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ABSTRACT

*Mn radiotracers were used to assess Mn atom exchange between aqueous Mn(Il) and vernadite
(8-MnO») at pH 5.0. Continuous solid-liquid redistribution of **Mn atoms occurred, and systems
are near isotopic equilibrium after 3 months of reaction. Despite this extensive exchange, XRD
and XAS data showed no major changes in vernadite bulk mineralogy. These results demonstrate
that the vernadite-Mn(II) interface is dynamic, with the substrate undergoing continuous
dissolution-reprecipitation mediated by aqueous Mn(II) without observable impacts on its
mineralogy. Interfacial redox reactions between adsorbed Mn(II) and solid-phase Mn(IV) and
Mn(III) are proposed as the main drivers of this process. Interaction between aqueous Mn(II) and
structural Mn(III) likely involves interfacial electron transfer coupled with Mn atom exchange.
The exchange of aqueous Mn(II) and solid-phase Mn(IV) is more complex and is proposed to
result from coupled interfacial comproportionation-disproportionation reactions, where electron
transfer from adsorbed Mn(II) to lattice Mn(IV) produces transient Mn(I1I) surface species that
disproportionate to re-generate aqueous Mn(II) and structural Mn(IV). These findings provide
further evidence for the importance of Mn(II)(,q)-MnOy) interactions and the attendant
production of transient Mn(III) intermediates to the geochemical functioning of

phyllomanganates in environments undergoing Mn redox cycling.
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INTRODUCTION

The Mn redox cycle influences several important biogeochemical processes, including the

1-10 11-16

cycling of metals and metalloids, " the degradation of organic molecules, and microbial

17-21

respiration in anaerobic environments. The most common Mn-oxides in natural aquatic

environments belong to the birnessite family, which is comprised of layered Mn(I11, IV)-oxides

with octahedral sheets of variable symmetry, layer vacancy density, Mn(III) content, and sheet

22-26

stacking order. Biogeochemical Mn redox cycling often places birnessite minerals in contact

with Mn(I)-bearing solutions. The oxidative arm of the cycle is dominated by microbial

oxidation of Mn(II) generating birnessite minerals that typically have hexagonal sheet

26-42

symmetry, while on the reductive arm birnessite is reduced by both biotic and abiotic

processes that convert Mn(IV) and Mn(III) into Mn(II), resulting in the release and build-up of

e.g. 18-21, 43-48

Mn(1I) in solution. Birnessite minerals therefore commonly co-exist and interact with

dissolved Mn(II) under both Mn-oxidizing and Mn-reducing conditions.
Interactions between birnessite and aqueous Mn(II) can lead to substantial changes in

birnessite structure and composition, because Mn(II) acts as a reductant of structural Mn(IV)

31-33, 35,39-41, 49-62

inside the mineral lattice. Recent studies suggest that resulting impacts depend

on the Mn(II):Mn(IV) ratio, pH, and the presence of metal impurities. At low Mn(II)

concentrations (Mn(II):Mn(IV) < 0.5), the content of structural Mn(III) in the birnessite sheets

. 31-33, 35, 39, 40, 44, 50, 60
increases,” 77T TN

whereas at higher concentrations, bulk transformation of birnessite
into Mn(III)OOH and Mn(I[)Mn(I11),04 occurs.>" **° Bulk transformations are promoted by
higher pH values,”” whereas metal sorbates competing with Mn(II) for surface complexation
appear to interfere with the formation of Mn(III)-rich birnessite and secondary MnOOH

39,50, 58
phases.”” ™

3

ACS Paragon Plus Environment



53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Environmental Science & Technology Page 4 of 29

In a recent study,” we used **Mn tracers to track the solid-liquid exchange of Mn atoms
during the Mn(II)-driven reductive transformation of vernadite, a phyllomanganate with a

22,26 We observed fast

hexagonal layer structure and limited long-range sheet stacking order.
exchange of Mn atoms, with isotopic equilibrium reached in 2-4 days, as vernadite transformed
into feitknechtite (B-Mn(II)OOH) and manganite (y-Mn(III)OOH) at pH 7.5. The results from
this study suggested that Mn(II) interaction with the vernadite surface triggers the extensive
production of short-lived Mn(III) surface species that rapidly undergo disproportionation, and
lead to gradual bulk reductive transformation of the 6-MnO; substrate through the slow
precipitation of MnOOH stabilizing Mn(III). The importance and impacts of transient Mn(I1I)
species in systems without reductive Mn-oxide phase transformations remain to be determined.”
The aim of the current study is to assess the extent and dynamics of Mn atom exchange
during reaction of dissolved Mn(II) with vernadite under conditions where bulk reductive phase
transformations of the phyllomanganate substrate do not occur. Lefkowitz et al.”” showed that
these transformations effectively shut down at pH < 7.0. Experiments were therefore performed
at a pH value of 5.0, employing >*Mn radiotracers to track Mn atom exchange across the solid-

liquid interface of vernadite, accompanied by X-ray diffraction and X-ray absorption

spectroscopy measurements to assess any resulting changes in the mineral structure.

MATERIALS AND METHODS

The materials and methods used here are very similar to those in our earlier study.” Natural
abundance and >*Mn-labeled vernadite were synthesized based on the method of Gadde and
Laitinen.®® The two materials were prepared from the same starting chemicals, except for the

addition of a small >*Mn spike to generate the radiolabeled phase, which had a specific activity

4
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76 of 498 MBq **Mn/ mol Mn corresponding to a >*Mn:Mn molar ratio of 1.37*10°°. The natural
77  abundance and **Mn-labeled 8-MnO, substrates are referred to here as MnOy(,) and **MnOyq),

78  respectively. Iodine titration *%

of the MnO,, sorbent (in triplicate) yielded an average Mn

79  oxidation state of 3.74 (£0.13), indicating the presence of structural Mn(III) as discussed further
80 in section 3.2 of the Supporting Information (SI).

81 Three types of experiments were conducted: (1) sorption of **Mn-labeled Mn(II)(aq) onto
82  MnOy); (2) sorption of Mn(II)(q) onto 54Mn02(s)); and (3) sorption of Mn(Il)aqy onto MnOy).
83  The suspensions (100 mL) were prepared in 0.1 M NaCl at a MnO) or 54Mn02(s) concentration
84  of 530 uM, corresponding to ~0.05 g L™, and held in opaque polyethylene containers. The

85  suspensions were spiked with 760 uM of either Mn(II)(,q) or **Mn-labeled Mn(II)q). Suspension
86  pH values were maintained at a value of 5.0 by regular addition of small aliquots of 0.1 M NaOH
87  asnecessary. The experiments were run under ambient atmospheric conditions. Exclusion of

88 Oy was not deemed necessary based on the results of Lefkowitz et al.’” who reported that

89  Mn(II) is not sensitive to oxidation by Oy in birnessite suspensions at pH < 6.0. The

90 suspensions were sampled regularly over a 3-month time period by filtration of 5 mL

91  subsamples. Supernatants were analyzed for the concentration of dissolved Mn or >*Mn (details
92  below), which were assumed to have an oxidation state of +II based on the low solubility of

93 Mn(IV) and the instability of aqueous Mn(III). As in our earlier study,” a series of control

94  samples were prepared and analyzed to constrain data interpretation of the sorption systems.

95  These are described in the SI.

96 The **Mn activities in the suspensions of experiments 1 and 2 were identical at 264 kBq
97 L. In experiment 2, the activity was determined by the specific activity of the > 4Mn02(5)

98  substrate (498 MBq >*Mn /mol Mn) and the suspension density of the experiment (530 uM

5
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54Mn02(s)). In the suspension of experiment 1, it was set by adding an appropriate amount of
**MnCly(ag to the 1.0 M MnCly g stock solution that was introduced into the MnOx) suspension
to start the experiment. Thus, although the >*Mn activities in the suspensions of experiments 1
and 2 were the same, the initial **Mn host phases differed: in experiment 1, **Mn was introduced
as aqueous *Mn(II), while in experiment 2, **Mn started out as solid-phase **Mn in the
**MnO,) sorbent.

The supernatants from experiment 3 (which contained no **Mn) were analyzed for the
concentration of dissolved Mn(II) ([Mn(II)],q) using the formaldoxime method.®® The
supernatants from experiments 1 and 2 were analyzed for the concentration of aqueous **Mn(IT)
([54Mn(II)]aq) using liquid scintillation counting. A 900 uL aliquot of the supernatant was mixed
with 5.0 mL of scintillation cocktail (Ecoscint A, National Diagnostics) and counted on a Coulter
Beckman LS 6500 to a precision of 0.75% or a maximum counting time of 2 h. The **Mn
solutions and controls from each experiment were counted as a single batch, requiring less than 2
days. Since the half-life of >*Mn is 312.7 days, natural decay of >*Mn during analysis was <
0.5%, which is insignificant relative to the changes in [54Mn(II)]aq resulting from exchange (see
results). Sample solids recovered from experiment 3 were analyzed by powder X-ray diffraction

(XRD) and synchrotron X-ray absorption spectroscopy (XAS) measurements described in the SI.

RESULTS

Batch kinetic experiments

Figure 1 presents the sorption kinetic results, showing the time dependencies of [54Mn(H)]aq in
experiments 1 and 2, and that of [Mn(II)],q in experiment 3. The results of experiment 1

demonstrate a slow, continuous decline of [54Mn(II)]aq with no evidence to suggest that the

6
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partitioning of **Mn reaches equilibrium in the 3-month time frame of the experiment. This
kinetic pattern is mirrored by the dynamics of **Mn partitioning in experiment 2, where >*Mn
initially is present only in the 54Mn02(s) solid. This system exhibits a gradual increase in

[ 4Mn(II)]aq as the > 4Mn02(s) substrate reacts with aqueous Mn(II), with no evidence to suggest
that isotope equilibrium has been reached after 3 months. The kinetic trajectories of the
[54Mn(H)]aq levels of experiments 1 and 2 appear to track towards a similar level, suggesting that
the solid-liquid partitioning of >*Mn isotopes slowly approaches the same endpoint in both
systems. The slow dynamics of >*Mn equilibration in these systems contrast with the rapid
attainment of the macroscopic Mn(II) sorption equilibrium in experiment 3, where Mn(II),q
levels stabilize within the first week at ~660 uM (Figure 1). The re-partitioning of *Mn isotopes
in experiments 1 and 2 is therefore not associated with net Mn(II) sorption or desorption, but is
driven by Mn atom exchange between the mineral solid and aqueous Mn(II). Results from the
control experiments show no release of 3 4Mn(H)aq from the ° 4Mn02(5) substrate in the absence of
Mn(II), or during reaction with Zn(II) and Ni(II) (Figure S1). This indicates that the appearance
of aqueous **Mn(1I) in experiment 2 is not due to **Mn(II)-Mn(II) cation exchange at the

5 4Mn02(5) surface. Instead, it is attributed to the interfacial redox reactions between Mn(II) and

5 4Mn02(5) discussed further below.

Quantitative analysis of the experimental results demonstrates extensive exchange of Mn
atoms during Mn(Il)-vernadite interaction. In experiment 1, ~45% of 4Mn(H)(aq) initially in
solution has been partitioned to the solid phase after 3 months of reaction (Figure 1). This is
equivalent to removal of ~340 uM **Mn(II).q), which well exceeds the macroscopic sorption of
~100 uM Mn(II)sq) measured in experiment 3 (Figure 1). Most of the removal of : 4Mn(II)(aq) in

experiment 1 therefore is due to Mn(II)(aq-MnOy) atom exchange. In experiment 2, ~42% of
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>*Mn initially present in the solid has been mobilized to solution as 54Mn(H)(aq) after 3 months of
reaction (Figure 1). This release of **Mn(II) contrasts notably with the adsorption of Mn(II) )
observed macroscopically, again demonstrating the importance of Mn atom exchange between
aqueous Mn(II) and the MnO, solid.

The extent of exchange can be appreciated by comparing the solid-liquid partitioning of
**Mn and total Mn in these systems. The total Mn concentration in the experiments is 1290 uM,
as calculated by summing the concentrations of Mn initially present in the solid (530 uM) and of
Mn(1I) initially introduced in solution (760 uM). In the equilibrated suspension, [Mn(II)].q = 660
uM (Figure 1), and the concentration of solid-phase Mn therefore is 1290-660=630 uM. This
indicates that approximately half of total Mn is present as solid-phase Mn (630/1290=0.49), and
the other half as aqueous Mn(Il)aq). The same solid-liquid distribution is expected for the *Mn
isotopes when the systems are at isotopic equilibrium,” and would correspond to an aqueous
54Mn(II) level of [54Mn(II)]aq =0.51*264 =135 kBq L. Indeed, the [54Mn(H)]aq levels in both
experiments 1 and 2 appear to track towards this predicted endpoint, and are near isotope
equilibrium after 3 months (Figure 1). This approach towards Mn exchange equilibrium, which
occurs regardless of the original host of >*Mn, indicates that complete mixing of solid-phase and
aqueous Mn takes place in these systems. We have previously demonstrated similarly complete
Mn isotope solid-liquid exchange during Mn(II)-induced bulk reductive transformation of
MnO,() into MnOOH at pH 7.5.%° The XRD and XAS analyses described next assess the

structural impacts of Mn atom exchange in the current experiments conducted at pH 5.0.

XRD and XAS analyses

8
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The XRD pattern of MnOy) reacted with Mn(II),q) for 73 days is compared in Figure 2
to that of the starting substrate and of the vernadite control sample hydrated for 73 days without
Mn(II). The patterns are typical of turbostratic vernadite, exhibiting broad 44/ diffraction bands
in the 30°-70° 20 range, and weak basal reflections at shallower angles (< 30° 20). The Ak/
bands, at ~37° 20 (d =2.42 A) and ~66.5° 20 (d=1.41 A), dominate the patterns. The positions,
shapes and relative intensities of these peaks closely resemble those of earlier studies of
vernadite and hexagonal birnessite, and their d-spacings match those of the (11,20) and (31,02)
diffraction bands of a C-centered two-dimensional unit cell.** 262832 3%.37. 6669 7o hexagonal
symmetry of the mineral layers is evident from the value of 1.73 for the ratio of the d values of

26,28,34,67-69 The faint basal reflection at ~24.5° 20 demonstrates limited coherence

these bands.
in the stacking of the hexagonal sheets along the c-axis. This is a typical feature of vernadite and
indicates a small number of sheets stacked per diffracting particle.** > % Overall, the XRD data
demonstrate that turbostratic 6-MnO, with hexagonal layer symmetry is the dominant Mn-oxide
phase in all three samples.

A detailed inspection of the XRD patterns in Figure 2 reveals subtle differences
suggesting structural changes in the MnO,s) substrate induced by reaction with Mn(Il). First, the
pattern of Mn(II)-reacted MnO,) exhibits a dip at ~46 °20 in the high-angle scattering tail of the
(11,20) peak. This feature has been attributed to the capping of vacancy sites by adsorbed Mn,”®
344467 and has also been observed for vernadite reacted with Ni(IT) and Zn(II).** ® Second, the
(11,20) and (31,02) peak maxima in the pattern of Mn(II)-reacted MnO, are shifted to slightly
lower 20 relative to the patterns of the original substrate and that of the hydrated control sample

(Figure 2). Similar 4kl band shifts have been observed previously for -MnO, high in interlayer

Mn.>** Although the exact cause is unknown,** possible explanations include a slight expansion

9
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of the unit cell,** weak splitting of the (11,20) and (31,02) bands due to incorporation of Mn(III)

59, 60 28,44

into the mineral sheets, or a slight increase in particle size. The final change noted for
the XRD pattern of Mn(II)-reacted MnO,) is the appearance of two small new peaks: one
appearing as a shoulder on the (11,02) peak at ~42° 20, the other as a weak band at ~56° 20
(Figure 2). These small bands may be further indications of changes in the 6-MnQO; lattice or
interlayer structure. Grangeon et al.** observed a similar shoulder near 42° 26 in the diffraction
pattern of biogenic vernadite, which also contained a broad and weak band near 55° 20. These
features were successfully reproduced in XRD simulations assuming a relatively large amount of
interlayer Mn.>* Besides modifications of the interlayer, changes in MnO,) sheet structure or
layer stacking may be involved in the appearance of the new bands as well. Incorporation of
Mn(III) into phyllomanganate mineral sheets following oxidation of adsorbed Mn(II) causes
splitting of the (11,20) and (31,02) bands, including development of a shoulder at 42° 20,°° while
the orientation of layer stacking influences the position and intensity of diffraction bands in the
35°-65° 20 range.®’ The small additional bands appearing in the pattern of Mn(II)-reacted
MnO, thus may signal slight changes in structural Mn(III) content or in the arrangement of
sheet stacking.

Another possible explanation for the changes observed in the XRD data is the presence of
secondary Mn-oxide(s) formed during Mn(II)-MnO,, interaction, although the subtle nature of
these changes indicates that any such phases would be present in relatively small amounts. A
review of the Powder Diffraction File database of the International Centre for Diffraction Data
(ICDD)"° revealed several known Mn-oxide minerals with characteristic peaks near 42° and 55°

20, including pyrolusite (B-MnO,) and nsutite (y-MnO,). However, these phases all have

additional diagnostic high-intensity diffraction peaks that are absent in the XRD pattern of the

10
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213 Mn(II)-reacted sample. This suggests that modification of the vernadite interlayer or layer

214  structure (as discussed above) is the more likely cause of the subtle changes in the XRD pattern
215  of the Mn(II)-reacted material.

216 The Mn K-edge XAS data presented in Figure 3 and SI Figures S2-S4 help further

217  constrain the structural impacts of aqueous Mn(II) on the MnO,, substrate. The near-edge

218  spectrum of Mn(II)-reacted MnOy) is similar to that of the starting substrate and the control

219  sample (Figure S3), indicating similar Mn mineralogy. Net sorption of Mn(II),q) is reflected in
220  increased spectral intensity at 6.545-6.560 keV in the spectrum of Mn(II)-reacted MnOy

221 (Figure S3). The k3-weighted x-spectra of the MnOy) samples are displayed in Figure 3a, and
222 the corresponding raw and fitted Fourier transform functions are shown Figure 3b; the fit results
223 are summarized in Table S1. The y spectra have similar frequencies (Figure 3a), indicating that
224 the MnOy) samples have similar structures, in agreement with the XRD data (Figure 2). This is
225  confirmed by the similarity of the radial structure functions (Figure 3b) and fit results (Table S1),

28,34 The main difference is a

226 which are consistent with previous EXAFS fits of vernadite.
227  reduction in amplitude of the oscillations in the spectrum of Mn(II)-reacted MnO, relative to
228  that of the other samples, as demonstrated particularly well by the overlay of  spectra presented
229  in Figure S4. This dampening is manifested in the radial structure function by the reduced

230 intensities of the Fourier transform peaks (Figure 3b), and in the fit results by lower coordination
231 numbers and/or higher Debye-Waller factors of the Mn-O and Mn-Mn shells (Table S1).

232 Villalobos et al.*® and Grangeon et al.** noted similar oscillation dampening in the EXAFS

233 spectra of Mn(Il, III)-rich biogenic phyllomanganates. This likely arises from structural disorder
28,34

234 effects induced by the variability of Mn-O and Mn-Mn distances with Mn oxidation state.

235  Some dampening also occurs in the y spectrum of the hydrated control sample relative to the

11
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original MnOy() material (Figures 3 and S4; Table S1), suggesting slight changes in Mn
speciation induced by hydration and aging of the MnO,) suspension. The exact cause and nature
of these changes cannot be determined from the current data, although one may speculate that
repartitioning of structural or interlayer Mn(III) is involved. Additional work is required to
investigate these effects in more detail.

Besides oscillation dampening, no other major differences are visible in the EXAFS data
of Mn(II)-reacted MnOy) versus the other samples (Figures 3 and S4; Table S1). This confirms
that the phyllomanganate sheet structure remains intact during long-term interaction with
Mn(1II)(,q) under the conditions of this study, and indicates that the MnOx) substrate does not
undergo major changes in bulk mineralogy, consistent with the XRD results (Figure 2). This lack
of change in MnO,) bulk structure is notable in view of the >*Mn results presented in Figure 1,
which suggest that full exchange occurs between solid-phase and aqueous Mn (see discussion in
previous section). It also is a distinct and notable difference with our previous study conducted at
pH 7.5, where **Mn isotope equilibration occurred concurrent with bulk mineralogical
transformation of MnO,) into Mn(III)OOH phases.59 The mechanistic interpretations and

implications of these findings are discussed next.

Mechanisms of Mn atom exchange

The combined results of the **Mn radiotracer experiments and the structural analyses
demonstrate that MnOx) is dynamic in the presence of Mn(II)(,q). The mineral substrate is
engaged in continuous reactions exchanging aqueous Mn(Il) and solid-phase Mn without
undergoing phase changes. This “swapping” of Mn atoms between the aqueous and solid phase

cannot be observed macroscopically through changes in [Mn(II)].q, as shown by the results of
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experiment 3 in Figure 1. This indicates the establishment of a dynamic equilibrium between
MnO,, dissolution (which involves conversion of solid-phase Mn into aqueous Mn(II)) and
MnO,, precipitation (conversion of aqueous Mn(II) into solid-phase Mn), where the fluxes of
Mn between the solid and liquid phase are at steady state. The interaction of MnOy) with
aqueous Mn(II) thus induces a continuous recrystallization of the mineral substrate without
causing bulk structural changes in the MnO,, substrate .

The average oxidation state of the MnO») starting sorbent is ~3.74, indicating that it
contains a considerable fraction (~26%) of structural and interlayer Mn(III) (see discussion in
SI). The heterogeneity of solid-phase Mn valence implies that exchange with aqueous Mn(II)
proceeds through different pathways that vary with Mn oxidation state. Since Mn(IV) is the
dominant solid-phase Mn species, Mn(IV))-Mn(II)aq) atom exchange predominates. Exchange
of lattice **Mn(IV) can be summarized as:

Mn(ID)g) + **Mn(IV) < **Mn(IDug + Mn(IV)). (1)
Mechanistically, this reaction likely involves coupled comproportionation-disproportionation
reactions at the MnO,) surface, as discussed in our previous study.”® The process is initiated by
interfacial electron transfer from adsorbed Mn(II) to lattice Mn(IV), which produces transient
Mn(III) species that disproportionate to re-form aqueous Mn(II) and solid phase Mn(IV).” An
example of a specific pathway is interfacial **Mn(IV)-Mn(II) comproportionation generating
transient >*Mn(III) species (denoted as >**Mn(11I)) that disproportionate to form 54Mn(II)(aq):
Mn(I) g + > *Mn(IV)) <> >Mn(IIl) + >*Mn(IIl) < Mn(IV)) + >*Mn(Il)q) )
yielding reaction (1). Other pathways of coupled comproportionation-disproportionation can be
envisioned. For instance, >Mn(III) produced by interfacial Mn(II)-Mn(IV) comproportionation

may disproportionate with structural Mn(III) of the MnOy) starting substrate, or lattice Mn(IV)
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may react with two aqueous Mn(II) atoms to form aqueous Mn and two >Mn(III) atoms that
subsequently undergo disproportionation. It is likely that these and other pathways of Mn(II)-
Mn(IV) exchange, mediated by transient Mn(III), operate simultaneously to drive vernadite
recrystallization.

Interaction of aqueous Mn(II) with solid-phase **Mn(I1T) may lead to Mn atom exchange
through interfacial electron transfer according to:>’
*Mn(II)g) + Mn(Iag) < **Mn(Il) g + Mn(II)), 3)
Such coupled electron transfer and atom exchange reactions between solid-phase Mn(III) and
aqueous Mn(II) were proposed by Elzinga56 to explain Mn(II)-catalyzed conversion of
metastable feitknechtite (B-MnOOH) into manganite (y-MnOOH), and were recently proposed to
explain oxygen isotope exchange between manganite and solutions containing Mn(II)(aq).71 The
Mn(I1)-Mn(IIT) exchange described by reaction 3 may couple with Mn(II)-Mn(IV) exchange
described by reaction 1. This would occur if Mn(III) produced by interfacial Mn(II)-Mn(IV)
comproportionation (reaction 2) engages in electron transfer and atom exchange with aqueous
Mn(ID).

A final pathway to consider is homovalent exchange between aqueous Mn(II) and solid-
phase **Mn(II), described by:
*Mn(Il);) + Mn(ID g <> **Mn(IDag) + Mn(Il). )
The results of the Ni(II)- and Zn(1II)-> 4Mn02(5) sorption experiments (Figure S1) suggest that
exchangeable >*Mn(II) is a minor species at the surface of the > 4Mn02(5) starting substrate, as
noted earlier. Moreover, ion exchange is a rapid mechanism that typically equilibrates on a time

scale of minutes to hours,’* while >*Mn istotope equilibration in the current experiments requires

14

ACS Paragon Plus Environment



Page 15 of 29 Environmental Science & Technology

304 >3 months (Figure 1). The interfacial redox processes defined by reactions 1 and 3 are therefore
305  most relevant to the solid-liquid exchange of Mn observed here.

306 Our previous study of **Mn exchange employed identical MnOy) and Mn(II)aq)

307  concentrations as used here, but was conducted at pH 7.5 instead of pH 5.0.”° This pH difference
308  has a tremendous impact on the rate of *Mn solid-liquid exchange, with Mn isotope equilibrium
309  reached within 4 days at pH 7.5 *° while the equilibration time required in the current

310 experiments conducted at pH 5.0 is > 3 months (Figure 1). In the pH 7.5 study, vernadite

311  underwent bulk reductive transformation into MnOOH according to:

312 Mn”™ (g + Mn(IV)O, ) + 2 HyO <> 2 Mn(IIN)OOH s + 2 H (o) (5)
313 This bulk phase change, which went to completion within four days in this earlier study,’” is

314  expected to promote ~*Mn isotope equilibration as it enables extensive solid-fluid interaction and
315 likely involves dissolution of MnO,(s) and reprecipitation as secondary MnOOHgs). It does not
316  occur in the current experiments (Figure 2) because it is thermodynamically unfavorable at pH
317 5.0 at the aqueous Mn(1I) level used here.”’” This slows down **Mn isotope exchange at pH 5.0
318 relative to pH 7.5 in these systems. A second factor is in play as well. In the pH 7.5 experiments,
319  we observed that >75% of the structural Mn atoms in vernadite had exchanged in the first 2

320  hours of reaction before nucleation of secondary MnOOHj,) phases was observed.” This

321  suggests recrystallization of the vernadite starting solid as a major cause of >*Mn redistribution
322 during the early stages of reaction at pH 7.5, proceeding at a rate much faster than observed here
323 atpH 5.0 (Figure 1). The most plausible explanation for this pH effect is that the adsorption of
324  Mn(II) onto the MnO,, surface, a step critical to initiate interfacial Mn(II)-Mn(IV)

325  comproportionation, is more favorable at higher pH due to reduced competition by protons for

326  inner-sphere surface complexation.” This would allow for more extensive Mn(II)-MnOy

15
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interaction speeding up vernadite dissolution-reprecipitation at higher pH. This finding
additionally suggests that at pH 7.5 the rate and extent of Mn(III) production through interfacial
comproportionation well exceeds the stabilization of Mn(III) through formation of MnOOHgs,
during the early stages of Mn(II)-MnO, interaction. As a result, Mn(III) is not stabilized, but
instead undergoes disproportionation to drive recrystallization of the vernadite solid. The gradual
nucleation of secondary MnOOHy) stabilizing Mn(III) ultimately causes bulk reductive
transformation of the MnO,, substrate at pH 7.5.5%% At the lower pH value of 5.0 studied here,
precipitation of Mn(III) phases does not occur (Figure 2) due to the lack of thermodynamic
favorability under the reaction conditions applied, as noted above. The absence of a mechanism
stabilizing Mn(III) formed through interfacial Mn(II)-Mn(IV) comproportionation explains why
the MnO»,) substrate undergoes continuous recrystallization at this lower pH value.

The main finding of the current study is that the interaction of aqueous Mn(II) with
vernadite at pH 5.0 leads to continuous Mn(II)-driven dissolution-reprecipitation of the vernadite
substrate, without major changes in its mineralogical form. Such recrystallization processes have
not been previously observed for phyllomanganates, but have been demonstrated during

4-79
"7 However, the exchange processes are not

interaction of Fe(Il)-oxides with aqueous Fe(II).
equivalent in the Mn and Fe systems. This is because Fe(Ill)-oxide recrystallization involves
direct Fe(II)-Fe(III) electron exchange reactions, while that of MnO,) predominantly involves
Mn(II)-Mn(IV) exchange presumably with formation of transient Mn(III) intermediates. The

mechanisms of Mn solid-liquid exchange and the resulting impacts on Mn-oxide structure,

morphology and reactivity require further study.

ENVIRONMENTAL IMPLICATIONS
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350  The results from this study provide, for the first time, direct evidence for Mn atom exchange

351  between aqueous Mn(II) and vernadite without concurrent mineralogical phase transformations.
352 These findings indicate that aqueous Mn(II) drives continuous dissolution and reprecipitation of
353  the phyllomanganate substrate. Hexagonal phyllomanganates are important mineral regulators of
354 the distribution and speciation of trace metals in terrestrial and marine environments.“® *'° The
355  dynamic nature of the MnOy)-Mn(II),q) interface implies that metal adsorbates may be subject
356  to substantial changes in partitioning and speciation during Mn(II)-driven dissolution and re-

357  precipitation of the mineral sorbent, as observed for the Fe(IIT)-oxides.”* ™ An important

358 additional implication is the formation of transient Mn(III) surface species through interfacial
359  Mn(II)-Mn(IV) comproportionation as the main driver of Mn atom exchange. These Mn(III)

360  species may impact the adsorption and redox reactivity of the MnOy) substrate by engaging in

54,57 80-85 50, 57, 86

361  complexation, redox, or competitive interactions with metal(loid) sorbates, and

362 may be a source of dissolved Mn(IIT).* *7%

The results from this study thus have important

363  implications for the cycling of Mn and trace metals in aqueous environments where

364  phyllomanganates are in contact with dissolved Mn(II). This scenario is common in settings such
365  as suboxic riparian soils, the redox-clines of stratified marine and lake water columns, and

366  aquifers impacted by acid mine drainage. The combined results of the current study conducted at
367 pH 5.0 and previous studies performed at pH > 7 °** demonstrate the importance of pH as a

368  control on the impacts of Mn(II)aq)-MnO,) interaction. At neutral pH and higher, Mn(I1I)

369  produced through interfacial comproportionation may precipitate as secondary Mn(I1I)-

3659 or be stabilized by incorporation into the phyllomanganate sheets,*

370  hydroxide minerals
371 whereas at lower pH values these Mn(I1I) species drive recrystallization of the MnO,(s) substrate

372 without inducing observable structural changes, as shown by the current data. Effects of aqueous

17
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Mn(II) on Mn-oxide geochemistry will thus be quite different in marine environments (pH~8.3)
and suboxic soils (pH~7) than in acid mine drainage systems. Further work is needed to elucidate
the dynamics and processes of Mn(II)(aq-MnOy) interaction and resulting impacts on the

biogeochemical cycling of Mn and trace metal(loid)s.

SUPPORTING INFORMATION AVAILABLE
Description of: (1) the control experiments; (2) the XRD measurements; (3) the Mn K-edge XAS
measurements and analyses of the MnO,) samples, including assessment of the Mn oxidation

state based on near-edge spectra.
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Figure 1. Time-dependencies of the concentrations of dissolved **Mn(I1) ([**Mn(I1)].q) in
experiments 1 and 2, and of total dissolved Mn(ll) ([Mn(11)]aq) measured in experiment 3. In
experiment 1, aqueous **Mn(l1) was reacted with MnOx); in experiment 2, aqueous Mn(l1) was
reacted with >*MnO,); experiment 3 involved reaction of aqueous Mn(Il) with MnO,). Darker
and lighter data points in the data series of experiments 1 and 2 represent results from different
experiments, and demonstrate the reproducibility of the results. All experiments were conducted
under identical conditions, using suspensions with a MnOy particle loading of 530 pM (~0.05 g
L™), a pH of 5.0, and an initial Mn(I1)¢q) concentration of 760 uM. The total >*Mn activity in the
suspensions of experiments 1 and 2 was 264 kBq L™. The red dashed line indicates the
[54Mn(ll)]aq solution level predicted for isotope equilibrium (135 KBq L™), as explained in the
main text.
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Figure 2. Powder X-ray diffraction (XRD) patterns of: (i) MnO,) following 73 d of reaction
with 760 pM Mn(l1)q) at pH 5.0 and a suspension density of 530 pM MnO,) (top pattern); (ii)
MnOys following hydration at pH 5.0 without Mn(Il)(aq) at a suspension density of 530 uM
MnOy) (middle pattern); and (iii) the MnOy) starting substrate (bottom pattern). The regions to

the

high-angle side of the grey dashed line were scaled by a factor 5. The red dashed lines locate

differences in the diffractogram of the Mn(ll)-reacted material relative to the original and
hydrated control samples as discussed in the main text.
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Figure 3. Mn K-edge EXAFS data of the MnOy) samples: (a) k>-weighted  spectra; and (b)
raw and fitted Fourier transforms. The blue and black solid lines in (b) represent the imaginary
part and magnitude of the Fourier transforms of the raw spectra, respectively; while the
corresponding fits are represented by the green and red dotted lines. The fitting procedure and fit
results are summarized in the Sl (section 3.3 and Table S1). The Mn(1V)O, reference is vernadite
with an average Mn oxidation state of 4.0, as described in the Sl (section 3.2). An overlay of the
x spectra is presented in SI Figure S4 to compare their oscillation patterns and intensities.
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