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Background and Motivation

Active Network – the MOF is designed to play an active role in the PV energy 
conversion process as a donor, acceptor, charge transport material.

Passive Scaffolds ‐ the MOF serves as an inert structural scaffold, ordering 
donor/acceptor materials.
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Metal Organic Frameworks (MOFs) are a class 
of highly ordered, self assembled, 
supramolecular materials.

MOFs are created when transition‐metal nodes 
are linked together by synthetically‐tunable 
organic linkers and pillars to form nanoporous
crystalline structures.

 By varying the composition of the MOF building 
blocks, it is possible to tune the chemical, 
structural, optical, and electronic properties of 
these versatile materials with sub‐nanoscale 
precision.

Schematic depiction of a crystalline 
MOF structure comprising metal 
nodes (M), linkers (L1) and pillars (L2).  
The nanoporous character of the MOF 
allows incorporation of molecular 
guests, organized on the nanoscale.   

We are exploring the application of tailored MOFs to direct ordered 
nanoscale interactions between donors and acceptors in hybrid 
organic photovoltaics (HOPV).

MOFs promise highly ordered donor‐acceptor interactions on length 
scales smaller than exciton diffusion lengths, potentially improving 
carrier recombination and charge transport efficiencies.

 Potential tunability of MOF optoelectronic properties may also lead to 
desirable optical absorption across a broad excitation spectrum.

Density Functional Theory Guides MOF‐PV Strategy

http://yaghi.berkeley.edu/research‐MOF.html http://www.cchem.berkeley.edu/molsim/teaching/fall2011/CCS/Group7/structure.htm

Passive MOFs offer promise coordinating interactions 
between donors (e.g., thiophenes) or acceptors (e.g., PCBM).

(B6.91:  “Nanoscale Phase Segregation of a Molecular System using Metal‐
Organic Frameworks for Energy Transfer”) 

Here, though, we focus on integrating Active Network MOFs 
into an inverted device configuration, wiring MOFs directly to 
electron transport layers (e.g., TiO2).

2D porphyrin sheet commonly 
found in PPF series

Side view of PPF‐18
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Consider Pillared Porphyrin Frameworks (PPFs) 
In PPF MOFs, transition metal cations coordinate the assembly of 
photoactive metalloporphyrins into sheets, stacked atop 
molecular pillars.  

Density Functional Theory (DFT) simulations show that by varying the composition of PPF 
molecular building blocks, it is possible to tune the electronic band structure of these 
MOFs.  
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Integrating PPF MOFs into PV Device Structures

Varying transition metal ions Varying organic pillars
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Challenge: Can we develop the 
chemistry to integrate these versatile 
materials into HOPV devices? 

Direct Nucleation of PPF MOFs onto an ETL would provide an excellent interface for charge transfer.  Nucleation and 
growth of PPF‐5 crystals onto the electron transport layer. 

A TiOx electron transfer layer was deposited on test substrates with Atomic Layer Deposition and annealed at 300oC.

Substrates were then incubated in aqueous 3,4‐dihydroxybenzoic acid or dopamine to provide acid or amine 
functionalization.
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TiOx was deposited with Atomic Layer Deposition and functionalized with. Acid functionality 
was found to better promote the nucleation and growth of PPF‐5 compared to bare and 
dopamine‐modified TiOx surfaces. 
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Photoactive PPF‐5 
MOF incorporated 
into active layer of 
“inverted” HOPV 
device.

Grazing Incidence XRD shows 
growth of PPF‐5 with preferential 
(001) orientation (red).
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Ongoing and Future Work
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Continue exploring the growth of new PPF materials, rationally designed for 
optimal molecular ordering and charge transfer.

Explore alternative methods for MOF‐thin film growth (e.g., layer by layer).

Photovoltaic testing of MOF‐integrated devices.
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