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Module Learning Goals

In this module you will learn

 Why you might want to tune models to match data via 
calibration (parameter estimation)

 How to formulate calibration problems and present them to 
Dakota

 What Dakota methods can help you achieve calibration goals

Exercise: create a Dakota calibration study and try to infer 
unknown parameters for a synthetic data set.
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Calibration: Fitting Models to Data

 Use data to improve characterization of input parameter values, by 
maximizing agreement between simulation output and experiment target

 Infer unknown conditions, source terms, or properties

 Tune models to match specific scenarios

 Make them more robust to predict a range of outcomes

 Also known as parameter estimation/identification, inverse modeling

 Can also calibrate one model to another (typically higher fidelity) model

 Calibration is not validation!  Separate hold-out data must be used to 
assess whether a calibrated model is valid.
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Classes of Model Calibration

 Goal: maximize agreement between observations yi and corresponding 
simulation output si(θ); typically a nonlinear, implicit function of θ
(parameterized simulation)

 Deterministic calibration: seek one or more sets of parameter 
values that best match the data y, typically in the two-norm:

 Least-squares: initial iterate θ0, nonlinear optimization, updated values θ

 Statistical calibration: seek a statistical characterization of parameters 
most consistent with the data

 Bayesian: prior distribution, statistical inference (MCMC), posterior 
distribution
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Example: Parameter Estimation for a
Material Plasticity Model

Flow rule concentrating the effective stress evolution of isotropic hardening

f – yields rate dependence (fit)
Y – the yield stress (chosen)
n – exponent in flow rule (fit) 
H – hardening in evolution of  (fit)
Rd – recovery in evolution of  (fit)

f 4.52 x 104

Y 1325 MPa
n 0.386
H 1.10 x 105 MPa
Rd 389

NOTE: Experimental data taken 
from a representative test,
ph13-8-h950-test-3

*Large values of f make the formulation rate independent. I did not need to fit f.

Courtesy Jay Foulk

Calibrate parameters to match 
experimental stress observations
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Specifying Calibration Parameters

 Deterministic calibration 
problems are presented to 
Dakota using design variables 
(same as optimization)

 Initial point starts the solve for 
local methods

 Bounds for the search are typical, 
not required for all methods

 See advanced slides for Bayesian 
methods, which use uncertain 
variables instead of design

Cantilever example:

variables

active design

continuous_design 3

upper_bounds 3.1e7 10 10

initial_point 2.9e7 4 4

lower_bounds 2.7e7 1 1

descriptors 'E' 'w' 't'

continuous_state 3

initial_state 40000 500 1000

descriptors 'R' 'X' 'Y'

6

http://www.sandia.gov/
http://dakota.sandia.gov/


Defining Calibration Responses

Three main options:

1. Interface returns differences (residuals) 
ri(θ)	=	si(θ)-yi to Dakota

2. Interface returns simulation outputs 
si(θ) to Dakota; specify data file 
containing yi values

3. Interface returns composite objective 
f(θ); gives advanced users greater 
control
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responses
calibration_terms = 2
descriptors  

'sim_stress' 'sim_displ'
calibration_data_file 'myobs.dat'

num_experiments = 3

responses
calibration_terms = 2
descriptors  

'stress_diff' 'displ_diff'

responses
objective_functions = 1
descriptors  'f_SSE'

Local nonlinear least squares methods require set of residuals (Option 1 or 2)
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Dakota Calibration Methods

Deterministic
 For local parameter value 

improvement; reliable simulation 
derivatives: specialized local 
least-squares solvers

 Local search with unreliable 
derivatives: pattern search

 Global best parameter set: global 
optimizers such as DiRECT or 
genetic algorithms (can be costly)

 Other advanced optimization 
approaches

Statistical
 Calibrate distribution parameters 

to match data: any of the above 
solvers with a nested model

 Bayesian inference: Markov Chain 
Monte Carlo (QUESO)
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Gradient Descent

• Looks for improvement based 
on derivative

• Requires analytic or numerical 
derivatives

• Efficient/scalable for smooth 
problems

• Converges to local extreme

Derivative-Free Local 

• Sampling with bias/rules 
toward improvement

• Requires only function values

• Good for noisy, unreliable or 
expensive derivatives

• Converges to local extreme

Derivative-Free Global

• Broad exploration with 
selective exploitation

• Requires only function values

• Typically computationally 
intensive

• Converges to global extreme

Classes of Methods
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More About Local Calibration
 Local, derivative-based least squares solvers are similar to Newton methods for 

general nonlinear programming

 Local least squares solvers take advantage of the squared residual formulation

and either ignore the circled Hessian term (as residuals should be small as the 
algorithm converges), or successively approximate it during optimization

 Dakota’s NL2SOL local calibration algorithm uses a quasi-Newton update scheme to 
approximate the Hessian, and is often more robust than other solvers when the 
residuals are not small.

 These methods can be very efficient, converging in a few function evaluations

   ysysrrf
SSE TT  )()(

2

1
)()(

2

1
)(

2


j

i
ij

T r
JrJf







 ;)()()( )()()( 2

1

2  i

n

i
i

T rrJJf  


http://www.sandia.gov/
http://dakota.sandia.gov/


Exercise: Find Beam Properties

 The directory ~/exercises/calibration contains several data files with 
observations of mass, displacement, and stress from some cantilever 
beam experiments

 Create a Dakota input file to perform calibration (e.g., with NL2SOL or 
OPT++ Gauss-Newton) to determine the properties of the beam used in 
the experiment

 How do your parameter values compare to your neighbors?

 What do you observe if you calibrate with more and more data?

Hints:

 Start from a previous cantilever beam study and/or example input file

 See the reference manual sections on:
 Continuous design variables

 Responses: gradients, data (file and num_experiments), weights

 Scaling (method, variables, responses)
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Exercise: Calibrate Cantilever 
to Experimental Data

 Calibrate design variables E, w, t to data from all 3 
responses

 X, Y, R fixed (state) at nominal values

 Use NL2SOL or OPT++ Gauss-Newton

 Key Dakota specs:

 calibration_terms = 3

 no constraints

 least_squares_datafile

DATA clean with 
error

area 7.5 7.772

stress 2667 2658

displacement 0.309 0.320

cantilever_clean.dat
cantilever_witherror.dat

• For least-squares methods, application normally 
must return residuals ri(x)= si(x)– di to Dakota

• Here we return the usual area, stress, 
displacement and specify a datafile and Dakota 
computes the residuals
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Potential Solution: 
Cantilever Least-Squares
# Calibrate to area, stress, and displacement data generated with 
# E = 2.85e7, w = 2.5, t = 3.0

method
nl2sol
convergence_tolerance = 1.0e-6

variables
continuous_design = 3
upper_bounds 3.1e7 10.0 10.0
initial_point 2.9e7 4.0  4.0
lower_bounds 2.7e7 1.0  1.0
descriptors   'E' 'w' 't'

# Fix at nominal
continuous_state = 3
initial_state 40000 500 1000
descriptors 'R' 'X' 'Y'

interface
direct
analysis_driver = 'mod_cantilever'

responses
calibration_terms = 3

#    calibration_data_file = 'dakota_cantilever_clean.dat'
calibration_data_file = 'dakota_cantilever_witherror.dat'
descriptors = 'area' 'stress' 'displacement'

analytic_gradients
no_hessians

CIs with error:
E: [ 1.992e+07, 4.190e+07 ]
w: [ 1.962e+00, 3.918e+00 ]
t: [ 1.954e+00, 3.309e+00 ]

CIs without error:
E: [ 2.850e+07, 2.850e+07 ]
w: [ 2.500e+00, 2.500e+00 ]
t: [ 3.000e+00, 3.000e+00 ]

Confidence Intervals 
approximated by 
calculating the variance 
of the parameter vector
as diagonal elements of: 
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Parameter Identifiability

 Looking at the cantilever beam equations, which parameters 
would you expect to be able to estimate given data on which 
responses?

 How would you determine this for an implicit funciton (black-
box simulation)?
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Gradient-Based
Local (Smooth 
Response)

nl2sol x x

nlssol_sqp, optpp_g_newton x x x

Gradient-Based
Global (Smooth 
Response)

hybrid strategy, multi_start strategy

x x x

Derivative-Free
Global 
(Nonsmooth
Response)

efficient_global, surrogate_based_global

x x x

Guide to Calibration Methods

See Usage Guidelines in Dakota User’s Manual.
Also, can apply any optimizer when doing derivative-

free local or global calibration.
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Calibration References

 G. A. F. Seber and C. J. Wilde, “Nonlinear Regression”, John Wiley and Sons, Inc., 
Hoboken, New Jersey, 2003.

 M. C. Hill and C. R. Tiedeman, “Effective Groundwater Model Calibration: With 
Analysis of Data, Sensitivities, Predictions, and Uncertainty”, John Wiley and Sons, 
Inc., Hoboken, New Jersey, 2007.

 R. C. Aster, B. Borchers, and C. H. Thurber, “Parameter Estimation and Inverse 
Problems”, Elsevier, Inc., Oxford, UK, 2005.

 Dakota User’s Manual

 Nonlinear Least Squares Capabilities

 Surrogate-Based Minimization

 Dakota Reference Manual
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Guide to Optimization Methods
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Gradient-Based
Local (Smooth 
Response)

optpp_cg x

dot_bfgs, dot_frcg, conmin_frcg x x

npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, dot_sqp,
conmin_mfd, optpp_newton, optpp_q_newton, 
optpp_fd_newton, weighted sums (multiobjective), 
pareto_set strategy (multiobjective)

x x x

Gradient-Based
Global (Smooth 
Response)

hybrid strategy, multi_start strategy

x x x

Derivative-Free
Local 
(Nonsmooth
Response)

optpp_pds
x x

asynch_pattern_search, coliny_cobyla, 
coliny_pattern_search, coliny_solis_wets, 
surrogate_based_local

x x x

Derivative-Free
Global 
(Nonsmooth
Response)

ncsu_direct
x x

coliny_direct, efficient_global,
surrogate_based_global x x x

coliny_ea, soga, moga (multiobjective) x x x x

See Usage Guidelines in Dakota User’s Manual
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Optimization References

 J. Nocedal and S. J. Wright, “Numerical Optimization”, Second Edition, 
Springer Science and Business Media, LLC, New York, New York, 2006.

 S. S. Rao, “Engineering Optimization: Theory and Practice”, Fourth Edition, 
John Wiley and Sons, Inc., Hoboken, New Jersey, 2009.

 Dakota User’s Manual

 Optimization Capabilities

 Surrogate-Based Minimization

 Advanced Strategies

 Advanced Model Recursions: Optimization Under Uncertainty

 Dakota Reference Manual

http://www.sandia.gov/
http://dakota.sandia.gov/


APPLICATION-SPECIFIC EXAMPLE
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BACKUP SLIDES
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Alternate objective formulation:

Derivative formulations:

Methods vary in second derivative approximation:
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