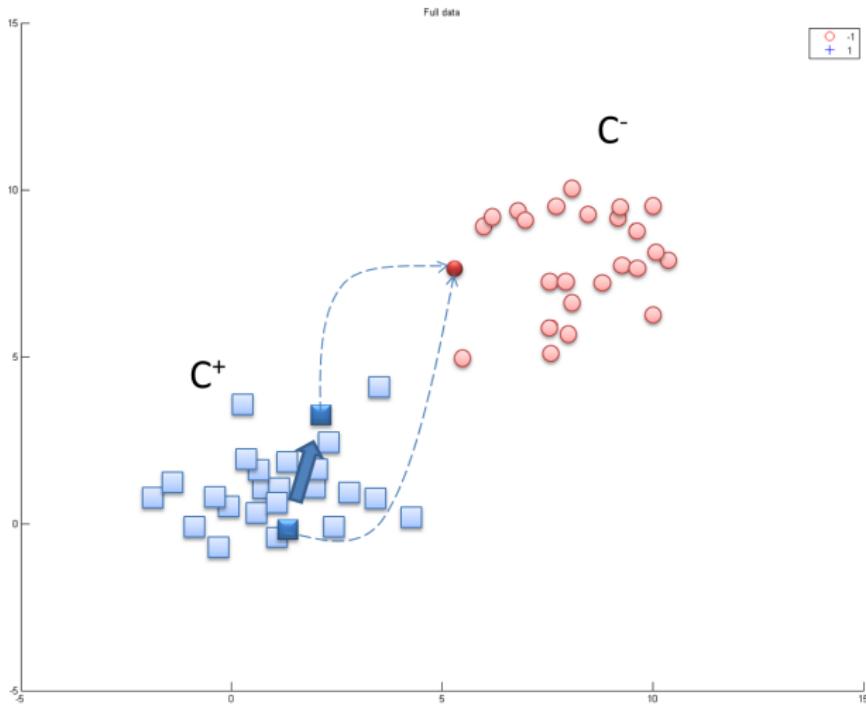
Coalitional SVM Game



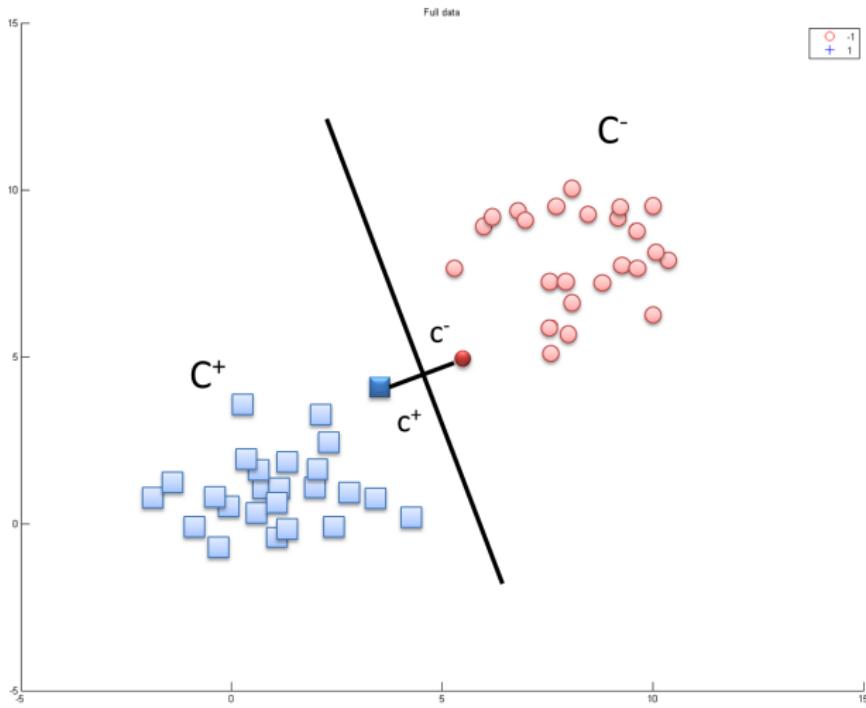
Coalitional SVM Game



Coalitional SVM Game



Coalitional SVM Game



Coalitional SVM Game Algorithm

Algorithm 3 Coalitional SVM Game

```
1: procedure SVMC(S)                                ▷ Sets  $C^+, C^- \in S$ 
2:   for all  $p_i \in S$  do                            ▷ Initialization
3:      $p_i \leftarrow$  Initial Coalition Parter from Opposite Class
4:   end for
5:   while iterations ≠ desired iterations do
6:     for each class  $C^+$  and  $C^-$  do
7:        $p_x \leftarrow \text{random}(C^1)$ 
8:        $p_y \leftarrow \text{random}(C^1)$ 
9:        $p_r \leftarrow \text{random}(C^2)$ 
10:      Coalition( $p_x$ )  $\leftarrow \min(d(p_x, p_r), d(p_x, \text{Coalition}(p_x)), d(p_x, \text{Coalition}(p_y)))$ 
11:      Coalition( $p_y$ )  $\leftarrow \min(d(p_y, p_r), d(p_y, \text{Coalition}(p_y)), d(p_y, \text{Coalition}(p_x)))$ 
12:      if  $d(p_x, \text{Coalition}(p_x)) \leq d(p_y, \text{Coalition}(p_y))$  then
13:         $p_x \leftarrow \alpha$  from  $p_y$ 
14:      else
15:         $p_y \leftarrow \alpha$  from  $p_x$ 
16:      end if
17:    end for
18:  end while
19:  return Sets  $A^+, A^-$ 
20:    s.t.  $\forall p_i \in A^+ \exists p_m \in C^-$  s.t.  $\text{Coalition}(p_m) = p_i$ ,  $p_i \in C^+$ 
21:          and
22:    s.t.  $\forall p_j \in A^- \exists p_n \in C^+$  s.t.  $\text{Coalition}(p_n) = p_j$ ,  $p_j \in C^-$ 
23: end procedure
```

Non-linear Discriminant

- Smith Set: the smallest non-empty set of candidates in a particular election such that each member defeats every other candidate outside the set in a pairwise election
- When there is not a single unanimous Condorcet winner, the resulting partitions are the Smith Set
 - Each of these is a locally linear optimal region
 - A non-linear discriminant may be generated as a composition of these local segments
 - Provides a means of addressing non-linearly separable problems

Non-stationary Data

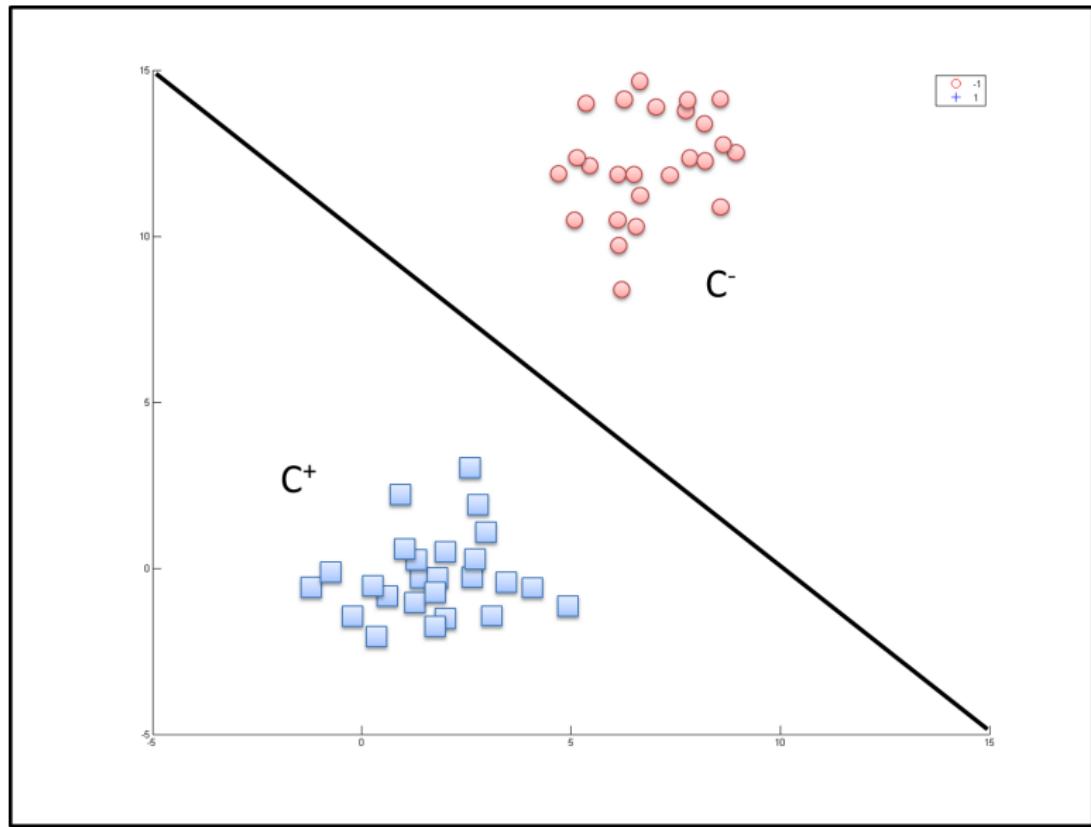
- Sometimes the data a machine learning algorithm is attempting to learn is Non-stationary → Concept Drift
- 2 categories of concept drift:
 - Virtual - changes in underlying data distribution drive need to update the model
 - Real - concepts themselves are changing
- However, it is not always feasible to generate a new machine learning model as data is updated or changes
 - Repeated play in game theory
- Repeated SVM Game
 - Game iterations are independent of one another
 - Able to update and continue learning

Repeated SVM Game Algorithm

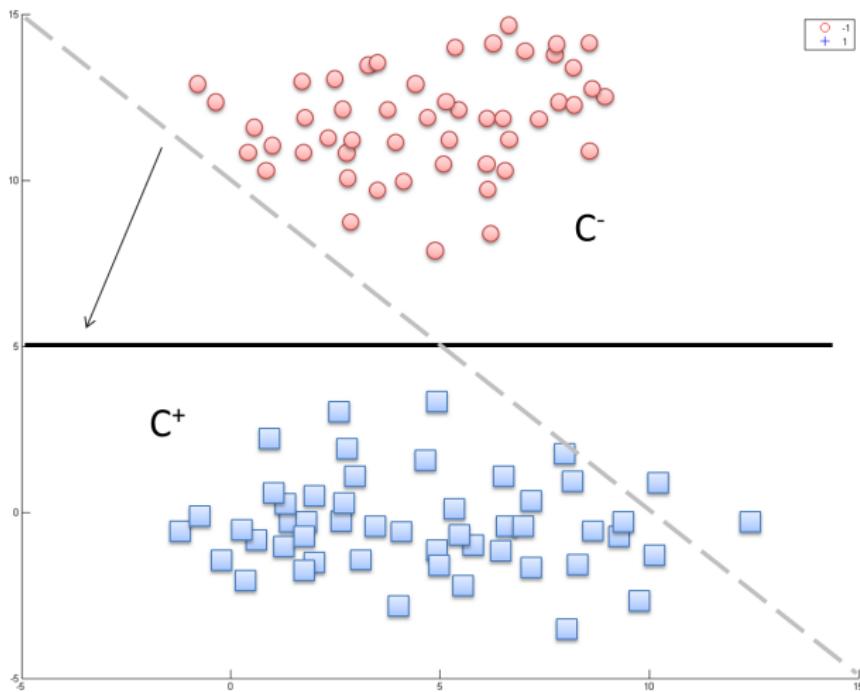
Algorithm 6 Repeated SVM Game

```
1: procedure SVM_GAMER( $s_1, s_2, s_3, \dots$ )
2:            $\triangleright$  Subsets  $s_1, s_2, s_3, \dots \in S$  consisting of  $C^+, C^- \in S$ 
3:   while Receiving  $s_i$  do
4:        $C^+ \leftarrow \text{Update}(s_i \in C^+)$ 
5:        $C^- \leftarrow \text{Update}(s_i \in C^-)$ 
6:       for new  $p_k$  do
7:            $p_k \leftarrow \text{Initial Coalition Parter from Opposite Class}$   $\triangleright$  Initialization
8:       end for
9:       while iterations  $\neq$  desired iterations do
10:          for each class  $C^+$  and  $C^-$  do
11:               $p_x \leftarrow \text{random}(C^1)$ 
12:               $p_y \leftarrow \text{random}(C^1)$ 
13:               $p_r \leftarrow \text{random}(C^2)$ 
14:              Coalition( $p_x$ )  $\leftarrow \min(d(p_x, p_r), d(p_x, \text{Coalition}(p_x)), d(p_x, \text{Coalition}(p_y)))$ 
15:              Coalition( $p_y$ )  $\leftarrow \min(d(p_y, p_r), d(p_y, \text{Coalition}(p_y)), d(p_y, \text{Coalition}(p_x)))$ 
16:              if  $d(p_x, \text{Coalition}(p_x)) \leq d(p_y, \text{Coalition}(p_y))$  then
17:                   $p_x \leftarrow \alpha$  from  $p_y$ 
18:              else
19:                   $p_y \leftarrow \alpha$  from  $p_x$ 
20:              end if
21:          end for
22:      end while
23:      return Sets  $A^+, A^-$ 
24:           s.t.  $\forall p_i \in A^+ \exists p_m \in C^-$  s.t.  $\text{Coalition}(p_m) = p_i, p_i \in C^+$ 
25:           and
26:           s.t.  $\forall p_j \in A^- \exists p_n \in C^+$  s.t.  $\text{Coalition}(p_n) = p_j, p_j \in C^-$ 
27:   end while
28: end procedure
```

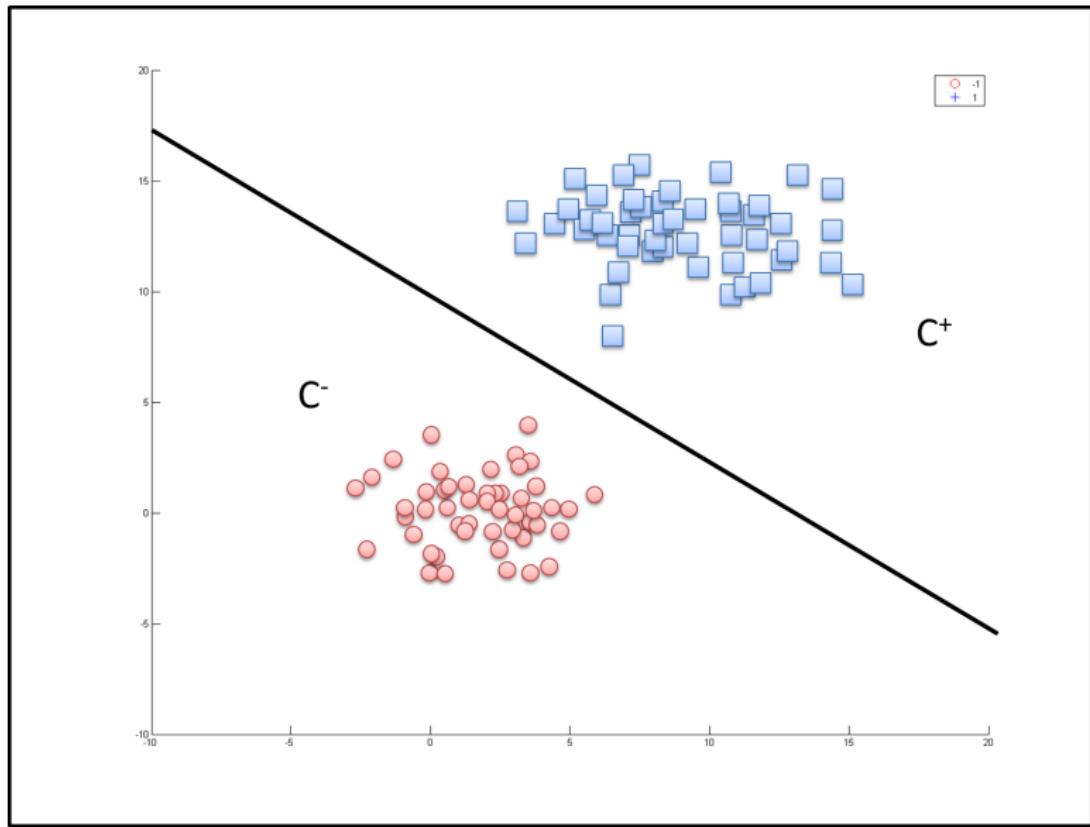
Repeated SVM Game - Linear Example



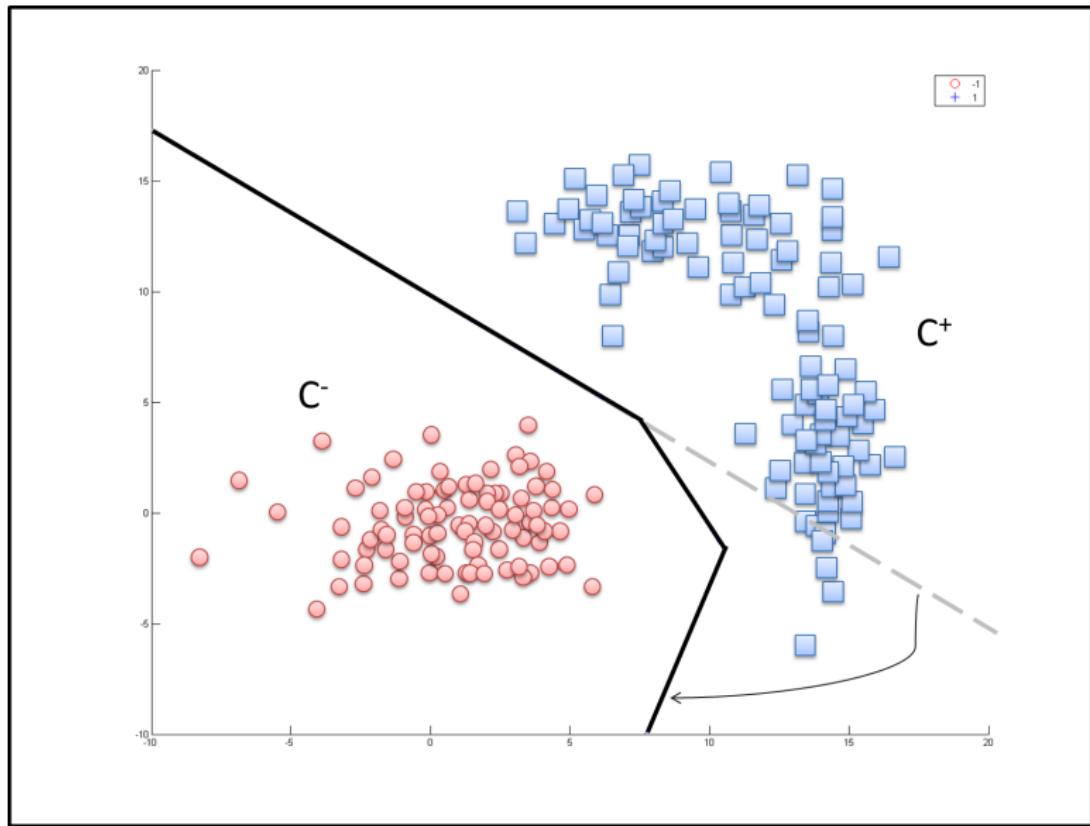
Repeated SVM Game - Linear Example



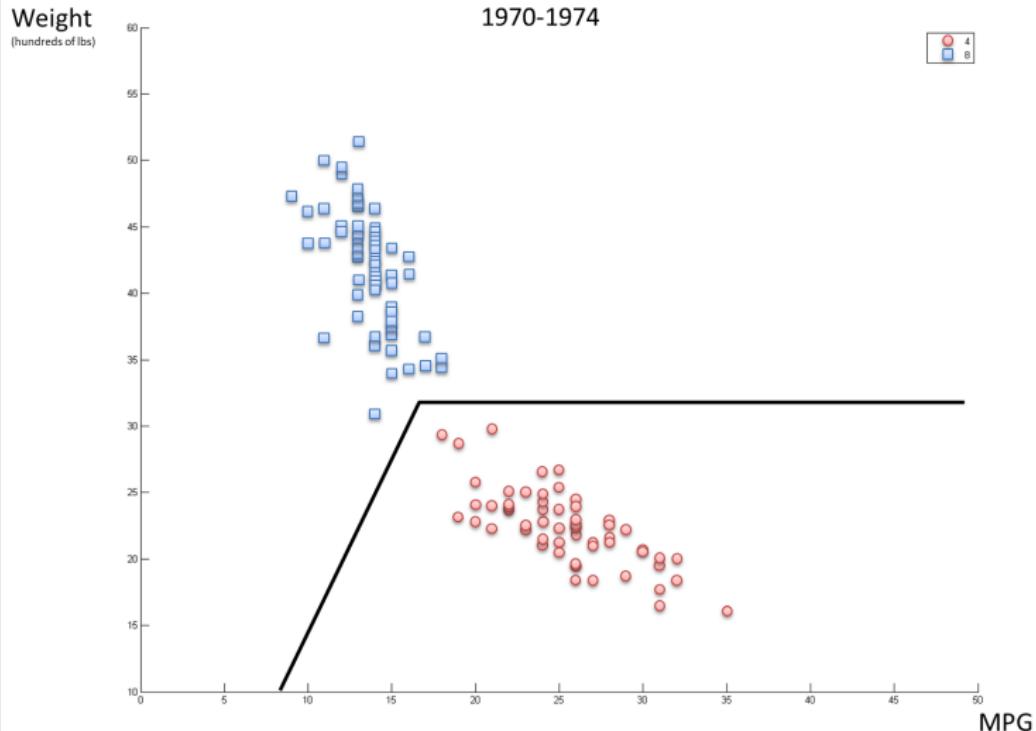
Repeated SVM Game - Curved Example



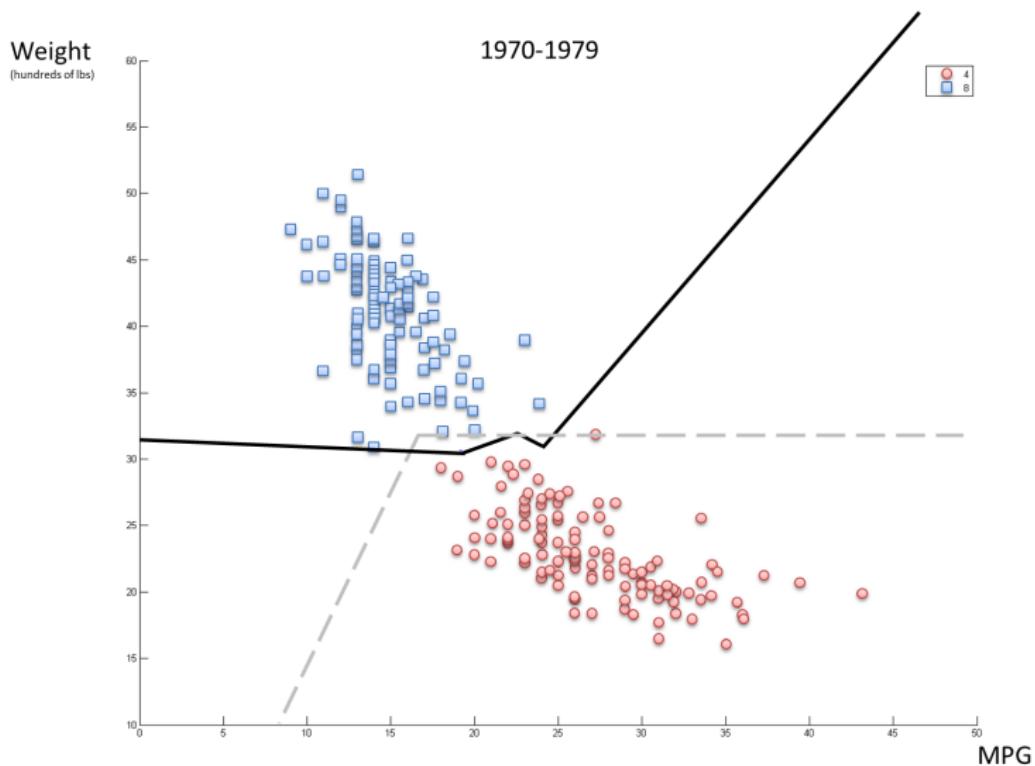
Repeated SVM Game - Curved Example



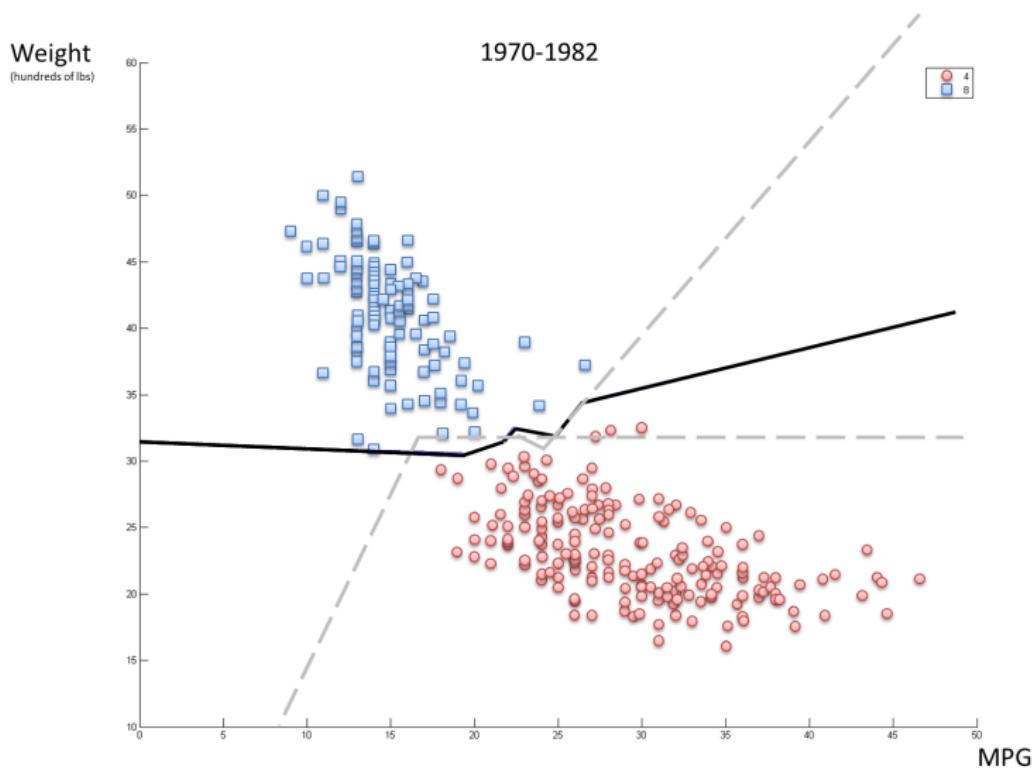
Repeated SVM Game - Automotive Example



Repeated SVM Game - Automotive Example



Repeated SVM Game - Automotive Example



Summary

- Presented the use of algorithmic game theory in relation to machine learning problem of classification
 - Descriptive as well as functional benefit
- SVM Game: game-theoretic Condorcet method classifier able to address linear, piecewise-linear, overlapping, and non-stationary data distributions through online learning
 - Distributed and Adaptive machine learning algorithms
- Repeated SVM Game: operating in an online learning and online training paradigm, through repeated game play is applicable for adaptive classification such as concept drift

Questions?

SVM Game Algorithm - with Preprocessing

Algorithm 4 Coalitional SVM Game

```
1: procedure SVMC( $S$ ) ▷ Sets  $C^+, C^- \in S$ 
2:   Transform( $S$ )
3:   for all  $p_i \in S$  do ▷ Initialization
4:      $p_i \leftarrow$  Initial Coalition Partner from Opposite Class
5:   end for
6:   while iterations ≠ desired iterations do
7:     for each class  $C^+$  and  $C^-$  do
8:        $p_x \leftarrow \text{random}(C^1)$ 
9:        $p_y \leftarrow \text{random}(C^1)$ 
10:       $p_r \leftarrow \text{random}(C^2)$ 
11:      Coalition( $p_x$ )  $\leftarrow \min(d(p_x, p_r), d(p_x, \text{Coalition}(p_x)), d(p_x, \text{Coalition}(p_y)))$ 
12:      Coalition( $p_y$ )  $\leftarrow \min(d(p_y, p_r), d(p_y, \text{Coalition}(p_y)), d(p_y, \text{Coalition}(p_x)))$ 
13:      if  $d(p_x, \text{Coalition}(p_x)) \leq d(p_y, \text{Coalition}(p_y))$  then
14:         $p_x \leftarrow \alpha$  from  $p_y$ 
15:      else
16:         $p_y \leftarrow \alpha$  from  $p_x$ 
17:      end if
18:    end for
19:  end while
20:  return Sets  $A^+, A^-$ 
21:    s.t.  $\forall p_i \in A^+ \exists p_m \in C^-$  s.t.  $\text{Coalition}(p_m) = p_i$ ,  $p_i \in C^+$ 
22:    and
23:    s.t.  $\forall p_j \in A^- \exists p_n \in C^+$  s.t.  $\text{Coalition}(p_n) = p_j$ ,  $p_j \in C^-$ 
24: end procedure
```

SVM Game Algorithm - with Kernel Trick

Algorithm 5 Coalitional SVM Game

```
1: procedure SVM_GAMEC( $S$ )                                ▷ Sets  $C^+, C^- \in S$ 
2:   for all  $p_i \in S$  do                                     ▷ Initialization
3:      $p_i \leftarrow$  Initial Coalition Partner from Opposite Class
4:   end for
5:   while iterations ≠ desired iterations do
6:     for each class  $C^+$  and  $C^-$  do
7:        $p_x \leftarrow \text{random}(C^1)$ 
8:        $p_y \leftarrow \text{random}(C^1)$ 
9:        $p_r \leftarrow \text{random}(C^2)$ 
10:      Coalition( $p_x$ )  $\leftarrow \min(K(p_x, p_r), K(p_x, \text{Coalition}(p_x)), K(p_x, \text{Coalition}(p_y)))$ 
11:      Coalition( $p_y$ )  $\leftarrow \min(K(p_y, p_r), K(p_y, \text{Coalition}(p_y)), K(p_y, \text{Coalition}(p_x)))$ 
12:      if  $d(p_x, \text{Coalition}(p_x)) \leq d(p_y, \text{Coalition}(p_y))$  then
13:         $p_x \leftarrow \alpha$  from  $p_y$ 
14:      else
15:         $p_y \leftarrow \alpha$  from  $p_x$ 
16:      end if
17:    end for
18:  end while
19:  return Sets  $A^+, A^-$ 
20:    s.t.  $\forall p_i \in A^+ \exists p_m \in C^-$  s.t.  $\text{Coalition}(p_m) = p_i, p_i \in C^+$ 
21:          and
22:          s.t.  $\forall p_j \in A^- \exists p_n \in C^+$  s.t.  $\text{Coalition}(p_n) = p_j, p_j \in C^-$ 
23: end procedure
```

- This may be represented as a quadratic optimization problem as follows:

$$\min_{\alpha} \quad \frac{1}{2} \|C^+ \alpha^+ - C^- \alpha^-\|^2 \quad (1)$$

$$\text{s.t.} \quad \mathbf{e}^T \alpha^+ = 1, \quad \mathbf{e}^T \alpha^- = 1, \quad \alpha^+ \geq 0, \quad \alpha^- \geq 0, \quad (2)$$

where a linear discriminant $\mathbf{x}'\mathbf{w} = \gamma$ is constructed using the results of (1) and (2) by choosing

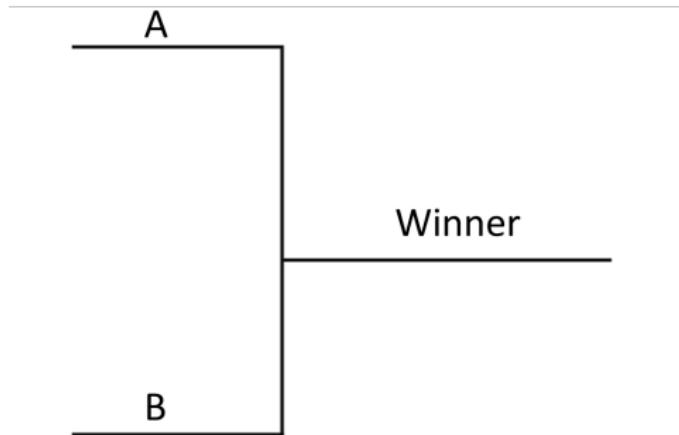
$$\mathbf{w} = \mathbf{c}^+ - \mathbf{c}^- = C^+ \alpha^+_{opt} - C^- \alpha^-_{opt} \quad (3)$$

and

$$\gamma = \left(\frac{\mathbf{c}^+ + \mathbf{c}^-}{2} \right)' \mathbf{w} \quad (4)$$

Social Choice Functions

- Selecting between two options or candidates it is straightforward to directly evaluate the two choices against one another

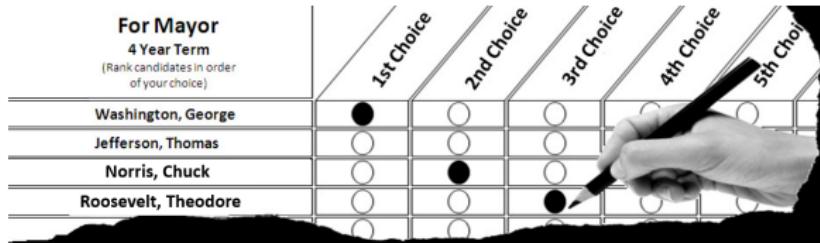


Social Choice Functions

- However, for three (or more choices) it is a more complicated matter

Social Choice Functions

- Various approaches have been developed to elect a single winner.
 - Most well known approach is to elect the candidate or option with the greatest amount of votes (plurality voting)
 - Majority vote
 - Other variants (such as Borda Count)



Condorcet Method

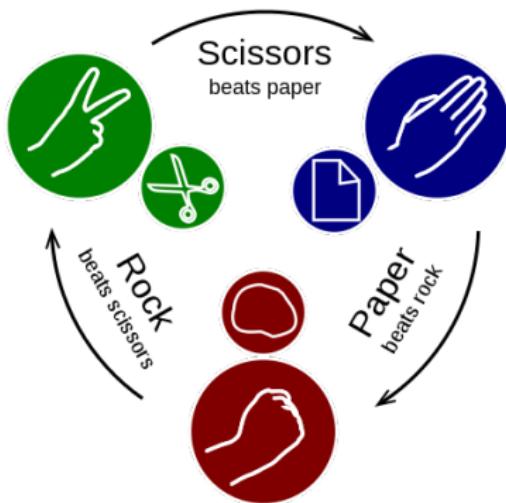
- Preferences of voters are ranked for all candidates
- Then all possible pairings of candidates are evaluated to determine the candidate preferred over all others
- For example:
 - voter 1 $x > y > z$
 - voter 2 $x > z > y$
 - voter 3 $z > x > y$
- x vs. $y \rightarrow$ all three voters prefer x over y
- y vs. $z \rightarrow$ two of the three voters prefer z over y (only voter 1 prefers y to z)
- x vs. $z \rightarrow$ two of the three voters prefer x to z .
- Thus, x beats every other candidate in pairwise competition and is the Condorcet winner

Convergence - Condorcet Paradox

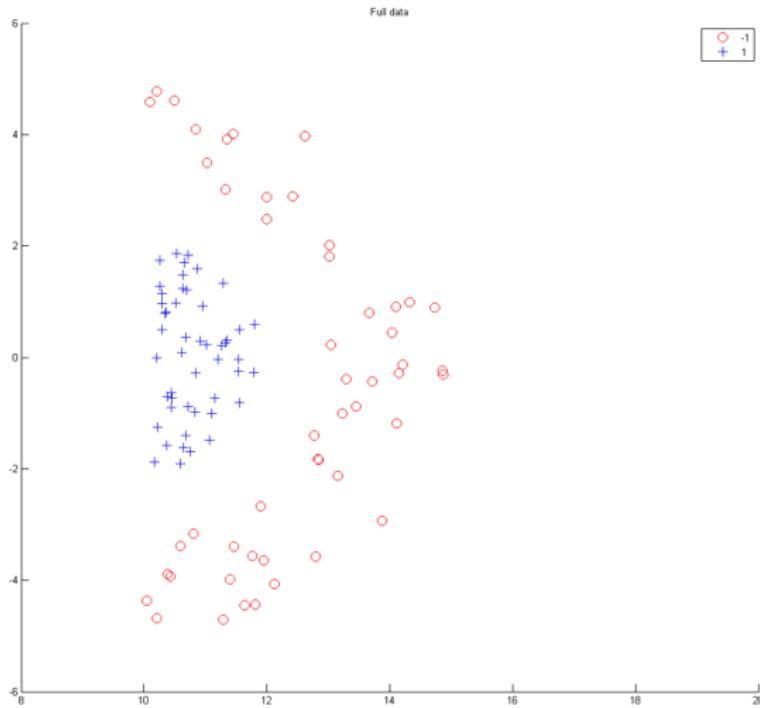
- There is not always a Condorcet winner
 - Condorcet Paradox - a non-transitive group preference can arise from transitive individual preferences
- Example:
 - voter 1 $x > y > z$
 - voter 2 $y > z > x$
 - voter 3 $z > x > y$
- Evaluating the pairwise comparisons amongst all possible candidates there is no longer a candidate which beats all others
 - x beats y according to two of the three voters
 - likewise y is preferred to z by two of the three voters
 - z is preferred to x by two of the three

Condorcet Paradox

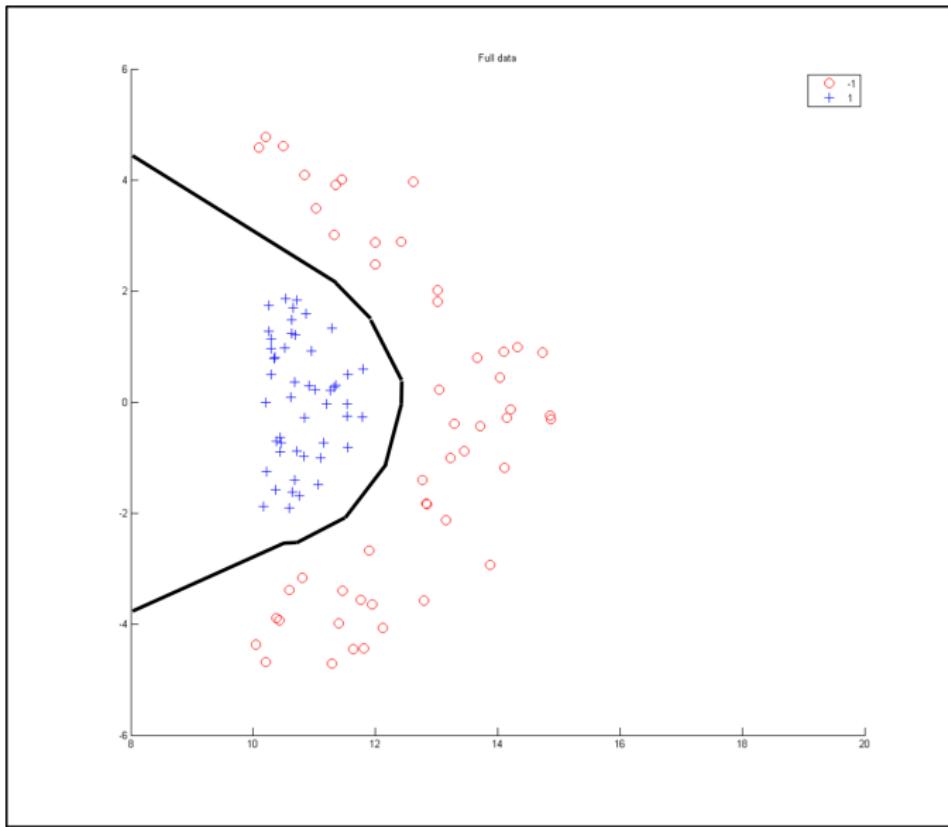
Rock Paper Scissors also demonstrates this notion that comparing all possible pairs does not necessarily provide a globally agreed upon winner



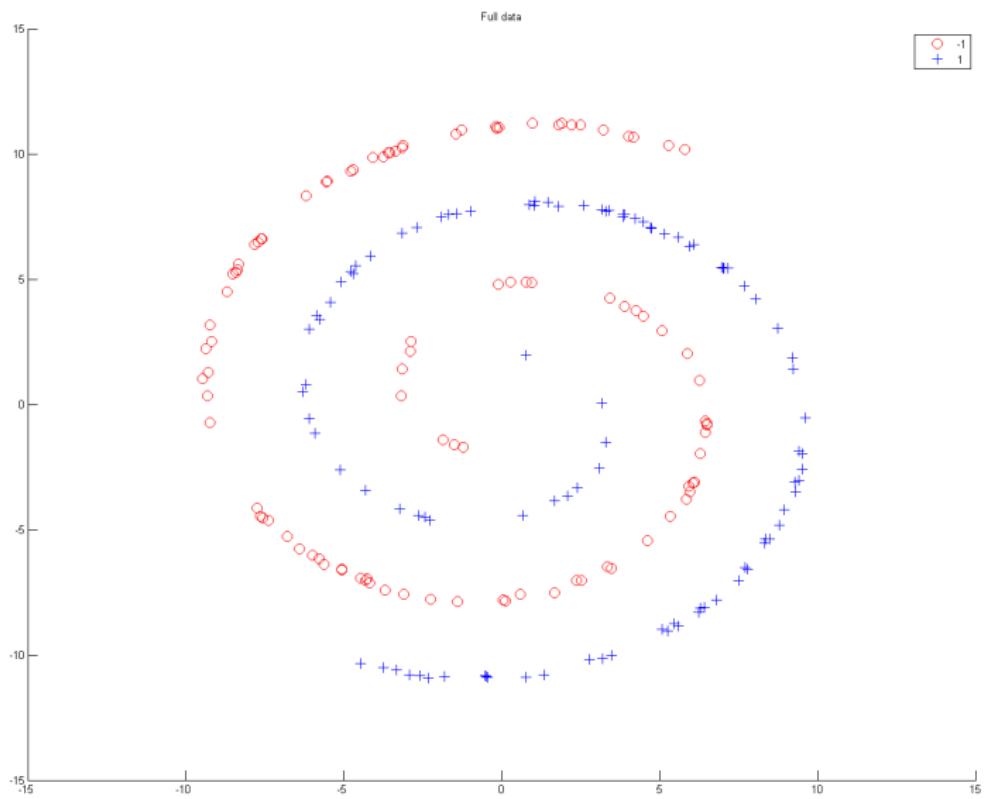
Piecewise Linearly Separable



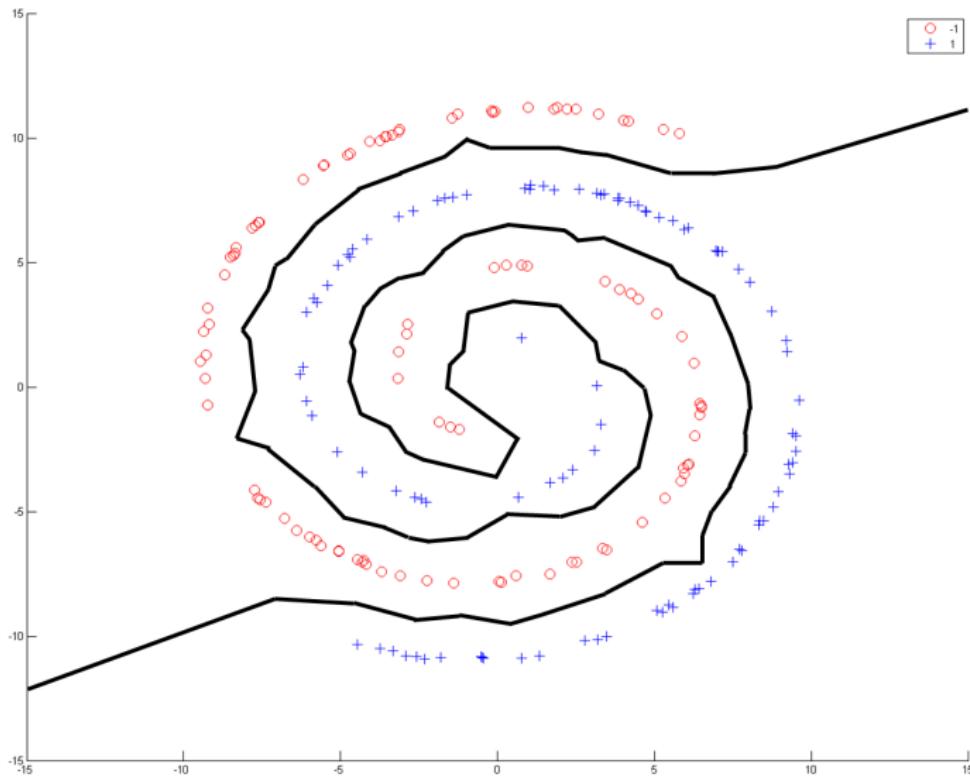
Piecewise Linearly Separable



Piecewise Linearly Separable - Spirals (100 Pts)



Piecewise Linearly Separable - Spirals (100 Pts)



Non-separable Data

- It is not always the case that the data distributions being classified are comprised of disjoint data classes
- Preprocessing approaches
- Wilson's editing algorithm eliminates misleading examples from a training set
 - Various techniques may be used such as k-Nearest Neighbor or K-Means Clustering
- Kernel trick method uses an appropriate kernel mapping to cast both non-linear and non-separable data to a higher dimensionality in which the data is separable

