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Adsorbed layers (adlayers) on catalysts

enhance properties

Electro-oxidation of formic
acid on Pt catalyst

active

> CO,+H,0

HCOOH + % O,

% C02

poisoned

 Adlayers such as Bi, Sb, As, Pd favor
active pathway (reduce poisoning)

Hyunjoo Lee, et. al., J. Am. Chem. Soc., 2008, 130, 5406-5407

Specific activity: i, at 0.9V (mAcm=_,)

Oxygen reduction reaction on
with bimetallic Pt catalysts

I %0, +2H" +2e > H,0
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Stamenkovic, V. R., et.al.., Nature Materials, 2007, 6, 241-247
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Surface modification should improve kinetics
of hydriding and dehydriding Pd

H, g *+ Pd° > PdH, (X ~ 0.6)
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Surface Pd-H is very stable
Large activation barrier for absorption

Near-surface alloys destabilize surface
hydrides, improve kinetics
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Jeff Greeley and Manos Mavrikakis, J. Phys. Chem. B 2005, 109, 3460-3471



Surface modification should improve kinetics
of hydriding and dehydriding Pd

H, g *+ Pd° > PdH, (X ~ 0.6)
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Co-reduction, physical methods - Poor control
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Different size, different composition Differing kinetics of reduction lead

from laser ablation to heterogenous composition

Podagatlapalli, G. K. et al., J. Phys. Chem. C 2015, 119 p.16972 Ong, M. D, et al., Chem Mater 2012, 24 (6), p. 996



Co-reduction, physical methods - Poor control
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room temperature, “wireless”, amenable to “rough” surfaces with high surface area

Cappillino, P. J., et al., Langmuir 2014, 30 (16), 4820-4829.



Simple Apparatus for EL-ALD

« Pd powder suspended in electrolyte , Ag/AgCIRE = Ptwire CE
Pd wire WE

» Reagent gas (1% H,/N,)/inert gas
source

« Metal salt added by syringe

Headspace

» Electrodes to measure progress of
reaction

Pd powder suspended
0.1 MH,SO,

Stirbar

Cappillino, P. J., et al., Langmuir 2014, 30 (16), 4820-4829.



Monitor open circuit potential to follow reaction
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Cappillino, P. J., et al., Langmuir 2014, 30 (16), 4820-4829.
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Cyclic voltammetry of Pd test wire before and after
deposition of adlayer of Rh (left) and Pt (right)
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Adlayer blocks Pd/PdO

improved hydride/dehydride kinetics

Cappillino, P. J., et al., Langmuir 2014, 30 (16), 4820-4829.

E (vs AgCl)




No change to particle morphology after two cycles of
ALED of Rh on Pd
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(a) Pd powder before deposition (b) Pd powder after 2 cycles of ALED

Cappillino, P. J., et al., Langmuir 2014, 30 (16), 4820-4829.



More cycles, more metal deposited (by X-ray
Photoelectron Spectroscopy)
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Cappillino, P. J., et al., Langmuir 2014, 30 (16), 4820-4829.



One cycle, 3.9 nm avg Two cycles, 5.5 nm avg

scalebar = 500 nm (a,b) scalebar = 250 nm (a,b)
scalebar = 150 nm (c,d)) scalebar = 60 nm (c,d))
* Increasing Rh thickness on PdRh with Eight cycles, 21.7 nm avg

scalebar = 500 nm (a,b)

more cycles of deposition scalebar = 20 nm (c,d))

TEM images by Joshua D. Sugar at Sandia National Lab, Livermore, CA, unpublished



STEM-EDS confirms thickness control for PdRh
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TEM images by Joshua D. Sugar at Sandia National Lab, Livermore, CA, unpublished



After initial concern, PdPt looks good

100 nm
HAADF MAG: 57.0kx HV: 200KV

<& Keep in mind: aggregation

TEM images by Joshua D. Sugar at Sandia National Lab, Livermore, CA, unpublished



Energy Resolved Depth Profile (XPS)

At synchrotron, incident photon energy (hv) can

be tuned, KE = hv - BE

Lower energy photoelectrons are more surface sensitive

7

Higher energy photoelectrons travel farther

ALS

Lawrence Berkeley,
Advanced Light Source
Beamline 9.3.2



Energy Resolved Depth Profile (XPS)
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Spectra at three photon energies Simulation:
demonstrate surface Rh enrichment 4 - 8 A adlayer, 25% bare Pd

Smekal, W. et al. Simulation of electron spectra for surface analysis (SESSA). Surf. Interface Anal. 2005, 37 (11), 1059-1067



Direct measurement of hydrogen desorption on powders

reference
electrode
counter

top-view . | electrode

Powder, covered with B
Celgard membrane — \
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Au wafer,
working
electrode

Cappillino, P. J., et al., Langmuir 2014, 30 (16), 4820-4829.



current/mA-mg
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 Adlayer improves hydrogen absorption and desorption kinetics

* Greater effect with thicker layer

Cappillino, P. J., et al., Langmuir 2014, 30 (16), 4820-4829.
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» Powders charged with H, by applying 1.5 mA for 60s
* Poised at 0.27 V vs. Ag/AgCl to desorb hydrogen (t,)

Cappillino, P. J., et al., Langmuir 2014, 30 (16), 4820-4829.
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