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Module Learning Goals m

Laboratories

In this module you will learn

= Why you might want to tune models to match data via
calibration (parameter estimation)

= How to formulate calibration problems and present them to
Dakota

= What Dakota methods can help you achieve calibration goals

Exercise: create a Dakota calibration study and try to infer
unknown parameters for a synthetic data set.
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Calibration: Fitting Models to Data ml

Laboratories

= Use data to improve characterization of input parameter values, by
maximizing agreement between simulation output and experiment target

= Infer unknown conditions, source terms, or properties
= Tune models to match specific scenarios
= Make them more robust to predict a range of outcomes

simulation output s(t; 6)

target

temperature

time

= Also known as parameter estimation/identification, inverse modeling
= (Can also calibrate one model to another (typically higher fidelity) model

» Calibration is not validation! Separate hold-out data must be used to
assess whether a calibrated model is valid.
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Classes of Model Calibration

Sandia
m National

Laboratories

Goal: maximize agreement between observations y; and corresponding
simulation output s,(0); typically a nonlinear, implicit function of 6
(parameterized simulation)

Deterministic calibration: seek one or more sets of parameter
values that best match the data y, typically in the two-norm:

n n

min f(0) = SSE(8) = > [(s,(0)— 1" = 2 [1(®)

= Least-squares: initial iterate 6,, nonlinear optimization, updated values 0

Statistical calibration: seek a statistical characterization of parameters

most consistent with the data |
) 0

= Bayesian: prior distribution, statistical inference (MCMC), posterior
distribution
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Example: Parameter Estimation for a
Material Plasticity Model )

National
Laboratories

Calibrate parameters to match . .
experimental stress observations f~yields rate dependence (fit)

Y — the yield stress (chosen)

n — exponent in flow rule (fit)

H — hardening in evolution of « (fit)
R4 — recovery in evolution of « (fit)

1700

1600 I o——o

1500 -

4400 f 4.52 x 104
& Y 1325 MPa
% O stress - experiment (MPa) n 0 386
@1300 —STRESS_YY (BCJ_MEM) H 1.10 x 105 MPa
H R, 389
51200
NOTE: Experimental data taken
1100 from a representative test,
Courtesy Jay Foulk ph13-8-h950-test-3
0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019
true strain (m/m)
Flow rule concentrating the effective stress evolution of isotropic hardening
. . . o . n . L .

"Large values of f make the formulation rate independent. | did not need to fit f.
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Specitying Calibration Parameters ml

Laboratories

= Deterministic calibration Cantilever example:
problems are presented to
Dakota using design variables variables
(same as optimization) active design

continuous_design 3
upper_bounds 3.1e7 10 10

initial point 2.9e7 4 4
= Bounds for the search are typical, lower bounds 2.7¢7 1 1

not required for all methods descriptors 'E' 'w' 't

= |nitial point starts the solve for
local methods

continuous_state 3
initial state 40000 500 1000
descriptors 'R' 'X' 'Y'

= See advanced slides for Bayesian
methods, which use uncertain
variables instead of design
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Defining Calibration Responses oy

Laboratories

n

min /(0) = SSE@®) = Y [6,(0) 3, = Y[ (O)F

i=l1 i=1

Three main options:

1. Interface returns differences (residuals) responses
calibration_terms = 2

ri(0) = s,(6)-y;to Dakota ,
descriptors
'stress_diff' 'displ diff’

2. Interface returns simulation outputs responses
s,(0) to Dakota; specify data file et
o descriptors
containing y; values 'sim_stress' 'sim_displ’
calibration_data file 'myobs.dat’
num_experiments = 3
3. Interface returns composite objective
responses
f(0); gives advanced users greater objective_functions = 1
descriptors 'f_SSE'

control

Local nonlinear least squares methods require set of residuals (Option 1 or 2)
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Dakota Calibration Methods

) jeus
Deterministic Statistical
=  For local parameter value = Calibrate distribution parameters
improvement; reliable simulation to match data: any of the above
derivatives: specialized local solvers with a nested model
least-squares solvers = Bayesian inference: Markov Chain
= Local search with unreliable Monte Carlo (QUESO)
derivatives: pattern search
= Global best parameter set: global global
optimizers such as DIRECT or (. ) extrema max
genetic algorithms (can be costly) 1 ‘\;

—

= QOther advanced optimization
approaches

V\\Io{‘:al

min extrema

X4
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Classes of Methods m,

Laboratories

Gradient Descent Derivative-Free Local

* Looks for improvement based * Sampling with bias/rules
on derivative toward improvement

* Requires analytic or numerical ¢ Requires only function values
derivatives * Good for noisy, unreliable or

* Efficient/scalable for smooth expensive derivatives
problems « Converges to local extreme

* Converges to local extreme

rosenbrock

® jteration history

2 -

Derivative-Free Global

* Broad exploration with
selective exploitation

* Requires only function values

* Typically computationally
intensive

* Converges to global extreme
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More About Local Calibration

m National

Laboratories

Local, derivative-based least squares solvers are similar to Newton methods for
general nonlinear programming

Local least squares solvers take advantage of the squared residual formulation

5 = f0)= @) @)= 2 [50) - [50) -]

T ai 2 T < 2
Vi (0)=J(0) 0); J,,:a—gj Vf(0)=J J@@(e)v ()

and either ignore the circled Hessian term (as residuals should be small as the
algorithm converges), or successively approximate it during optimization

Dakota’s NL2SOL local calibration algorithm uses a quasi-Newton update scheme to
approximate the Hessian, and is often more robust than other solvers when the
residuals are not small.

These methods can be very efficient, converging in a few function evaluations
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Exercise: Find Beam Properties m

Laboratories

= The directory ~/exercises/calibration contains several data files with
observations of mass, displacement, and stress from some cantilever
beam experiments

= Create a Dakota input file to perform calibration (e.g., with NL2SOL or
OPT++ Gauss-Newton) to determine the properties of the beam used in
the experiment

= How do your parameter values compare to your neighbors?
=  What do you observe if you calibrate with more and more data?

Hints:
= Start from a previous cantilever beam study and/or example input file

= See the reference manual sections on:
= Continuous design variables
= Responses: gradients, data (file and num_experiments), weights
= Scaling (method, variables, responses)
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Exercise: Calibrate Cantilever
to Experimental Data ) 5

Laboratories
= (Calibrate design variables E, w, t to data from all 3 _

responses area 7.5 7.772
= X, Y, Rfixed (state) at nominal values stress 2667 2658
= Use NL2SOL or OPT++ Gauss-Newton displacement 0.309 0.320

= Key Dakota specs: / cantilever clean.dat

= calibration_terms =3 cantilever_witherror.dat
®" no constraints

= |east_squares_datafile

» For least-squares methods, application normally
must return residuals r(x)= s,(x)— d; to Dakota

* Here we return the usual area, stress,
displacement and specify a datafile and Dakota
computes the residuals
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Potential Solution:
Cantilever Least-Squares

m Sandia

National
Laboratories

# Calibrate to area, stress, and displacement data generated with
# E=2.85e7, w=2.5, t =3.0

method
nl2sol
convergence_tolerance = 1.0e-6
variables
continuous_design = 3
upper_bounds 3.1le7 10.0 10.0
initial_point 2.9e7 4.0 4.0
lower_bounds 2.7e7 1.0 1.0
descriptors "E' 'w' 't
# Fix at nominal
continuous_state = 3
initial_state 40000 500 1000
descriptors 'R' 'X' 'Y’

interface
direct

analysis driver = 'mod_cantilever’

responses
calibration_terms = 3
# calibration_data_file = 'dakota_cantilever_clean.dat'
calibration_data_file = 'dakota_cantilever_witherror.dat’
descriptors = 'area' 'stress' 'displacement'’

analytic_gradients
no_hessians

Confidence Intervals
approximated by
calculating the variance
of the parameter vector
as diagonal elements of:

& (J'J)"

CIs without error:

E: [ 2.850e+07, 2.850e+07 ]
w: [ 2.500e+00, 2.500e+00 ]
t: [ 3.000e+00, 3.000e+00 ]

CIs with error:

E: [ 1.992e+07, 4.190e+07 ]
w: [ 1.962e+00, 3.918e+00 ]
t: [ 1.954e+00, 3.309e+00 ]
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Parameter Identifiability ml

Laboratories

= Looking at the cantilever beam equations, which parameters
would you expect to be able to estimate given data on which
responses?

= How would you determine this for an implicit funciton (black-
box simulation)?

L
sz*Wt*123 . 4_L3 Y 2 X 2
¢ — 890y, 600 _Ewt\l(t_z) I(Wz)
wt 2 w2t
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Guide to Calibration Methods ) i,
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Continuous
Variables
Categorical/
Discrete
Variables
Bound
Constraints
General
Constraints

Dakota method names

el-LIELISEE- I nl2sol X X

Local (Smooth
Response) nlssol_sqp, optpp_g_newton X X .

Gradient-Based hybrid strategy, multi_start strategy
Global (Smooth X X X

Response)

Derivative-Free efficient global, surrogate based global
Global

(Nonsmooth

Response)

See Usage Guidelines in Dakota User’s Manual.
Also, can apply any optimizer when doing derivative-
free local or global calibration.
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Calibration References m
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G. A. F. Seber and C. J. Wilde, “Nonlinear Regression”, John Wiley and Sons, Inc.,
Hoboken, New Jersey, 2003.

= M. C. Hilland C. R. Tiedeman, “Effective Groundwater Model Calibration: With
Analysis of Data, Sensitivities, Predictions, and Uncertainty”, John Wiley and Sons,
Inc., Hoboken, New Jersey, 2007.

= R.C. Aster, B. Borchers, and C. H. Thurber, “Parameter Estimation and Inverse
Problems”, Elsevier, Inc., Oxford, UK, 2005.

= Dakota User’s Manual
= Nonlinear Least Squares Capabilities
= Surrogate-Based Minimization

= Dakota Reference Manual
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Guide to Optimization Methods m@

Laboratories

Continuous
Variables
Categorical/
Discrete
Variables
Bound
Constraints
Constraints

Dakota method names

optpp_cg X
Gradient-Based dot _bfgs, dot frcg, conmin frcg X X

ELEINCIPCEIUM npsol sgp, nlpgl sqp, dot mmfd, dot slp, dot sgp,
Response) conmin mfd, optpp newton, optpp g newton,

optpp_fd newton, weighted sums (multiobjective), X X X
pareto_set strategy (multiobjective)
Gradient-Based hybrid strategy, multi_start strategy
Global (Smooth X X X
Response)
e optpp_pds
Derivative-Free =5 = =

Local
(Nonsmooth
Response)

asynch pattern search, coliny cobyla,
coliny pattern search, coliny solis wets, X X X
surrogate_based local

ncsu _direct

N X X
Derivative-Free
Global coliny direct, efficient global, x
(Nonsmooth surrogate based global X g
Response) - -
coliny ea, soga, moga (multiobjective) X X X X
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Optimization References m

Laboratories

J. Nocedal and S. J. Wright, “Numerical Optimization”, Second Edition,
Springer Science and Business Media, LLC, New York, New York, 2006.

= S.S. Rao, “Engineering Optimization: Theory and Practice”, Fourth Edition,
John Wiley and Sons, Inc., Hoboken, New Jersey, 20009.

Dakota User’s Manual
=  Optimization Capabilities
= Surrogate-Based Minimization
= Advanced Strategies
= Advanced Model Recursions: Optimization Under Uncertainty

Dakota Reference Manual
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APPLICATION-SPECIFIC EXAMPLE
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BACKUP SLIDES
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Local Least-squares Methods

Take Advantage of Special Structure M ;ﬁg&;g‘:a..
L . 1 T 1 T
Alternate objective formulation: f(x) = Er(x) r(x) = 5 [S(x) — d] [S(x) — d]
Derivative formulations:
or. L
VI (x)=J(x)" r(x); J, = 6xl Vifx)=J"J+ Zrl.(x)Vzrl. (x)
J i=1

Methods vary in second derivative approximation:
Gauss-Newton: J(x)" J(x)

Levenberg-Marquardt: J(x)" J(x)+ pl, with p >0

NL2SOL : J(x)" J(x)+S,

with S =0 or S = Quasi-Newton approximation to » f.(x)V’f.(x)
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