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Novel SNL Separations and Waste Forms: Technologies for
Environment and Energy Applications
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O,/N, air separations with MOFs to Increase ety
the EfﬁClency Of the AS U Laboratories
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*  Oxygen-enriched (oxy-fuel) combustion: burning the fossil fuel in an O, rich atmosphere results
in a flue gas composed mainly of CO, and water (little or no SO, and NO, emissions)

* The limiting factor of this technology is the efficiency of the cryogenic ASU, a costly and energy
intensive process (primarily compression)

* Our study i1s focused on new highly selective materials to increase the efficiency of this
separation process

Goal: determine the O, and N, uptake dependency with temperature
in MOFs with coordinatively unsaturated metal sites
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Integrated Research Plan: Modeling, Materials Development,
Combustion Testing, & Systems Analysis

Sandia
|I1 National

Laboratories

Predictive molecular modeling

Predictive molecular modeling designed to measure
the binding energy for O, and N, on coordinatively
unsaturated metal sites in MOFs

Materials development

Guided by the modeling results, experiments are
directed at both the synthesis of analogs of
known/modified materials and of novel frameworks.

New burner design

New lab burner constructed to
mimic practical oxy-fuel
combustion in industrial
applications: coupling burner
design and oxy-fuel combustion
to radiant heat transfer

Schematic diagram of the modified version of the Cabra Burner developed by
Dunn et al. (Combust. Flame, 2007, 151, 46)- studying flame attachment in

hot combustion products

Systems Analysis

Data input to Systems Analysis for calculations of
efficiency improvements of combined developed MOFs
into Oxy-fuel Process Stream

Input information/data from combustion to systems
analysis for calculation of percent efficiency
improvements
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DFT Simulations Provide Molecular-level Details e
Metal-O, and Metal-N, Binding Energies and Geometries = ==
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*  MOFs with coordinatively unsaturated metal centers are promising materials for O,/N, separations

* Two prototypical MOFs from this category, Cr,(BTC); (J. Am. Chem. Soc. 2010, 132, 7856—7857)
and Fe,(DOBDC)(J. Am. Chem. Soc. 2011, 133, 14814-14822) both show preferential adsorption of
O, over N,

* Plane wave DFT calculations were performed on periodic structures in the Vienna Ab initio
Simulation Package (VASP)

* Binding geometries for side-on and bent O, and bent and linear geometries for N, were evaluated

 Static binding energies for O, and N, at 0 K

MOF with O, in pore O, ready to bind to metal O, bound to metal




DFT modeling of of Oxygen Adsorption in Varied Santi
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Plan wave density functional theory (DFT) calculations were
performed on periodic structures of each MOF in the Vienna ab initio
simulation package (VASP) with the Perdew-Burke-Ernzerhof (PBE)
functional including dispersion corrections (DFT-D2). Geometries
were

optimized and static binding energies (AE,),, AEy,) were calculated by

AEOZ = E vior+02— Evor — Eo2

The differences in binding energies (AA E) for oxygen and nitrogen
were calculated by

M, (dobdc) M, (btc),
AAE = - (AEy,— dE)y,)

MOF metal sites = separate O,/N, by differences in
bonding & electronic properties

Attention Paid to Bonding Geometries

Side-on bonding Bent bonding Linear bonding
AM-X-X 67°-71° AN-X-X 116° - 159° AN-X-X 165° - 179°

Cr4(btc),(0,) Mn,(dobdc)(0,) Fes(btc),(N,) 6
I EEEEEEEE—————————

tmnenofl@sandia.gov



O, and N, binding energies trends across
the first row transition metal series
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Transition to Quantum Calculations to Estimate Santi
. ] |I1 National
Metal-Oxygen Binding Energy
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Low-temperature, low-pressure O, and N, adsorption measurements
were done for three MOFs: Cu,(btc),, Co,(dobdc), and Ni,(dobdc).
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Amount of gas adsorbed, 0.
=

-125 -105 -85 -65 -45 -25 -5
Binding energy (kJ/mol)

Excellent correlation between simulated binding energies and low-
temperature, low-pressure experimental gas uptake.



Targeted Synthesis of Porous o
Mn-, Fe- and Co- Analogues of Cu-BTC o
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Need/Desire To Retain Porosity of MOF For @ HKUST-1
Studies of Metal-O, Bonding Effects @c  Cu(BTC); or Cu-BTC

 The effect of Porous analogues of Cu-BTC
include: Cr, Mo, Ru, N1 (the Ru and Ni have much
lower than expected surface areas, 1000-1100 m?/g)

*  Porphyrin-templated Mn-, Fe- and Co- Cu-BTC
analogues known, however no measurable accessible
porosity (J. Am. Chem. Soc. 2012, 134,928-933)

Chui, S. S. 'Y et.al Science 1999, 283, 1148.

Postsynthetic metal ion exchange

MCl,-(H,0),

o |

DMEF, 90°C

€ [

Cu-BTC M = Mn, Fe, Co




Confirmation of In-Framework Metal Substitution — 7

Unit Cell Expansion & Elemental Mapping Laboratoies
SEM-EDS

Co@Cu-BTC
Fe@Cu-BTC

| Mn@Cu-BTC

XRD

Cu-BTC ~ 6 at.% Mn

simulated Cu-BTC

Mn map Cu map

~13.5 at.% Fe

Intensity, a.u.

Cu map

] .
r—— 1~ - T T T T ~255at.% Co
5.0 7.5 10.0 12.5 15.0 17.5 20.0
Co/Cu-BTC
Expansion M-O
(A) average
bond length
(A)
Cu-BTC - 1.7
Co/Cu-BTC 0.043 2.08
Fe/Cu-BTC 0.019 2.0
Mn/Cu-BTC 0.030 2.17
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Excellent DFT and Experiment Correlation at
Low Temperature and Low Pressure

DFTO, DFTN,

binding binding

energy, energy,

kJ/mol kJ/mol
Cu-BTC -116 -105
Mn/Cu-BTC -113 -97
Fe/Cu-BTC -110 -92
Co/Cu-BTC -104 -93

For uptake at the lowest partial
pressure measured (~0.01 P/P,)
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O, (red) and N, (blue) adsorption isotherms measured at 77K
on pristine Cu-BTC and Mn-, Fe-, and Co-substituted samples
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77 K: All Samples have Higher O, Loadings over N, rih) i
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The highest O,/N, selectivity is observed for the Mn/Cu-BTC sample 12



273-298 K: As Temperature Increases,
O, Loadings Decrease Relative to N,
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Isotherms in the 273-298K range, independently fitted using a modified virial equation:

1 m
InP = InN +TZ a;N*
i=0
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Similar behavior noted for the Mn- and Co/Cu-BTC samples
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N,@273 K in Fe/Cu-BTC Trend Deviation: Slightly Higheﬁ )
N, Uptake at Lowest Loading Levels (at lowest pressures) — “™=

0.7 5 0.7
| @ Fe/Cu-BTC N@273K | O Fe/Cu-BTC O,@273K
> 0.6- ® Fe/Cu-BTC N,@283K 064 © Fe/Cu-BTC O,@283K
3 | @ Fe/Cu-BTC N,@293K O Fe/Cu-BTC O,@298K
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N, and O, adsorption isotherms measured at 273, 283, and 298K on Fe/Cu-BTC

Similar N, and O, uptake for Fe/Cu-BTC in the room temperature range
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[sosteric Heats of Adsorption for O, (red) and N, (blue) ) i

. Laboratories
Comparison of Cu-BTC vs Fe/Cu-BTC Data
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The 0 K DFT binding energy calculations do not correlate as well
with experimental data from 273-298 K

Is it the framework morphology / channel structure or the choice of metal center?
15




Transition to Quantum Calculations to Estimate )
Metal-Oxygen Binding Energy oo

Binding Energy Calculated as a Function of Metal Site
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Parkes, M.; Sava Gallis, D. F.; Greathouse, J.A.; Nenoff, T.M.
“Screening MOFs for O,/N, Separations: Role of MOF Metal Center”,
J. Phys Chem C, 2015, 119, 6556.

Marie Parkes, Sanibel Conference, Top Prize - Poster, 2014 16




Modeling Designed / Inspired MOF Synthesis A Natona

Laboratories

SMOF-8

HV mag WD de't' Lens Mode | curr 5 m —
0.0kV 17647 x| 5.1 mm |ETD| Field-Free |6.1 nA Sandia National Labs
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SMOF-8: Stable MOF framework over Wide Temperature
Range and with Exposure to Variety of Gases

As synthesized
After O, sorption @ 313K
After N, sorption @ 313K

2000 4

1300 4

Intensity(Counts)

1000 4

T 25 T T T T Sb T T T T 35

—
Two-Theta (de)
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SMOF-8: High Surface Area with Accessible Metal Centers (fy) o

BET Surface Area Plot

030 0 50000000 OO ST SO0 eco bSO SO
(\Il -/Q’/
2
g 0005— ................

I I I I I I I I I I I I I I
0.08 0.10 0.12 0.14
Relative Pressure (p/p°)

BET surface area: 1321.7194 +£24.4623 m?/g

19



SMOF-8: Metal-Center has a role at 77K ) i
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Enhanced adsorption of
O,vs. N,at 77K

Quantity Adsorbed (mmol/g)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Pressure (p/p°)

20



SMOF-8: GCMC Isotherm Calculations at 258K and 298K () i
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298K

o o o o
=N (9] (o)) ~
1 1 1

Loading (mmol/g)

o
w

Loading (mmol/g)

o o
= N

o
o

0.0 0.2 0.4 0.6 0.8 1.0
P (bar)

0 —1 bar.
Preferred O, uptake but O,/N, selectivity increases between 258K and 298K
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SMOF-8: Enhanced Quantity of O, vs N, Adsorbed ) i,
over Wide Temperature Range (at least to 313K)
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SMOEF-8 SMOEF-8 SMOEF-8
0, vs. N, @258K 0, vs. N, @298K 0, vs. N, @313K
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=3 =)
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3 S S
< © <
Z 021 i ;
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Isotherm trends mimic those predicted by GCMC
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SMOF-8: Isosteric Heat of Adsorption (kJ/mol)

Qst derived from 258K, 298K and 313 K
Independent Virial Fit HOA
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Sandia

Conclusions and future work i) o

Laboratories

Successfully synthesized partially substituted
Co-, Fe- and Mn- analogues of Cu-BTC

* Assessed the effect on metal substitution on the O, and N, adsorption
capacity at both cryogenic and close to room temperature ranges

* For the Co-, Mn- and original Cu-BTC, O, preferentially adsorbs over N, at
77K. However, the trend is reversed at 298K, where N, preferentially adsorbs
over O,

* Based on predictive modeling, we studied early transition metal metal-center
MOFs for enhanced O, sorption.

* SMOF-8: Early transition metal MOFs show preference for O, vs N, over
wide temperature range (up to at least 313K), as confirmed by isosteric heats
of adsorption higher in SMOF-8 for O, versus N,

* Next Steps: Data to Technoeconomic Analysis and Burner Design for Oxyfuel
combustion applications

24
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N, and O, adsorption 1sotherms measured at 273, 283, and 7 i

298K on pristine Mn/Cu-BTC laortoris
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In the room temperature range, slightly higher affinity for N, over O, is noted
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N, and O, adsorption 1sotherms measured at 273, 283, and 7 i
298K on pristine Co/Cu-BTC

Laboratories
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In the room temperature range, slightly higher affinity for N, over O, is noted
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Significantly higher binding energy of N, over O, is noted for
the Fe/Cu-BTC sample
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Isosteric heats of adsorption for O, (red) and N, (blue) obtained from the
fitted 273, 283 and 298K adsorption isotherms 29
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Isosteric heat of adsorption, kJ/mol
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O,/N, Gas mixture adsorption measurements containing 20%

O, and 80% N,
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Precision Pressure
/ pressure transducer
/' gauges  Tts__ \
[ S :
6 ! Computer data
NP s
Mixture or acquisition
f Sample to
. GC-MS
HP Helium i ‘
- =/ T 5T - = ; Temperature
Gas reservoir Adslorption control box
(Vy) vessel (v,) ~ MOFsample

Vacuum

Room temperature (294K) in pressure range of 1.77 to 5.2
bars.

Samples tested for adsorption of O,/N, mixture containing
20% O, and 80% N, at 21, 35, and 48.5°C, respectively.

Univ. Cincinnati, Prof. Junhang Dong

Amount adsorbed., cm3 (STP).g
1.bar

1.77 6.568 7.109 0.924
3.50 5.910 6.384 0.926
5.00 5.346 5.558 0.962
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'Eombustion Studies plus MOF O, Separations f(@ Sanda
Improved Combustion Process Efficiency

Laboratories

LDRD: Combine Experiment MOFs Gas Separations Data into Flame / Combustion Testing
5% improved efficiency € heat/radiation improvement w/oxyfuel € enhanced OyN, via MOF

1) Study of non-premixed oxygen-enriched and oxy-fuel flames using a non-premixed
turbulent jet flame burner

2) Measurement of radiant flux for accurate determination of flame radiation

3) Measurement of soot concentration in flames planar laser-induced incandescence
measurements (LII)

4) Allow for the calculation of the contribution of the soot to total radiant heat transfer of the
flames

5) Data input to Systems Analysis for calculations of efficiency improvements
of combined developed MOFs into Oxyfuel Process Stream




At 77K, Metal Sites Play an Important Role,

while at 273 - 298 K Metal Sites have a Smaller Effect )

Laboratories

The temperature dependency of the N, and O, uptake at ~ 0.2 atm and 77, 273, 283, and 298 K
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Distinct transition point temperature where the metal sites dependence on the
O, and N, uptake is inverted
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SMOF-7: O, vs. N, Single Gas Sorption Isotherm, at 77K () st

Laboratories

SMOEF-7
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Coupling of Burner design and Oxy-fuel
Combustion to Radiant Heat Transfer

Sandia
"1 National

Laboratories

-Newly designed and constructed burner with
smaller diameter inside tube for CH, into oxider jet flow

- Allows either premixed or non-premixed methane-air flame

- Designed specifically for pure O, and enriched O, stream
as determined by gas separations data from MOFs and economic
life cycle analyses

Central jet exit
Pilot perforated baseplate
Coflow collar

60 ——0o ¢
_ \A LDRD calculated/predicted flame heights when
= using a 1/8”, 0.020 wall stainless steel tube to
< =] O\O*——o—o .
B 0 deliver methane to the Dunn burner.
T 30 4 air
E - 50% 0, . )
& 20 "N O 75%0, The volumetric flow of methane is always equal to
104 & 100%0, Y the flow of oxygen, to maintain stoichiometric
0 combustion conditions.
| T | |
0 20 40 60 80 100

Oxidizer Flow Velocity (m/s)




Preliminary Investigation of Oxygen-Enriched NG Flames () iow

Laboratories

Performed preliminary testing performed with oxidizers of pure Radiant emission measurements have been performed
oxygen and with 50% O, in N,, using an overall equivalence ratio along the flame centerline
of 1, with a constant methane flow - Data for 100% O, shows significantly more

- Velocity (Re) of oxidizer flow is 50% lower when using thermal radiation

pure O,, making for taller flame (slower mixing) - Flame temperatures are higher when using

pure O, (more radiation from flame products)
- Some soot is formed in the 100% O, flame

- Soot formation is enhanced when using pure O, (higher
temperatures, slower mixing)

m 100% O,
A 50% 0,

Radiant Emission (arb. units)

0.2

0.1+

. 0 0.0 T T T T I T T T T I T T T T I T T T T l T T
50% 02 n N2 100% 02 0 100 200 300 400

Height Above Burner (mm)

tmnenofl@sandia.gov



Systems Analysis of MOF-based Air Separation =

. MOF adsorption Optimal Oz:l.\l2 ratio Can MOFE-based
isotherms (N, & O,) for combustion PSA reduce ener
(from MOF team) (from combustion team) _ 9y
T u consumption by 5%
[ vs. conventional PSA
g ﬁgﬁ\’*‘ air separation?

Adjust PSA model
parameters to yield

Construct and Estimate energy

validate model of consumption based

PSA process desired O,:N, ratio on PSA parameters
e Key PSA model PSA energy consumption is
parameters: dominated by compressor(s)
* Vessel dimensions - Operating pressures and
PSA model reference: . .
» Operating pressures flow rates are primary

Beeyani et al., Polish J Chem : :
Technol, 12, 2, 18-28, 2010 + Cycle time drivers

 Feed rate

Air

H,0 H,0, CO,, HC




