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Abstract

This report describes the computational methodology for the least-squares adjustment of the dosimetry
data from the HSSI 10.0D dosimetry capsule with neutronics calculations. It presents exposure rates at
each dosimetry location for the neutron fluence greater than 1.0 MeV, fluence greater than 0.1 MeV,
and displacements per atom. Exposure parameter distributions are also described in terms of three-
dimensional fitting functions. When fitting functions are used it is suggested that an uncertainty of 6%
(1 o) should be associated with the exposure rate values. The specific activity of each dosimeter at the

end of irradiation is listed in the Appendix.
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Neutron Exposure Parameters for the Dosimetry Capsule in the
Heavy-Section Steel Irradiation Program Tenth Irradiation Series

|. Remec, C. A. Baldwin, and F. B. K. Kam

Introduction

A variety of experiments and analyses for assessing the effects of neutron irradiation on metallurgical
test specimens have been sponsored by the U.S. Nuclear Regulatory Commission (NRC). Results
from these investigations should provide information that will lead to an improved understanding of the
processes of neutron damage to pressure vessels and other structural materials. Thus, the lifetime of
many nuclear reactors may be extended through knowledge gained from these experiments, and
confidence in the accuracy of information relative to the integrity of reactor pressure vessels and of
related components should be enhanced.

A new facility in which to perform the Heavy-Section Steel Irradiation (HSSI) Program irradiations was
installed at the University of Michigan's Ford Nuclear Reactor in Ann Arbor, Michigan. Before any
metallurgical capsule irradiation, an extensive dosimetry experiment was carried out to assess the
neutron irradiation exposure rates and their distributions. The dosimetry experiment HSSI 10.0D
included a simulated metallurgical capsule with special holes drilled through a steel block to allow
precise positioning of the dosimeter tubes. A comprehensive set of dosimeters was irradiated inside
the dosimeter tubes. In addition to the dosimeters inside the simulated capsule, removable dosimeter
tube (RDT) dosimeters were irradiated just behind the thermal shield, outside the capsule. The RDT
dosimeters can be removed on a cycle-to-cycle basis.

This report describes the computational methodology for the least-squares adjustment of the dosimetry
data from the HSSI 10.0D dosimetry capsule with neutronics calculations. It presents exposure
parameter rates at each dosimetry location for the neutron fluence rate greater than 1.0 MeV, fluence
rate greater than 0.1 MeV, and displacement-per-atom (dpa) rate. Irradiation exposure rates
determined should be useful for the estimation of irradiation times and exposure parameters of current
and future HSSI irradiation experiments.

Methodology of the Analysis

To determine the neutron irradiation exposure parameters, a neutron spectrum adjustment procedure
was used that combines transport calculations of the neutron field and measurements using
radiometric monitors.

The input data required in this analysis consisted of the following:

neutron fluence rate spectrum obtained from transport calculations at each dOSImetry location,
measured activity of each dosimeter,

cross section for each dosimetry reaction used,

location of each dosimetry set, and

response function for each irradiation exposure parameter.
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Neutron transport calculations for the HSSI 10.0D capsule were performed by Williams.* The three-
dimensional fluence rate spectra for each dosimetry location were obtained by the flux synthesis
method, which combines the results of two-dimensional and one-dimensional transport theory
calculations. A 47-group neutron spectrum was provided at each of the dosimetry locations in the
capsule and for the three fuel cycles.

A comprehensive set of radiometric monitors was irradiated in the dosimetry capsule. It consisted of
%Co and '®Ag thermal dosimeters and **Fe and %*Cu threshold dosimeters, which were irradiated in
the 27 locations inside the capsule. At five locations, *®Ni, “Ti, 2'Np, and 2®U dosimeters were also
used. At the five locations where fission dosimeters were used, the dosimeters were irradiated under
0.89-mm-thick (35-mil-thick) gadolinium covers; at the other locations, dosimeters were irradiated bare.
The arrangement of the irradiation locations inside the capsule, labeled as P1 to P27, and the
coordinate system are shown in Fig. 1. These labels and/or location coordinates are used throughout
the tables in this report, where activities or irradiation exposure parameters are listed. The relative
location of the irradiation capsule with respect to the reactor core is shown in Figs. 2 and 3. The
thickness of materials between the core and the dosimetry capsule are shown in Fig. 4. The specific
activities of neutron dosimeters at the end of irradiation are given in the Appendix.

The activation cross-section library and covariance information in 640 energy groups were created
from the IRDF 90 and ENDF V dosimetry files. To account for the gadolinium cover, a modified set of
cross sections was generated, where the 640-group cross sections were muitiplied by attenuation
factors defined as:

AF =exp|[- (D x AV/AT) x TH x CS], (1)

AF
D

AV
AT
TH
CS

attenuation factor,
density of cover material (7.9004 g/cm? for Gd),

Avogadros number,

atomic weight (157.25 for Gd),

thickness of the cover (0.89 mm, 35 mil),

total absorption cross section of Gd (taken from the IRDF 90 file).

This formula is, of course, a crude approximation only and does not consider the geometry of the
covers and the dosimeters. However, it appears to be reasonably accurate for the current application.
The resulting cross sections were then combined with the cross sections for bare dosimeters and were
converted to 32 energy groups for use in the adjustment runs. Cross-section covariance matrixes were
also converted to the 32-group structure. Computer code FLXPRO from the LSL-M2 code package
was used for this purpose.’

*M. L. Williams, Louisiana State University, Nuclear Science Center, personal communication to F. B. K. Kam.
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Figure 1. Arrangement of the dosimeter locations inside the HSSI 10.0D capsule.
Origin of the coordinate system is in the center of the front face of the capsule.
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Figure 2. Location of the HSSI 10.0D capsule relative to the reactor core—horizontal cross section.

NUREG/CR-6601 4




ORNL-DWG 94M-6878

<]
S Gamma Shield Plate
A N
N
N
N
\ NIRRT
N
N
\
304.8 mm \
(12.0007) N
N
N
N
N
N
N
N
Max Active N
Fuel Length \
is 609.6 mm §
(24.0007) Y | § Axial Center of Fuel
A \ S N
E A \M Dosimeter
§ Capsule
N Centerline
IN (z =0.0)
s 312.8 mm 312'2’-27?'“
N (12.313" (12.8757)
304.8 mm N
" N Bottom of
(12.000) § 2“9?23'2:;' Aux Dosimeter
§ b to Fuef Center Line
\
\ i ub
S /—Aux Dosimeter Tube
N
§ Capsule sits
N y on this platform
s N T I I I I I I T [
(2;553."; S{// BT S LR L LT LRI ELL NN '
. LN
= = =N
YT,
e Reactor Grid %S
== = R
E‘%#Q East Experiment Grid
N
N
N
N

Figure 3. Location of the HSSI 10.0D capsule relative to the reactor core—vertical cross section.
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Measured activities were converted to reaction probabilities, taking into account the reactor power
history for the cycles of the irradiation. Computer code ACT from the LSL-M2 code package was used
for this purpose.' The reactor power history for the three cycles considered is shown in Table A.2 of the
Appendix. '

The spectrum covariance matrix was used, as calculated for the simulated surveillance capsule
position for the Oak Ridge Research Reactor Poolside Facility Metallurgical Experiment.?® The original
calculation of the fluence variance-covariances covered only the range from 18 to 0.1 MeV. Therefore,
two energy groups from 1 E-5 t0 0.1 eV and from 0.1 eV to 0.1 MeV were added, with large variances
of 150% and 75%, respectively, and small correlations of 0.1 and 0.2. The spectrum covariance matrix
was converted in the group structure used in the adjustment with the computer code FLXPRO.
Obviously the assumed spectrum variance-covariance information is only approximate. However, it
does not appear to be critical for the analysis since comprehensive dosimetry measurements are
available, and in such cases the adjustment resuits are generally not sensitive to the details in the
spectrum covariance matrix.

For the least-squares neutron spectrum adjustment calculations, computer code LSL-M2 was used.
The adjustment runs provided the adjusted neutron spectrum at each location considered. The neutron
irradiation exposure rates selected to characterize the irradiation conditions are neutron fluence rate
with energy greater than 1 MeV (F:. ; wv), Neutron fluence rate with energy greater than 0.1 MeV
(Fe>0.1mev), @and dpa rate. Fluence rates, F¢. , yeva@nd Fg, 1 wey» are obtained as sums of group fluxes
over the corresponding energy range; however, for the dpa rate calculations, the cross sections used
were taken from Ref. 4. These exposure parameters were determined for each dosimetry location and
are listed in Tables 1 through 3. Listed exposure parameter rates are averages, representative of the
three fuel cycles during which the HSSI 10.0D capsule was irradiated. Exposure parameters are given
for reactor full-core power of 2 MW.

The exposure parameters obtained from the adjustment runs were fitted to an appropriate three-
dimensional function. It is desirable to describe the space variation of irradiation parameters by means
of a three-dimensional function because the values of exposure parameters are often needed at
locations other than the dosimetry locations. The function, used for fitting the irradiation parameters,
was of the form

Fixy,2) = A cos [B, (x - x)] cos [B, (z- zo)] exp (= Ay) - @)

The constants A, B,, x,, B,, z,, and A were determined with least squares fitting and are listed in
Table 4 for each of the three irradiation parameters.

7 NUREG/CR-6601




NUREG/CR-6601

Table 1. Adjusted average fast fluence rates, F; .y, for
cycles 338B, 339B, and 340A for all dosimetry locations

Location Coordinates Fes 1mev
X Y z

(cm) (cm) (cm) (cm?s™)

P23 1030 225 2378 5.017E+11
P2 000 225 23.78 7.866E+11
P4 10.30 225 23.78 7.862E+11
P11 -10.30 599 2378 2.689E+11
P9 000 599 23.78 4.250E+11
P6 10.30 599 23.78 4.044E+11
P20 -10.30 974 2378 1.392E+11
P17 000 974 2378 2.195E+11
P14 10.30 974 23.78 2.060E+11
P24 -1030 225  -0.03 7.975E+11
P25 000 225 -0.03 1.295E+12
P26 10.30 225  -0.03 1.320E+12
P12 -10.30 599  -0.03 4.391E+11
P27 000 599 -0.03 7.084E+11
P7 1030 599  -0.03 6.780E+11
P21 -10.30 974  -0.03 2.298E+11
P18 000 974  -0.03 3.678E+11
P15 1030 974  -0.03 3.453E+11
P1 -10.30 225 -23.85 3.710E+11
P3 000 225 -23.85 5.885E+11
P5 10.30 225 -2385 5.933E+11
P13 -10.30 599 -23.85 2.024E+11
P10 000 599 -23.85 3.229E+11
P8 10.30 599 -23.85 3.100E+11
P22 -10.30 9.74 -23.85 1.060E+11
P19 000 974 -2385 1.689E+11
P16 10.30 974 -23.85 1.587E+11




Table 2. Adjusted average fast fluence rates, Fg_ ;, yov, fOr
cycles 338B, 339B, and 340A for all dosimetry locations

Location Coordinates Fe.o0.1mev
X Y Z
(cm) (cm) (cm) (cm?s™)
P23 1030 225 2378 1.254E+12
P2 0.00 2.25 23.78 2.027E+12
P4 10.30 2.25 23.78 1.885E+12
P11 -10.30 5.99 23.78 8.018E+11
P9 0.00 5.99 23.78 1.315E+12
P6 10.30 5.99 23.78 1.124E+12
P20 -10.30 9.74 23.78 4.734E+11
P17 0.00 9.74 23.78 7.770E+11
P14 10.30 9.74 23.78 6.372E+11
P24 -10.30 2.25 -0.03 2.089E+12
P25 0.00 2.25 -0.03 3.483E+12
P26 10.30 2.25 -0.03 3.297E+12
P12 -10.30 5.99 -0.03 1.378E+12
P27 0.00 5.99 -0.03 2.302E+12
P7 10.30 5.99 -0.03 1.981E+12
P21 -10.30 9.74 -0.03 8.248E+11
Pi8 0.00 9.74 -0.03 1.371E+12
P15 10.30 9.74 -0.03 1.126E+12
P1 -10.30 2.25 -23.85 9.556E+11
P3 0.00 2.25 -23.85 1.559E+12
P5 1030 225 -23.85 1.461E+12
P13 -10.30 5.99 -23.85 6.202E+11
P10 0.00 5.99 -23.85 1.027E+12
P8 10.30 5.99 -23.85 8.852E+11
P22 -10.30 9.74 -23.85 3.707E+11
P19 0.00 9.74 -23.85 6.142E+11
P16 10.30 9.74 -23.85 5.047E+11
9 NUREG/CR-6601




Table 3. Adjusted average displacement-per-atom (dpa) rates
for cycles 338B, 339B, and 340A for all dosimetry locations

Location Coordinates dpa
X Y

(cm)  (cm) (s
-10.30 2.25 7.410E-10
0.00 2.25 1.174E-09
10.30 2.25 1.143E-09
-10.30 5.99 4.244E-10
0.00 5.99 6.797E-10
10.30 5.99 6.163E-10
-10.30 9.74 2.340E-10
0.00 9.74 3.746E-10
10.30 9.74 3.304E-10

-10.30 2.25 1.187E-09
0.00 2.25 1.936E-09
10.30 2.25 1.921E-09
-10.30 5.99 7.002E-10
0.00 5.99 1.142E-09
10.30 5.99 1.046E-09
-10.30 9.74 3.917E-10
0.00 9.74 6.363E-10
10.30 9.74 5.616E-10

-10.30 2.25 5.499E-10
0.00 2.25 8.791E-10
10.30 2.25 8.622E-10
-10.30 5.99 3.201E-10
0.00 5.99 5.182E-10
10.30 5.99 4.747E-10
-10.30 9.74 1.791E-10
0.00 9.74 2.898E-10
10.30 0.74 2.561E-10
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Table 4. Parameters from the three-dimensional fits of the exposure parameter rates*

(A) Fitting parameters for F¢, ; yev

A B, X B, Z A
(cm?st) {cm™) (cm) (cm™ (cm) (ecm™)
Average' 2.021E+12 0.06082 5.071 0.04252 2.030 0.1707

(B) Fitting parameters for F ¢, 4 mev

A B, Xo B, Z, A
(cm?s™) (cm™) (cm) (cm™) (cm) (cm™)
Average’ 4.887E+12 0.06920 3.303 0.04337 1.706 0.1286

(C) Fitting parameters for dpa rate

A B, Xo B, zZ, A
(s (cm™) (cm) (cm™) (cm) (cm™)
Average' 2.800E-09  0.06404 4272 0.04262 1.998 0.1535

*The fitting function is of the form
F(x.y.2) = A cos [B, (x - X)] cos [B, (z- Z;)] exp (= Ay),
and the coordinate system is as shown in Figs. 2 and 3.

TAverage exposure parameter rates for cycles 338B, 339B, and 340A were used to calculate
three-dimensional fitting parameters.

Results
Information presented herein consists of the following:

1. The fluence rates, F;. , yey @nd Fe. o mev» @nd the dpa rates for each dosimetry location are listed in
Tables 1 through 3. Values given were obtained from the least-squares adjustment procedure and
are the averages of the exposure parameters for the cycles 338B, 339B, and 340A.

2. Constants derived for the fitting function (Eq. 2) for each exposure parameter are given in Table 4.

Exposure parameter rates at any location (x, y, or z) can be readily calculated using Eq. 2 and the
constants listed in Table 4. The coordinates of the point where exposure parameter rates are needed
must be given in the coordinate system, as shown in Figs. 2 and 3. Time-integrated exposure
parameters can be obtained by multiplying the exposure rates by the time of irradiation expressed in
effective full-power seconds.

Uncertainties are not accurately propagated through all the computational sequences, and there may
be biases that are not recognized. However, uncertainties obtained from the least-squares adjustment
procedure take into account estimated uncertainties of neutronics calculations and measured activities.
Uncertainties of the exposure parameter rates obtained from the adjustment calculations are ~5%

(1 o). When irradiation exposure rates are calculated from Eq. 2, uncertainty arising from the three-
dimensional fitting should be also considered. Differences between the exposure parameter rates at
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the dosimetry locations as obtained from the adjustment and as calculated from the fitting function are
on the order of 3% (average), as illustrated in Tables A.5 through A.7 in the Appendix. Therefore, for
the irradiation exposure rates obtained from Eq. 2, an uncertainty of 6% (1 0) is considered to be a
good estimate.

Conclusion

The irradiation exposure parameter rate distributions in the HSSI 10.0D dosimetry capsule were
determined. Exposure rate distributions are described in terms of values at dosimetry locations and in
terms of three-dimensional fitting functions. When fitting functions are used, it is suggested that an
uncertainty of 6% (1 o) be associated with the exposure rate values. Irradiation exposure rates
determined should be useful for the estimation of irradiation times and exposure parameters of current
and future HSSI metallurgical irradiation experiments.
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Appendix

The data included in this Appendix should be sufficient for another organization to recalculate the
exposure parameters if fluence rate spectra are available or if neutronics calculations are performed. In
particular, the data included herein are (1) specific activities of each dosimeter at the end of irradiation
(EOQI), (2) coordinates of each dosimeter relative to the coordinate system shown in Figs. 2 and 3, and
(3) the irradiation history of the capsule. In addition, cycle-to-cycle variations caused by changes in the
core configuration are discussed through a comparison of the specific activities of the removable
dosimeter tube (RDT) dosimeters. Finally, the suitability of the three-dimensional fitting function for
determination of the irradiation parameters is accessed.

The specific activity of each dosimeter at the end of irradiation is listed in Table A.1. The in-capsule
dosimetry was irradiated for three fuel cycles. The irradiation history is given in Table A.2. Additional
dosimetry in the form of Co/Al and Fe wires was located in RDTs just behind the thermal shield

(Fig. 2). RDT dosimeters were changed after each fuel cycle to allow the assessment of cycle-to-cycle
variations in fluence rate magnitude and spatial distribution. Because the lengths of fuel cycles did not
vary significantly, a comparison of the measured specific activities can be used directly to monitor
relative cycle-to-cycle changes in fluence rate. The **Mn and *°Co activities provide information about
the fast and thermal fluence rates, respectively. Measured specific activities of the RDT dosimeters are
listed in Table A.3. Table A.4 gives a comparison of the activities for the three cycles analyzed; values
given are relative to the activities measured for cycle 338B. Maximum cycle-to-cycle variations in the
*Mn specific activities are on the order of 10% and 30% for the RDT at the south and north sides of
the capsule, respectively. Higher variations in the RDT dosimeter activities at the north side were
caused by using three different types of fuel elements in core position 6 (see Fig 2). For cycle 338B, an
unfueled plug was put in position 6. For cycle 339B, a 9-plate element occasionally used for adjusting
core reactivity was used. Finally, for cycle 340B, a normal 18-plate element was used in position 6.
Using different types of fuel elements in core position 6 also affected the side-to-side gradient (in the
direction of X axis) of the neutron field across the capsule. For the three cycles analyzed, the specific
*Mn activities from the RDT on the north side of the capsule were approximately 2.0, 2.3, and 2.7
times higher, respectively, than the activities from the RDT on the south side of the capsule. However,
most of the north-to-south decrease in the neutron field is because of the capsule location near the
southeast core corner. The side-to-side (X axis direction) and axial (Z axis direction) variations in the
specific activities of the RDT dosimeters are illustrated in Figs. A.1 through A.3. In the axial direction
the ratio of maximum to minimum specific activity of >*Mn is around 1.7 at both sides of the capsule
and does not vary with the cycles. Figures A.4 through A.6 show that the shapes of the axial
distributions of specific activities are almost the same on both sides of the capsule even though the
magnitudes are different.

Tables A.5 through A.7 show the suitability of the three-dimensional fitting function for the irradiation
parameters determination. The irradiation parameters F¢. ; yevs F &5 0.1 Mev» @Nd dpa rate at the
dosimetry locations obtained from the adjustment procedure are compared with the values calculated
using Eq. 2 and the fitting parameters from Table 4. It can be seen that the agreement between the
adjusted and fitted values is good, with the average difference ranging from 2 to 3%.
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Table A.1. Activities of the dosimeters in the HSSI 10.0D dosimetry capsule

Monitor Reaction Coordinates Activity*
ID X Y z at EOIt
(cm) (cm) (cm) (Bg/mg)
GS01-Co Co-59 (n,g) Co-60 -10.300 2.250 -23.850 7.98E+02
GS01-Ag Ag-108 (n,g) Ag-110m -10.300 2.250 -23.850 1.26E+03
GS01-Fe Fe-54 (n,p) Mn-54 -10.300 2.250 -23.850 1.02E+03
GS01-Cu Cu-63 (n,a) Co-60 -10.300 2.250 -23.850 1.21E+01
GS02-Co Co-59 (n,g) Co-60 0.000 2.250 23.780 1.63E+03
GS02-Ag Ag-109 (n,g) Ag-110m 0.000 2.250 23.780 3.09E+03
GS02-Fe Fe-54 (n,p) Mn-54 0.000 2.250 23.780 2.18E+03
GS02-Cu Cu-63 (n,a) Co-60 0.000 2.250 23.780 2.55E+01
GS03-Co Co-59 (n,g) Co-60 0.000 2.250 -23.850 1.07E+03
GS03-Ag Ag-109 (n,g) Ag-110m 0.000 2.250 -23.850 1.99E+03
GS03-Fe Fe-54 (n,p) Mn-54 0.000 2.250 -23.850 1.50E+03
GS03-Cu Cu-63 (n,a) Co-60 0.000 2.250 -23.850 1.81E+01
GS04-Co Co-59 (n,g) Co-60 10.300 2.250 23.780 1.83E+03
GS04-Ag Ag-109 (n,g) Ag-110m 10.300 2.250 23.780 3.09E+03
GS04-Fe Fe-54 (n,p) Mn-54 10.300 2.250 23.780 2.24E+03
GS04-Cu Cu-63 (n,a) Co-60 10.300 2.250 23.780 2.69E+01
GS05-Co - Co-59 (n,g) Co-60 10.300 2.250 -23.850 1.25E+03
GS05-Ag Ag-109 (n,g) Ag-110m 10.300 2.250 -23.850 1.98E+03
GS05-Fe Fe-54 (n,p) Mn-54 10.300 2.2580 -23.850 1.60E+03
GS05-Cu Cu-63 (n,a) Co-60 10.300 2.250 -23.850 1.92E+01
GS06-Co Co-59 (n,g) Co-60 10.300 5.990 23.780 6.05E+02
GS06-Ag Ag-109 (n,g) Ag-110m 10.300 5.990 23.780 1.28E+03
GS06-Fe Fe-54 (n,p) Mn-54 10.300 5.990 23.780 1.02E+03
GS06-Cu Cu-63 (n,a) Co-60 10.300 5.990 23.780 1.13E+01
GS07-Co Co-59 (n,g) Co-60 10.300 5.990 -0.030 1.14E+03
GS07-Ag Ag-109 (n,g) Ag-110m 10.300 5.990 -0.030 2.22E+03
GS07-Fe Fe-54 (n,p) Mn-54 10.300 5.990 -0.030 1.51E+03
GS07-Cu Cu-63 (n,a) Co-60 10.300 5.990 -0.030 1.76E+01
GS08-Co Co-59 (n,g) Co-60 10.300 5.990 -23.850 5.50E+02
GS08-Ag Ag-109 (n,g) Ag-110m 10.300 5.990 -23.850 9.66E+02
GS08-Fe Fe-54 (n,p) Mn-54 10.300 5.990 -23.850 7.21E+02
GS08-Cu Cu-63 (n,a) Co-60 10.300 5.990 -23.850 8.57E+00
GS09-Co Co-59 (n,g) Co-60 0.000 5.990 23.780 6.62E+02
GS09-Ag Ag-109 (n,g) Ag-110m 0.000 5.990 23.780 1.41E+03
GS09-Fe Fe-54 (n,p) Mn-54 0.000 5.990 23.780 9.73E+02
GS09-Cu Cu-63 (n,a) Co-60 0.000 5.990 23.780 1.36E+01
GS10-Co Co-59 (n,g) Co-60 0.000 5.990 -23.850 4.29E+02
GS10-Ag Ag-109 (n,g) Ag-110m 0.000 5.990 -23.850 9.48E+02
GS10-Fe Fe-54 (n,p) Mn-54 0.000 5.990 -23.850 6.95E+02
GS10-Cu Cu-83 (n,a) Co-60 0.000 5.990 -23.850 8.01E+00
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Table A.1 (continued)

Monitor ' Reaction Coordinates Activity:
ID X Y 7 at EOI
(cm) (cm) (cm) (Ba/mg)
GS11-Co Co0-59 (n,g) Co-60 -10.300 5.990 23.780 5.33E+02
GS11-Ag Ag-109 (n,g) Ag-110m -10.300 5.990 23780  9.84E+02
GS11-Fe Fe-54 (n,p) Mn-54 -10.300 5.990 23.780 6.51E+02
GS11-Cu Cu-63 (n,a) Co-60 -10.300 5.990 23.780 8.01E+00
GS12-Co Co-59 (n,g) Co-60 ~-10.300 5.990 -0.030 7.37E+02
GS12-Ag Ag-109 (n,g) Ag-110m -10.300 5990 -0.030  1.44E+03
GS12-Fe Fe-54 (n,p) Mn-54 -10.300 5.990 -0.030 9.63E+02
GS12-Cu Cu-63 (n,a) Co-60 -10.300 5.990 -0.030 1.11E+01
GS13-Co Co-59 (n,g) Co-60 -10.300 5.990 .23.850  3.63E+02
GS13-Ag Ag-109 (n,g) Ag-110m -10.300 5.990 .23.850  6.32E+02
GS13-Fe Fe-54 (n,p) Mn-54 -10.300 5.990 -23.850 4,65E+02
GS13-Cu Cu-63 (n,a) Co-60 -10.300 5.990 -23.850 5.56E+00
GS14-Co Co-59 (n,g) Co-60 10.300 9.740 23780  5.81E+02
GS14-Ag Ag-109 (n,g) Ag-110m 10.300 9.740 23.780 8.11E+02
GS14-Fe Fe-54 (n,p) Mn-54 10.300 9.740 23780  4.72E+02
GS14-Cu Cu-63 (n,a) Co-60 10.300 9.740 23.780 5.56E+00
GS15-Co Co-59 (n,g) Co-60 10.300 9.740 -0.030 0.00E+00™*
GS15-Ag Ag-109 (n,g) Ag-110m 10.300 9.740 0030  1.27E+03
GS15-Fe Fe-54 (n,p) Mn-54 10.300 9.740 -0.030 7.13E+02
GS15-Cu Cu-63 (n,a) Co-60 10.300 9.740 -0.030 8.33E+00
GS16-Co Co-59 (n,g) Co-60 10.300 9.740 -23.850 4.34E+02
GS16-Ag Ag-109 (n,g) Ag-110m 10.300 9.740 -23.850  5.96E+02
GS16-Fe Fe-54 (n,p) Mn-54 10.300 9.740 -23.850 3.48E+02
GS16-Cu Cu-63 (n,a) Co-60 10.300 9.740 -23.850 4.11E+00
GS17-Co Co-59 (n,g) Co-60 0.000 9.740 23.780 4.71E+02
GS17-Ag Ag-109 (n,g) Ag-110m 0.000 9.740 23.780 8.32E+02
GS17-Fe Fe-54 (n,p) Mn-54 0.000 9.740 23780  4.44E+02
GS17-Cu Cu-63 (n,a) Co-60 0.000 - 9.740 23.780 5.13E+00
GS18-Co Co-59 (n,g) Co-60 0.000 9.740 -0.030 6.90E+02
GS18-Ag Ag-109 (n,g) Ag-110m 0.000 9.740 0.030  1.19E+03
GS18-Fe Fe-54 (n,p) Mn-54 0.000 9.740 -0.030 6.71E+02
GS18-Cu Cu-63 (n,a) Co-60 0.000 9.740 -0.030 7.57E+00
GS19-Co Co-59 (n,9) Co-60 0.000 9.740 -23.850 3.45E+02

GS19-Ag Ag-109 (n,g) Ag-110m 0.000 9.740 -23.850  5.74E+02
GS19-Fe Fe-54 (n,p) Mn-54 0.000 9.740 -23.850  3.27E+02
GS19-Cu Cu-63 (n,a) Co-60 0.000 9.740 -23.85  3.75E+00
GS20-Co Co-59 (n,g) Co-60 -10.300 9.740 23780  3.93E+02
GS20-Ag Ag-109 (n,g) Ag-110m -10.300 9.740 23780  6.05E+02
GS20-Fe Fe-54 (n,p) Mn-54 -10.300 9.740 23780  3.04E+02
GS20-Cu Cu-63 (n,a) Co-60 -10.300 9.740 23780  3.65E+00
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Table A.1 (continued)

Monitor Reaction Coordinates Activity*

ID X -y 7z at EOI'

(cm) (cm) (cm) (Ba/mg)
GS21-Co Co-59 (n,g) Co-60 -10.300 9.740 -0.030 5.88E+02
GS21-Ag Ag-109 (n,g) Ag-110m -10.300 9.740 -0.030 8.92E+02
GS21-Fe Fe-54 (n,p) Mn-54 -10.300 9.740 -0.030 4.41E+02
GS21-Cu Cu-63 (n,a) Co-60 -10.300 9.740 -0.030 5.20E+00
GS22-Co Co-59 (n,g) Co-60 -10.300 9.740 -23.850 2.98E+02
GS22-Ag Ag-109 (n,g) Ag-110m -10.300 9.740 -23.850 4.21E+02
GS22-Fe Fe-54 (n,p) Mn-54 -10.300 9.740 -23.850 2.19E+02
GS22-Cu Cu-63 (n,a) Co-60 -10.300 9.740 -23.850 2.62E+00
FRDS-A-Co  Co-59 (n,g) Co-60 -10.300 2.250 23.780 5.10E+02
FRDS-A-Ag  Ag-109 (n,g) Ag-110m -10.300 2.250 23.780 1.67E+03
FRDS-A-Np  Np-237 (n,f) Zr-95 -10.300 2.250 23.780 3.16E+04
FRDS-A-Np  Np-237 (n,f) Ru-103 -10.300 2.250 23.780 4.60E+04
FRDS-A-Np  Np-237 (n,f) Ru-106 -10.300 2.250 23.780 2.55E+03
FRDS-A-Np  Np-237 (n,f) Cs-137 -10.300 2.250 23.780 2.76E+02
FRDS-A-Np  Np-237 (n,f) Ce-144 -10.300 2.250 23.780 6.14E+03
FRDS-A-U U-238 (n,f) Zr-95 -10.300 2.250 23.780 5.91E+03
FRDS-A-U U-238 (n,f) Ru-103 -10.300 2.250 23.780 1.02E+04
FRDS-A-U U-238 (n,f) Ru-106 -10.300 2.250 23.780 7.04E+02
FRDS-A-U U-238 (n,f) Cs-137 -10.300 2.250 23.780 5.53E+01
FRDS-A-U U-238 (n,f) Ce-144 -10.300 2.250 23.780 1.59E+03
FRDS-A-Ni Ni-58 (n,p) Co-58 -10.300 2.250 23.780 8.10E+04
FRDS-A-Fe  Fe-54 (n,p) Mn-54 -10.300 .2.250 23.780 1.45E+03
FRDS-A-Ti Ti-46 (n,p) Sc-46 -10.300 2.250 23.780 1.07E+03
FRDS-A-Cu  Cu-63 (n,a) Co-60 -10.300 2.250 23.780 1.68E+01
FRDS-B-Co  Co-59 (n,g) Co-60 -10.300 2.250 -0.030 7.70E+02
FRDS-B-Ag  Ag-109 (n,g) Ag-110m -10.300 2.250 -0.030 2.54E+03
FRDS-B-Np  Np-237 (n,f) Zr-85 -10.300 2.250 -0.030 5.62E+04
FRDS-B-Np  Np-237 (n,f) Ru-103 -10.300 2.250 -0.030 8.12E+04
FRDS-B-Np  Np-237 (n,f) Ru-106 -10.300 2.250 -0.030 4 67E+03
FRDS-B-Np  Np-237 (n,f) Cs-137 -10.300 2.250 -0.030 5.06E+02
FRDS-B-Np  Np-237 (nf) Ce-144 -10.300 2.250 -0.030 1.08E+04
FRDS-B-U U-238 (n,f) Zr-95 -10.300 2.250 -0.030 8.33E+03
FRDS-B-U U-238 (n.f) Ru-103 -10.300 2.250 -0.030 1.43E+04
FRDS-B-U U-238 (n,f) Ru-106 -10.300 2.250 -0.030 9.92E+02
FRDS-B-U U-238 (n,f) Cs-137 -10.300 2.250 -0.030 7.94E+01
FRDS-B-U U-238 (n,f) Ce-144 -10.300 2.250 -0.030 2.16E+03
FRDS-B-Ni Ni-58 (n,p) Co-58 -10.300 2.250 -0.030 1.18E+05
FRDS-B-Fe  Fe-54 (n,p) Mn-54 -10.300 2.250 -0.030 2.08E+03
FRDS-B-Ti Ti-46 (n,p) Sc-46 -10.300 2.250 -0.030 1.54E+03
FRDS-B-Cu  Cu-63 (n,a) Co-60 -10.300 2.250 -0.030 2.42E+01
FRDS-C-Co  Co0-59 (n,g) Co-60 0.000 2.250 -0.030 1.23E+03
FRDS-C-Ag  Ag-109 (n,g) Ag-110m 0.000 2.250 -0.030 4,00E+03
FRDS-C-Np  Np-237 (n,f) Zr-95 0.000 2.250 -0.030 9.90E+04
'FRDS-C-Np  Np-237 (n,f) Ru-103 0.000 2.250 -0.030 1.44E+05
FRDS-C-Np  Np-237 (n,f) Ru-106 0.000 2.250 -0.030 7.87E+03
FRDS-C-Np  Np-237 (n,f) Cs-137 0.000 2.250 -0.030 9.02E+02
FRDS-C-Np  Np-237 (n.f) Ce-144 0.000 2.250 -0.030 2.01E+04
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Table A.1 (continued)

Monitor Reaction Coordinates Activity*

ID X Y Z at EOI'

(cm) (cm) (cm) (Ba/mg)
FRDS-C-U U-238 (n,f) Zr-95 0.000 2.250 -0.030 1.31E+04
FRDS-C-U U-238 (n,f) Ru-103 0.000 2.250 -0.030 2.20E+04
FRDS-C-U U-238 (n,f) Ru-106 0.000 2.250 -0.030 1.51E+03
FRDS-C-U U-238 (n,f) Cs-137 0.000 2.250 -0.030 1.22E+02
FRDS-C-U U-238 (n,f) Ce-144 0.000 2.250 -0.030 3.35E+03
FRDS-C-Ni Ni-58 (n,p) Co-58 0.000 2.250 -0.030 1.79E+05
FRDS-C-Fe  Fe-54 (n,p) Mn-54 0.000 2.250 -0.030 3.15E+03
FRDS-C-Ti Ti-46 (n,p) Sc-46 0.000 2.250 -0.030 2.33E+03
FRDS-C-Cu  Cu-63 (n,a) Co-60 0.000 2.250 -0.030 3.65E+01
FRDS-D-Co  Co0-59 (n,g) Co-60 10.300 2.250 -0.030 1.19E+03
FRDS-D-Ag  Ag-109 (n,g) Ag-110m 10.300 2.250 -0.030 3.93E+03
FRDS-D-Np  Np-237 (n,f) Zr-95 10.300 2.250 -0.030 1.00E+05
FRDS-D-Np  Np-237 (n,f) Ru-103 10.300 2.250 -0.030 1.46E+05
FRDS-D-Np  Np-237 (n,f) Ru-106 10.300 2.250 -0.030 8.06E+03
FRDS-D-Np  Np-237 (n,f) Cs-137 10.300 2.250 -0.030 8.84E+02
FRDS-D-Np  Np-237 (n,f) Ce-144 10.300 2.250 -0.030 1.86E+04
FRDS-D-U U-238 (n,f) Zr-95 10.300 2.250 -0.030 1.36E+04
FRDS-D-U U-238 (n,f) Ru-103 10.300 2.250 -0.030 2.37E+04
FRDS-D-U U-238 (n,f) Ru-106 10.300 2.250 -0.030 1.60E+03
FRDS-D-U U-238 (n,f) Cs-137 10.300 2.250 -0.030 1.28E+02
FRDS-D-U U-238 (n,f) Ce-144 10.300 2.250 -0.030 3.55E+03
FRDS-D-Ni  Ni-58 (n,p) Co-58 10.300 2.250 -0.030 1.92E+05
FRDS-D-Fe Fe-54 (n,p) Mn-54 10.300 2.250 -0.030 3.41E+03
FRDS-D-Ti Ti-46 (n,p) Sc-46 10.300 2.250 -0.030 2.51E+03
FRDS-D-Cu  Cu-63 (n,a) Co-60 10.300 2.250 -0.030 3.90E+01
FRDS-E-Co  Co0-59 (n,g) Co-60 0.000 5.990 -0.030 6.64E+02
FRDS-E-Ag  Ag-109 (n,g) Ag-110m 0.000 5.990 -0.030 2.02E+03
FRDS-E-Np  Np-237 (n,f) Zr-95 0.000 5.990 -0.030 6.11E+04
FRDS-E-Np  Np-237 (n,f) Ru-103 0.000 5.990 -0.030 8.73E+04
FRDS-E-Np  Np-237 (n,f) Ru-106 0.000 5.990 -0.030 4.78E+03
FRDS-E-Np  Np-237 (n,f) Cs-137 0.000 5.990 -0.030 5.39E+02
FRDS-E-Np  Np-237 (n,f) Ce-144 0.000 5.990 -0.030 1.08E+04
FRDS-E-U U-238 (n,f) Zr-95 0.000 5.990 -0.030 6.63E+03
FRDS-E-U U-238 (n,f) Ru-103 0.000 5.990 -0.030 1.17E+04
FRDS-E-U U-238 (n,f) Ru-106 0.000 5.990 -0.030 7.78E+02
FRDS-E-U U-238 (n,f) Cs-137 0.000 5.990 -0.030 6.25E+01
FRDS-E-U U-238 (n,f) Ce-144 0.000 5.990 -0.030 1.69E+03
FRDS-E-Ni Ni-58 (n,p) Co-58 0.000 5.990 -0.030 8.35E+04
FRDS-E-Fe Fe-54 (n,p) Mn-54 0.000 5.990 -0.030 1.44E+03
FRDS-E-Ti Ti-46 (n,p) Sc-46 0.000 5.990 -0.030 1.03E+03
FRDS-E-Cu  Cu-63 (n,a) Co-60 0.000 5.990 -0.030 1.54E+01

*For the Co and Ag monitors, diluted materials in form of Al alloys were used. Co (Al) was with Co content of
0.1% by weight, and Ag (Al) alloy was with Ag content of 0.173% by weight. Activities listed are per milligram of
alloy. The fission product activities in 2’Np and 2**U monitors are given per milligram of ®"Np and ***U,
respectively. Activities of all other monitors are given per milligram of chemically pure target material.

tEOQI = end of irradiation.

**Monitor lost.
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Table A.2. Irradiation history for HSSI 10.0D dosimetry capsule

Beginning End Fraction of
date time date time full power*
Cycle 338B"
02/18/92 16:03 02/18/92 16:23 0.005
02/18/92 16:23 02/19/92 10:51 0.0
02/19/92 10:51 02/28/92 13:05 1.0
02/28/92 13:05 03/17/92 14:46 0.0
Cycle 3398**
03/17/92 14:46 03/18/92 10:05 1.0
03/18/92 10:05 03/18/92 10:25 0.0
03/18/92 10:25 03/26/92 08:49 1.0
03/26/92 08:49 03/31/92 12:16 0.0
Cycle 340A™
03/31/92 12:16 04/07/92 08:45 1.0
04/07/92 08:45 04/07/92 15:47 0.0
04/07/92 15:47 04/08/92 07.55 1.0
04/08/92 07:55 04/08/92 16:47 0.0
04/08/92 16:47 04/09/92 23.45 1.0
04/08/92 23:45 0.0

*Full power is 2 MW.

fCycle 338B effective full-power time: 7.85646 E+5 s.
**Cycle 339B effective full-power time: 7.54980 E+5 s.
TCycle 340A effective full-power time: 7.61700 E+5 s.
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Table A.3. Specific activities of the removable dosimeter tube (RDT) dosimeters

in the HSSI 10.0D experiment at the end of irradiation (EOI)

Reaction Coordinates Specific activity at EOI
X Y ¥4 Cy 338B Cy 339B Cy 340A
{cm)  (em) (cm) (Bg/mg)
RDT1 RDT4 RDT6
Fe-54 (n,p) Mn-54  -17.14 -0.96 24.13 450 423 439
Fe-54 (n,p) Mn-54  -17.14 -0.96 13.97 622 601 606
Fe-54 (n,p) Mn-54  -17.14 -0.96 3.81 723 665 670
Fe-54 (n,p) Mn-54  -17.14 -0.96  -3.81 707 672 658
Fe-54 (n,p) Mn-54  -17.14 -0.96 -13.97 595 556 574
Fe-54 (n,p) Mn-54  -17.14 -0.96 -24.13 386 344 364
Co-59 (n,g) Co-60 -17.14 -0.96 24.13 2060 1880 1980
Co-59 (n,g) Co-60 -17.14 -0.96 1397 3720 3490 3500
Co-59 (n,g) Co-60 -17.14 -0.96 3.81 4180 3890 3980
Co-59 (n,g) Co-60 -17.14 -0.96 -3.81 4110 3890 3970
Co-59 (n,g) Co-60 -17.14 -0.96 -13.97 3420 3260 3280
Co-59 (n,g) Co-60 -17.14 -0.96 -24.13 2220 2070 2140
RDT2 RDT3 RDTS
Fe-54 (n,p) Mn-54 17.14 -0.96 24.13 856 983 1100
Fe-54 (n,p) Mn-54 17.14 -0.96 13.97 1250 1410 1600
Fe-54 (n,p) Mn-54 17.14 -0.96 3.81 1410 1560 1810
Fe-54 (n,p) Mn-54 17.14 -0.96 -3.81 1390 1540 1780
Fe-54 (n,p) Mn-54 17.14 -0.96 -13.97 1180 1340 1550
Fe-54 (n,p) Mn-54 17.14 -0.96 -24.13 753 851 975
Co-59 (n,g) Co-60 17.14 -0.96 24.13 2620 2860 3060
Co-59 (n,g) Co-60 1714 -0.96 13.97 4740 5070 5580
Co-59 (n,g) Co-60 17.14 -0.96 3.81 5510 5990 6570
Co-59 (n,g) Co-60 17.14 -0.96 -3.81 5480 5960 6660
Co-59 (n,g) Co-60 17.14 -0.96 -13.97 4630 4960 5540
Co-59 (n,g) Co-60 17.14 -0.96 -24.13 2830 3170 3310
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Table A.4. Cycle-to-cycle comparison of specific activities of the removable dosimeter
tube (RDT) dosimeters in the HSSI 10.0D experiment at the end of irradiation (EOI)
Reaction Coordinates Normalized specific activity at EOI*

X Y z Cy 338B Cy 3398 Cy 340A
(cm) (cm) (cm)

RDT1 RDT4 RDT6

Fe-54 (n,p) Mn-54 471 096 2413 1.00 0.94 0.98
Fe-54 (n,p) Mn-54 471 096 13.97 1.00 0.97 0.97
Fe-54 (n,p) Mn-54 171 096 381 1.00 0.92 0.93
Fe-54 (n,p) Mn-54 171 096 -3.81 1.00 0.95 0.93
Fe-54 (n,p) Mn-54 471 096 -13.97 1.00 0.93 0.96
Fe-54 (n,p) Mn-54 171 -096 -24.13 1.00 0.89 0.94

Co-59 (n,g) Co-60 474 096 2413 1.00 0.91 0.96
Co-59 (n,g) Co-60 471 -096 1397 1.00 0.94 0.94
Co-59 (n,g) Co-60 171 -096  3.81 1.00 0.93 0.95
Co-59 (n,g) Co-60 171 -096  -3.81 1.00 0.95 0.97
Co-59 (n,g) Co-60 1471 096 -13.97 1.00 0.95 0.96
Co-59 (n,g) Co-60 474 096 -24.13 1.00 0.93 0.96

RDT2 RDT3 RDTS5

Fe-54 (n,p) Mn-54 1714 -096 24.13 1.00 1.15 1.29
Fe-54 (n,p) Mn-54 1714 096 13.97 1.00 1.13 1.28
Fe-54 (n,p) Mn-54 1714 -096  3.81 1.00 1.1 1.28.
Fe-54 (n,p) Mn-54 1714 -096 -3.81 1.00 1.11 1.28
Fe-54 (n,p) Mn-54 1714 -0.96 -13.97 1.00 1.14 1.31
Fe-54 (n,p) Mn-54 1714 -0.96 -24.13 1.00 1.13 1.29

Co-59 (n,g) Co-60 1714 -0.96 24.13 1.00 1.09 117
Co-59 (n,g) Co-60 1714 -096 13.97 1.00 1.07 1.18
Co-59 (n,g) Co-60 1714 -0.96 3.81 1.00 1.09 1.19
Co-59 (n,g) Co-60 1714 -096  -3.81 1.00 1.09 1.22
Co-59 (ng)Co-60 - 17.14 -096 -13.97 1.00 1.07 1.20
Co-59 (n,g) Co-60 17.14 -0.96 -24.13 1.00 1.12 147

*At each location and for each reaction, the specific activities are divided by the specific activity in cycle 338B.

NUREG/CR-6601
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Figure A.1. Measured specific activities of the RDT dosimetry for the cycle 338B vs Z coordinate for
(top) iron gradient wires and (bottom) cobalt gradient wires.
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Figure A.2. Measured specific activities of the RDT dosimetry for the cycle 339B vs Z coordinate for
(top) iron gradient wires and (bottom) cobalt gradient wires.
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Figure A.3. Measured specific activities of the RDT dosimetry for the cycle 340A vs Z coordinate for
(top) iron gradient wires and (bottom) cobalt gradient wires.
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Figure A.4. Normalized measured specific activities of the RDT dosimetry for the cycle 338B vs 2
coordinate for (top) iron gradient wires and (bottom) cobalt gradient wires. Normalization is
to the maximum value of 1.0 for each reaction and each RDT.
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Figure A.5. Normalized measured specific activities of the RDT dosimetry for the cycle 339B vs Z
coordinate for (top) iron gradient wires and (bottom) cobalt gradient wires. Values are
normalized to the maximum value of 1.0 for each reaction and each RDT.
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Figure A.6. Normalized measured specific activities of the RDT dosimetry for the cycle 340A vs Z
coordinate for (top) iron gradient wires and (bottom) cobalt gradient wires. Values are
normalized to the maximum value of 1.0 for each reaction and each RDT.
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‘Table A.5. Comparison of the adjusted fast fluence rates, F ; yovs
with values obtained from three-dimensional (3-D) fit. Adjusted flux

values are averages of the cycles 338B, 339B, and 340A

Location Coordinates Fes1mev Difference
X Y 4 Adjusted 3-D fitted

(cm) (cm) (cm) (cm?Zs™) (cmZs™) (%)
P23 -10.30 225 23.78 5.017E+11 4.921E+11 1.9
P2 0.00 2.25 23.78 7.866E+11 7.894E+11 -0.4
P4 10.30 225 .23.78 7.862E+11 7.870E+11 -0.1
P11 -10.30 5.99 23.78 2.689E+11 2.598E+11 3.4
P9 0.00 5.99 23.78 4.250E+11 4.168E+11 1.9
P6 10.30 5.99 23.78 4.044E+11 4.155E+11 2.7
P20 -10.30 9.74 23.78 1.392E+11 1.369E+11 1.6
P17 0.00 9.74 23.78 2.195E+11 2.197E+11 -0.1
P14 10.30 9.74 23.78 2.060E+11 2.190E+11 -6.3
P24 -10.30 2.25 -0.03 7.975E+11 8.142E+11 -2.1
P25 0.00 2.25 -0.03 1.295E+12 1.306E+12 -0.9
P26 10.30 2.25 -0.03 1.320E+12 1.302E+12 1.3
P12 -10.30 5.99 -0.03 4.391E+11 4.299E+11 21
P27 0.00 5.99 -0.03 7.084E+11 6.897E+11 26
pP7 10.30 5.99 -0.03 6.780E+11 6.876E+11 -1.4
P21 -10.30 9.74 -0.03 2.298E+11 2.266E+11 1.4
P18 0.00 9.74 -0.03 3.678E+11 3.636E+11 1.2
P15 10.30 9.74 -0.03 3.453E+11 3.624E+11 -4.9
P1 -10.30 2.25 -23.85 3.710E+11 3.705E+11 0.1
P3 0.00 2.25 -23.85 5.885E+11 5.944E+11 -1.0
P5 10.30 2.25 -23.85 5.933E+11 5.926E+11 0.1
P13 -10.30 5.99 -23.85 2.024E+11 1.956E+11 3.3
P10 0.00 5.99 -23.85 3.229E+11 3.138E+11 238
P8 10.30 5.99 -23.85 3.100E+11 3.129E+11 -0.9
P22 -10.30 9.74 -23.85 1.060E+11 1.031E+11 27
P19 0.00 9.74 -23.85 1.689E+11 1.654E+11 2.1
P16 10.30 9.74 -23.85 1.587E+11 1.649E+11 -3.9

Note: average deviation between adjusted and fitted value is 2.0%; maximum deviation observed (at P14) is —6.3%.
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Table A.6. Comparison of the adjusted fast fluence rates, F, ;4 gey» With
values obtained from three-dimensional (3-D) fit. Adjusted flux
values are averages of the cycles 338B, 339B, and 340A

Coordinates

X Y y4
(cm) (cm) (cm)

Difference

Location

FE > 0.1 MeV

Adjusted
(cm3s™)

3-D fitted
(cm?s™) (%)

P16

-10.30

0.00
10.30
-10.30
0.00
10.30

-10.30

0.00
10.30

-10.30
0.00
10.30
-10.30
0.00
10.30
-10.30
0.00
10.30

-10.30
0.00
10.30
-10.30
0.00
10.30
-10.30
0.00
10.30

2.25

2.25
225
5.99
5.99
5.99
9.74
9.74
9.74

2.25
225
225
5.99
5.99
5.99
9.74
9.74
9.74

2.25
2.25
2.25
5.99
5.99
5.99
9.74
9.74
9.74

23.78

23.78
23.78
23.78
23.78
23.78
23.78
23.78
23.78

-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03

-23.85
-23.85
-23.85
-23.85
-23.85
-23.85
-23.85
-23.85
-23.85

1.254E+12

2.027E+12
1.885E+12
8.018E+11
1.315E+12
1.124E+12
4.734E+11
7.770E+11
6.372E+11

2.089E+12
3.483E+12
3.297E+12
1.378E+12
2.302E+12
1.981E+12
8.248E+11
1.371E+12
1.126E+12

9.5656E+11
1.559E+12
1.461E+12
6.202E+11
1.027E+12
8.852E+11
3.707E+11
6.142E+11
5.047E+11

1.240E+12

2.052E+12
1.864E+12
7.664E+11
1.268E+12
1.152E+12
4.731E+11
7.828E+11
7.113E+11

2.148E+12
3.553E+12
3.229E+12
1.327E+12
2.196E+12
1.996E+12
8.195E+11
1.356E+12
1.232E+12

9.610E+11
1.690E+12
1.445E+12
5.940E+11
9.828E+11
8.930E+11
3.667E+11
6.067E+11
5.513E+11

11

1.2
1.1
44
3.6

25
0.1

-0.7

-11.6

-2.8
-2.0
21
3.7

Note: average deviation between adjusted and fitted value is 2.9%; maximum deviation observed

(at P14) is ~11.6%.
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Table A.7. Comparison of the adjusted displacement-per-atom (dpa) rates
with values obtained from three-dimensional (3-D) fit. Adjusted dpa
rates are averages of the cycles 338B, 339B, and 340A

Location Coordinates dpa rate Difference
X Y Z Adjusted 3-D fitted

em)  (em)  (cm) (s (s (%)
P23 -10.30 225 23.78 7.410E-10 7.298E-10 1.5
P2 0.00 225 23.78 1.174E-09 1.180E-09 -0.6
P4 10.30 225 23.78 1.143E-09 1.136E-09 0.6
P11 -10.30 599 23.78 4.244E-10 4.111E-10 3.1
P9 0.00 599 23.78 6.797E-10 6.650E-10 2.2
P6 10.30 599 23.78 6.163E-10 6.398E-10 -3.8
P20 -10.30 9.74 23.78 2.340E-10 2.312E-10 1.2
P17 0.00 9.74 23.78 3.746E-10 3.740E-10 0.2
P14 10.30 9.74 23.78 3.304E-10 3.599E-10 -8.9
P24 -10.30 225 -0.03 1.187E-09 1.214E-09 2.2
P25 0.00 225 -0.03 1.936E-09 1.963E-09 -1.4
P26 10.30 225 -0.03 1.921E-09 1.889E-09 1.7
P12 -10.30 589  -0.03 7.002E-10 6.837E-10 2.4
P27 0.00 599 -0.03 1.142E-09 1.106E-09 3.2
P7 10.30 599 -0.03 1.046E-09 1.064E-09 1.7
P21 -10.30 9.74 -0.03 3.917E-10 3.845E-10 1.8
P18 0.00 9.74 -0.03 6.363E-10 6.220E-10 2.3
P15 10.30 9.74 -0.03 5.616E-10 5.984E-10 -6.6
P1 -10.30 225 -23.85 5.499E-10 5.508E-10 -0.2
P3 0.00 225 -23.85 8.791E-10 8.908E-10 -1.3
P5 10.30 225 -23.85 8.622E-10 8.571E-10 0.6
P13 -10.30 5,99 -23.85 3.201E-10 3.103E-10 3.1
P10 0.00 599 -2385 5.182E-10 5.018E-10 3.2
P8 10.30 5.99 -23.85 4.747E-10 4.828E-10 1.7
P22 -10.30 9.74 -23.85 1.791E-10 1.745E-10 2.6
P19 0.00 9.74 -23.85 2.898E-10 2.823E-10 26
P16 10.30 9.74 -23.85 2.561E-10 2.716E-10 -6.0

Note: average deviation between adjusted and fitted value is 2.5%; maximum deviation observed
(at P14) is —8.9%.
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