

54Mn radiotracers demonstrate continuous dissolution and reprecipitation of vernadite (#-MnO₂) during interaction with aqueous Mn(II)

Evert J. Elzinga

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.6b02874 • Publication Date (Web): 12 Jul 2016

Downloaded from <http://pubs.acs.org> on July 13, 2016

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

Environmental Science & Technology is published by the American Chemical Society.

1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society.

However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 **⁵⁴Mn radiotracers demonstrate continuous dissolution and**
2 **reprecipitation of vernadite (δ -MnO₂) during interaction with**
3 **aqueous Mn(II)**

4

5 Evert J. Elzinga^{1*}

6

7 ¹Rutgers University

8 Department of Earth & Environmental Sciences

9 101 Warren Street

10 Newark, NJ 07102, USA

11

12 *Corresponding author. Email: elzinga@rutgers.edu; phone: (+001)-973-353-5238

13 ABSTRACT

14 ^{54}Mn radiotracers were used to assess Mn atom exchange between aqueous Mn(II) and vernadite
15 ($\delta\text{-MnO}_2$) at pH 5.0. Continuous solid-liquid redistribution of ^{54}Mn atoms occurred, and systems
16 are near isotopic equilibrium after 3 months of reaction. Despite this extensive exchange, XRD
17 and XAS data showed no major changes in vernadite bulk mineralogy. These results demonstrate
18 that the vernadite-Mn(II) interface is dynamic, with the substrate undergoing continuous
19 dissolution-reprecipitation mediated by aqueous Mn(II) without observable impacts on its
20 mineralogy. Interfacial redox reactions between adsorbed Mn(II) and solid-phase Mn(IV) and
21 Mn(III) are proposed as the main drivers of this process. Interaction between aqueous Mn(II) and
22 structural Mn(III) likely involves interfacial electron transfer coupled with Mn atom exchange.
23 The exchange of aqueous Mn(II) and solid-phase Mn(IV) is more complex and is proposed to
24 result from coupled interfacial comproportionation-disproportionation reactions, where electron
25 transfer from adsorbed Mn(II) to lattice Mn(IV) produces transient Mn(III) surface species that
26 disproportionate to re-generate aqueous Mn(II) and structural Mn(IV). These findings provide
27 further evidence for the importance of $\text{Mn(II)}_{(\text{aq})}$ - $\text{MnO}_{2(\text{s})}$ interactions and the attendant
28 production of transient Mn(III) intermediates to the geochemical functioning of
29 phyllosilicates in environments undergoing Mn redox cycling.

30 INTRODUCTION

31 The Mn redox cycle influences several important biogeochemical processes, including the
32 cycling of metals and metalloids,¹⁻¹⁰ the degradation of organic molecules,¹¹⁻¹⁶ and microbial
33 respiration in anaerobic environments.¹⁷⁻²¹ The most common Mn-oxides in natural aquatic
34 environments belong to the birnessite family, which is comprised of layered Mn(III, IV)-oxides
35 with octahedral sheets of variable symmetry, layer vacancy density, Mn(III) content, and sheet
36 stacking order.²²⁻²⁶ Biogeochemical Mn redox cycling often places birnessite minerals in contact
37 with Mn(II)-bearing solutions. The oxidative arm of the cycle is dominated by microbial
38 oxidation of Mn(II) generating birnessite minerals that typically have hexagonal sheet
39 symmetry,²⁶⁻⁴² while on the reductive arm birnessite is reduced by both biotic and abiotic
40 processes that convert Mn(IV) and Mn(III) into Mn(II), resulting in the release and build-up of
41 Mn(II) in solution.^{e.g. 18-21, 43-48} Birnessite minerals therefore commonly co-exist and interact with
42 dissolved Mn(II) under both Mn-oxidizing and Mn-reducing conditions.

43 Interactions between birnessite and aqueous Mn(II) can lead to substantial changes in
44 birnessite structure and composition, because Mn(II) acts as a reductant of structural Mn(IV)
45 inside the mineral lattice.^{31-33, 35, 39-41, 49-62} Recent studies suggest that resulting impacts depend
46 on the Mn(II):Mn(IV) ratio, pH, and the presence of metal impurities. At low Mn(II)
47 concentrations (Mn(II):Mn(IV) < 0.5), the content of structural Mn(III) in the birnessite sheets
48 increases,^{31-33, 35, 39, 40, 44, 50, 60} whereas at higher concentrations, bulk transformation of birnessite
49 into Mn(III)OOH and Mn(II)Mn(III)₂O₄ occurs.^{31, 56-59} Bulk transformations are promoted by
50 higher pH values,⁵⁷ whereas metal sorbates competing with Mn(II) for surface complexation
51 appear to interfere with the formation of Mn(III)-rich birnessite and secondary MnOOH
52 phases.^{39, 50, 58}

53 In a recent study,⁵⁹ we used ⁵⁴Mn tracers to track the solid-liquid exchange of Mn atoms
54 during the Mn(II)-driven reductive transformation of vernadite, a phyllosilicate with a
55 hexagonal layer structure and limited long-range sheet stacking order.^{22, 26} We observed fast
56 exchange of Mn atoms, with isotopic equilibrium reached in 2-4 days, as vernadite transformed
57 into feitknechtite (β -Mn(III)OOH) and manganite (γ -Mn(III)OOH) at pH 7.5. The results from
58 this study suggested that Mn(II) interaction with the vernadite surface triggers the extensive
59 production of short-lived Mn(III) surface species that rapidly undergo disproportionation, and
60 lead to gradual bulk reductive transformation of the δ -MnO₂ substrate through the slow
61 precipitation of MnOOH stabilizing Mn(III). The importance and impacts of transient Mn(III)
62 species in systems without reductive Mn-oxide phase transformations remain to be determined.⁵⁹

63 The aim of the current study is to assess the extent and dynamics of Mn atom exchange
64 during reaction of dissolved Mn(II) with vernadite under conditions where bulk reductive phase
65 transformations of the phyllosilicate substrate do not occur. Lefkowitz et al.⁵⁷ showed that
66 these transformations effectively shut down at pH < 7.0. Experiments were therefore performed
67 at a pH value of 5.0, employing ⁵⁴Mn radiotracers to track Mn atom exchange across the solid-
68 liquid interface of vernadite, accompanied by X-ray diffraction and X-ray absorption
69 spectroscopy measurements to assess any resulting changes in the mineral structure.

70

71 MATERIALS AND METHODS

72 The materials and methods used here are very similar to those in our earlier study.⁵⁹ Natural
73 abundance and ⁵⁴Mn-labeled vernadite were synthesized based on the method of Gadde and
74 Laitinen.⁶³ The two materials were prepared from the same starting chemicals, except for the
75 addition of a small ⁵⁴Mn spike to generate the radiolabeled phase, which had a specific activity

76 of 498 MBq ^{54}Mn / mol Mn corresponding to a $^{54}\text{Mn}:\text{Mn}$ molar ratio of $1.37*10^{-6}$. The natural
77 abundance and ^{54}Mn -labeled $\delta\text{-MnO}_2$ substrates are referred to here as $\text{MnO}_{2(\text{s})}$ and $^{54}\text{MnO}_{2(\text{s})}$,
78 respectively. Iodine titration^{26, 64} of the $\text{MnO}_{2(\text{s})}$ sorbent (in triplicate) yielded an average Mn
79 oxidation state of 3.74 (± 0.13), indicating the presence of structural Mn(III) as discussed further
80 in section 3.2 of the Supporting Information (SI).

81 Three types of experiments were conducted: (1) sorption of ^{54}Mn -labeled $\text{Mn(II)}_{(\text{aq})}$ onto
82 $\text{MnO}_{2(\text{s})}$; (2) sorption of $\text{Mn(II)}_{(\text{aq})}$ onto $^{54}\text{MnO}_{2(\text{s})}$; and (3) sorption of $\text{Mn(II)}_{(\text{aq})}$ onto $\text{MnO}_{2(\text{s})}$.
83 The suspensions (100 mL) were prepared in 0.1 M NaCl at a $\text{MnO}_{2(\text{s})}$ or $^{54}\text{MnO}_{2(\text{s})}$ concentration
84 of 530 μM , corresponding to $\sim 0.05 \text{ g L}^{-1}$, and held in opaque polyethylene containers. The
85 suspensions were spiked with 760 μM of either $\text{Mn(II)}_{(\text{aq})}$ or ^{54}Mn -labeled $\text{Mn(II)}_{(\text{aq})}$. Suspension
86 pH values were maintained at a value of 5.0 by regular addition of small aliquots of 0.1 M NaOH
87 as necessary. The experiments were run under ambient atmospheric conditions. Exclusion of
88 $\text{O}_{2(\text{g})}$ was not deemed necessary based on the results of Lefkowitz et al.⁵⁷ who reported that
89 Mn(II) is not sensitive to oxidation by $\text{O}_{2(\text{g})}$ in birnessite suspensions at $\text{pH} \leq 6.0$. The
90 suspensions were sampled regularly over a 3-month time period by filtration of 5 mL
91 subsamples. Supernatants were analyzed for the concentration of dissolved Mn or ^{54}Mn (details
92 below), which were assumed to have an oxidation state of +II based on the low solubility of
93 Mn(IV) and the instability of aqueous Mn(III). As in our earlier study,⁵⁹ a series of control
94 samples were prepared and analyzed to constrain data interpretation of the sorption systems.
95 These are described in the SI.

96 The ^{54}Mn activities in the suspensions of experiments 1 and 2 were identical at 264 kBq
97 L^{-1} . In experiment 2, the activity was determined by the specific activity of the $^{54}\text{MnO}_{2(\text{s})}$
98 substrate (498 MBq ^{54}Mn /mol Mn) and the suspension density of the experiment (530 μM

99 $^{54}\text{MnO}_{2(\text{s})}$). In the suspension of experiment 1, it was set by adding an appropriate amount of
100 $^{54}\text{MnCl}_{2(\text{aq})}$ to the 1.0 M $\text{MnCl}_{2(\text{aq})}$ stock solution that was introduced into the $\text{MnO}_{2(\text{s})}$ suspension
101 to start the experiment. Thus, although the ^{54}Mn activities in the suspensions of experiments 1
102 and 2 were the same, the initial ^{54}Mn host phases differed: in experiment 1, ^{54}Mn was introduced
103 as aqueous $^{54}\text{Mn}(\text{II})$, while in experiment 2, ^{54}Mn started out as solid-phase ^{54}Mn in the
104 $^{54}\text{MnO}_{2(\text{s})}$ sorbent.

105 The supernatants from experiment 3 (which contained no ^{54}Mn) were analyzed for the
106 concentration of dissolved $\text{Mn}(\text{II})$ ($[\text{Mn}(\text{II})]_{\text{aq}}$) using the formaldoxime method.⁶⁵ The
107 supernatants from experiments 1 and 2 were analyzed for the concentration of aqueous $^{54}\text{Mn}(\text{II})$
108 ($[^{54}\text{Mn}(\text{II})]_{\text{aq}}$) using liquid scintillation counting. A 900 μL aliquot of the supernatant was mixed
109 with 5.0 mL of scintillation cocktail (Ecoscint A, National Diagnostics) and counted on a Coulter
110 Beckman LS 6500 to a precision of 0.75% or a maximum counting time of 2 h. The ^{54}Mn
111 solutions and controls from each experiment were counted as a single batch, requiring less than 2
112 days. Since the half-life of ^{54}Mn is 312.7 days, natural decay of ^{54}Mn during analysis was <
113 0.5%, which is insignificant relative to the changes in $[^{54}\text{Mn}(\text{II})]_{\text{aq}}$ resulting from exchange (see
114 results). Sample solids recovered from experiment 3 were analyzed by powder X-ray diffraction
115 (XRD) and synchrotron X-ray absorption spectroscopy (XAS) measurements described in the SI.
116

117 RESULTS

118 *Batch kinetic experiments*

119 Figure 1 presents the sorption kinetic results, showing the time dependencies of $[^{54}\text{Mn}(\text{II})]_{\text{aq}}$ in
120 experiments 1 and 2, and that of $[\text{Mn}(\text{II})]_{\text{aq}}$ in experiment 3. The results of experiment 1
121 demonstrate a slow, continuous decline of $[^{54}\text{Mn}(\text{II})]_{\text{aq}}$ with no evidence to suggest that the

partitioning of ^{54}Mn reaches equilibrium in the 3-month time frame of the experiment. This kinetic pattern is mirrored by the dynamics of ^{54}Mn partitioning in experiment 2, where ^{54}Mn initially is present only in the $^{54}\text{MnO}_{2(\text{s})}$ solid. This system exhibits a gradual increase in $[^{54}\text{Mn}(\text{II})]_{\text{aq}}$ as the $^{54}\text{MnO}_{2(\text{s})}$ substrate reacts with aqueous Mn(II), with no evidence to suggest that isotope equilibrium has been reached after 3 months. The kinetic trajectories of the $[^{54}\text{Mn}(\text{II})]_{\text{aq}}$ levels of experiments 1 and 2 appear to track towards a similar level, suggesting that the solid-liquid partitioning of ^{54}Mn isotopes slowly approaches the same endpoint in both systems. The slow dynamics of ^{54}Mn equilibration in these systems contrast with the rapid attainment of the macroscopic Mn(II) sorption equilibrium in experiment 3, where $\text{Mn}(\text{II})_{\text{aq}}$ levels stabilize within the first week at $\sim 660 \mu\text{M}$ (Figure 1). The re-partitioning of ^{54}Mn isotopes in experiments 1 and 2 is therefore not associated with net Mn(II) sorption or desorption, but is driven by Mn atom exchange between the mineral solid and aqueous Mn(II). Results from the control experiments show no release of $^{54}\text{Mn}(\text{II})_{\text{aq}}$ from the $^{54}\text{MnO}_{2(\text{s})}$ substrate in the absence of Mn(II), or during reaction with Zn(II) and Ni(II) (Figure S1). This indicates that the appearance of aqueous $^{54}\text{Mn}(\text{II})$ in experiment 2 is not due to $^{54}\text{Mn}(\text{II})$ -Mn(II) cation exchange at the $^{54}\text{MnO}_{2(\text{s})}$ surface. Instead, it is attributed to the interfacial redox reactions between Mn(II) and $^{54}\text{MnO}_{2(\text{s})}$ discussed further below.

Quantitative analysis of the experimental results demonstrates extensive exchange of Mn atoms during Mn(II)-vernadite interaction. In experiment 1, $\sim 45\%$ of $^{54}\text{Mn}(\text{II})_{(\text{aq})}$ initially in solution has been partitioned to the solid phase after 3 months of reaction (Figure 1). This is equivalent to removal of $\sim 340 \mu\text{M}$ $^{54}\text{Mn}(\text{II})_{(\text{aq})}$, which well exceeds the macroscopic sorption of $\sim 100 \mu\text{M}$ Mn(II) $_{(\text{aq})}$ measured in experiment 3 (Figure 1). Most of the removal of $^{54}\text{Mn}(\text{II})_{(\text{aq})}$ in experiment 1 therefore is due to Mn(II) $_{(\text{aq})}$ -MnO $_{2(\text{s})}$ atom exchange. In experiment 2, $\sim 42\%$ of

145 ^{54}Mn initially present in the solid has been mobilized to solution as $^{54}\text{Mn}(\text{II})_{(\text{aq})}$ after 3 months of
146 reaction (Figure 1). This release of $^{54}\text{Mn}(\text{II})$ contrasts notably with the adsorption of $\text{Mn}(\text{II})_{(\text{aq})}$
147 observed macroscopically, again demonstrating the importance of Mn atom exchange between
148 aqueous Mn(II) and the $\text{MnO}_{2(\text{s})}$ solid.

149 The extent of exchange can be appreciated by comparing the solid-liquid partitioning of
150 ^{54}Mn and total Mn in these systems. The total Mn concentration in the experiments is 1290 μM ,
151 as calculated by summing the concentrations of Mn initially present in the solid (530 μM) and of
152 Mn(II) initially introduced in solution (760 μM). In the equilibrated suspension, $[\text{Mn}(\text{II})]_{\text{aq}} \approx 660$
153 μM (Figure 1), and the concentration of solid-phase Mn therefore is $1290-660=630 \mu\text{M}$. This
154 indicates that approximately half of total Mn is present as solid-phase Mn ($630/1290=0.49$), and
155 the other half as aqueous $\text{Mn}(\text{II})_{(\text{aq})}$. The same solid-liquid distribution is expected for the ^{54}Mn
156 isotopes when the systems are at isotopic equilibrium,⁵⁹ and would correspond to an aqueous
157 $^{54}\text{Mn}(\text{II})$ level of $[\text{Mn}(\text{II})]_{\text{aq}} = 0.51*264 = 135 \text{ kBq L}^{-1}$. Indeed, the $[\text{Mn}(\text{II})]_{\text{aq}}$ levels in both
158 experiments 1 and 2 appear to track towards this predicted endpoint, and are near isotope
159 equilibrium after 3 months (Figure 1). This approach towards Mn exchange equilibrium, which
160 occurs regardless of the original host of ^{54}Mn , indicates that complete mixing of solid-phase and
161 aqueous Mn takes place in these systems. We have previously demonstrated similarly complete
162 Mn isotope solid-liquid exchange during Mn(II)-induced bulk reductive transformation of
163 $\text{MnO}_{2(\text{s})}$ into MnOOH at pH 7.5.⁵⁹ The XRD and XAS analyses described next assess the
164 structural impacts of Mn atom exchange in the current experiments conducted at pH 5.0.

165

166 *XRD and XAS analyses*

167 The XRD pattern of $\text{MnO}_{2(\text{s})}$ reacted with $\text{Mn}(\text{II})_{(\text{aq})}$ for 73 days is compared in Figure 2
168 to that of the starting substrate and of the vernadite control sample hydrated for 73 days without
169 $\text{Mn}(\text{II})$. The patterns are typical of turbostratic vernadite, exhibiting broad hkl diffraction bands
170 in the 30° - $70^\circ 2\theta$ range, and weak basal reflections at shallower angles ($< 30^\circ 2\theta$). The hkl
171 bands, at $\sim 37^\circ 2\theta$ ($d = 2.42 \text{ \AA}$) and $\sim 66.5^\circ 2\theta$ ($d=1.41 \text{ \AA}$), dominate the patterns. The positions,
172 shapes and relative intensities of these peaks closely resemble those of earlier studies of
173 vernadite and hexagonal birnessite, and their d-spacings match those of the (11,20) and (31,02)
174 diffraction bands of a C-centered two-dimensional unit cell.^{24, 26, 28, 32, 34, 37, 66-69} The hexagonal
175 symmetry of the mineral layers is evident from the value of 1.73 for the ratio of the d values of
176 these bands.^{26, 28, 34, 67-69} The faint basal reflection at $\sim 24.5^\circ 2\theta$ demonstrates limited coherence
177 in the stacking of the hexagonal sheets along the c-axis. This is a typical feature of vernadite and
178 indicates a small number of sheets stacked per diffracting particle.^{34, 66, 68} Overall, the XRD data
179 demonstrate that turbostratic δ - MnO_2 with hexagonal layer symmetry is the dominant Mn-oxide
180 phase in all three samples.

181 A detailed inspection of the XRD patterns in Figure 2 reveals subtle differences
182 suggesting structural changes in the $\text{MnO}_{2(\text{s})}$ substrate induced by reaction with $\text{Mn}(\text{II})$. First, the
183 pattern of $\text{Mn}(\text{II})$ -reacted $\text{MnO}_{2(\text{s})}$ exhibits a dip at $\sim 46^\circ 2\theta$ in the high-angle scattering tail of the
184 (11,20) peak. This feature has been attributed to the capping of vacancy sites by adsorbed Mn,^{28,}
185 ^{34, 44, 67} and has also been observed for vernadite reacted with Ni(II) and Zn(II).^{68, 69} Second, the
186 (11,20) and (31,02) peak maxima in the pattern of $\text{Mn}(\text{II})$ -reacted $\text{MnO}_{2(\text{s})}$ are shifted to slightly
187 lower 2θ relative to the patterns of the original substrate and that of the hydrated control sample
188 (Figure 2). Similar hkl band shifts have been observed previously for δ - MnO_2 high in interlayer
189 Mn.^{34, 44} Although the exact cause is unknown,⁴⁴ possible explanations include a slight expansion

190 of the unit cell,³⁴ weak splitting of the (11,20) and (31,02) bands due to incorporation of Mn(III)
191 into the mineral sheets,^{59, 60} or a slight increase in particle size.^{28, 44} The final change noted for
192 the XRD pattern of Mn(II)-reacted MnO_{2(s)} is the appearance of two small new peaks: one
193 appearing as a shoulder on the (11,02) peak at ~42° 2θ, the other as a weak band at ~56° 2θ
194 (Figure 2). These small bands may be further indications of changes in the δ-MnO₂ lattice or
195 interlayer structure. Grangeon et al.³⁴ observed a similar shoulder near 42° 2θ in the diffraction
196 pattern of biogenic vernadite, which also contained a broad and weak band near 55° 2θ. These
197 features were successfully reproduced in XRD simulations assuming a relatively large amount of
198 interlayer Mn.³⁴ Besides modifications of the interlayer, changes in MnO_{2(s)} sheet structure or
199 layer stacking may be involved in the appearance of the new bands as well. Incorporation of
200 Mn(III) into phyllosilicate mineral sheets following oxidation of adsorbed Mn(II) causes
201 splitting of the (11,20) and (31,02) bands, including development of a shoulder at 42° 2θ,⁶⁰ while
202 the orientation of layer stacking influences the position and intensity of diffraction bands in the
203 35°-65° 2θ range.⁶⁷ The small additional bands appearing in the pattern of Mn(II)-reacted
204 MnO_{2(s)} thus may signal slight changes in structural Mn(III) content or in the arrangement of
205 sheet stacking.

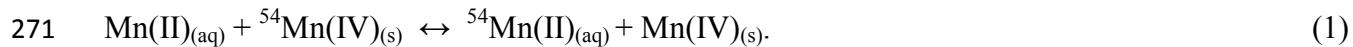
206 Another possible explanation for the changes observed in the XRD data is the presence of
207 secondary Mn-oxide(s) formed during Mn(II)-MnO_{2(s)} interaction, although the subtle nature of
208 these changes indicates that any such phases would be present in relatively small amounts. A
209 review of the Powder Diffraction File database of the International Centre for Diffraction Data
210 (ICDD)⁷⁰ revealed several known Mn-oxide minerals with characteristic peaks near 42° and 55°
211 2θ, including pyrolusite (β -MnO₂) and nsutite (γ -MnO₂). However, these phases all have
212 additional diagnostic high-intensity diffraction peaks that are absent in the XRD pattern of the

213 Mn(II)-reacted sample. This suggests that modification of the vernadite interlayer or layer
214 structure (as discussed above) is the more likely cause of the subtle changes in the XRD pattern
215 of the Mn(II)-reacted material.

216 The Mn *K*-edge XAS data presented in Figure 3 and SI Figures S2-S4 help further
217 constrain the structural impacts of aqueous Mn(II) on the MnO_{2(s)} substrate. The near-edge
218 spectrum of Mn(II)-reacted MnO_{2(s)} is similar to that of the starting substrate and the control
219 sample (Figure S3), indicating similar Mn mineralogy. Net sorption of Mn(II)_(aq) is reflected in
220 increased spectral intensity at 6.545-6.560 keV in the spectrum of Mn(II)-reacted MnO_{2(s)}
221 (Figure S3). The k^3 -weighted χ -spectra of the MnO_{2(s)} samples are displayed in Figure 3a, and
222 the corresponding raw and fitted Fourier transform functions are shown Figure 3b; the fit results
223 are summarized in Table S1. The χ spectra have similar frequencies (Figure 3a), indicating that
224 the MnO_{2(s)} samples have similar structures, in agreement with the XRD data (Figure 2). This is
225 confirmed by the similarity of the radial structure functions (Figure 3b) and fit results (Table S1),
226 which are consistent with previous EXAFS fits of vernadite.^{28,34} The main difference is a
227 reduction in amplitude of the oscillations in the spectrum of Mn(II)-reacted MnO_{2(s)} relative to
228 that of the other samples, as demonstrated particularly well by the overlay of χ spectra presented
229 in Figure S4. This dampening is manifested in the radial structure function by the reduced
230 intensities of the Fourier transform peaks (Figure 3b), and in the fit results by lower coordination
231 numbers and/or higher Debye-Waller factors of the Mn-O and Mn-Mn shells (Table S1).
232 Villalobos et al.²⁸ and Grangeon et al.³⁴ noted similar oscillation dampening in the EXAFS
233 spectra of Mn(II, III)-rich biogenic phyllosilicates. This likely arises from structural disorder
234 effects induced by the variability of Mn-O and Mn-Mn distances with Mn oxidation state.^{28,34}
235 Some dampening also occurs in the χ spectrum of the hydrated control sample relative to the

236 original $\text{MnO}_{2(\text{s})}$ material (Figures 3 and S4; Table S1), suggesting slight changes in Mn
237 speciation induced by hydration and aging of the $\text{MnO}_{2(\text{s})}$ suspension. The exact cause and nature
238 of these changes cannot be determined from the current data, although one may speculate that
239 repartitioning of structural or interlayer Mn(III) is involved. Additional work is required to
240 investigate these effects in more detail.

241 Besides oscillation dampening, no other major differences are visible in the EXAFS data
242 of Mn(II)-reacted $\text{MnO}_{2(\text{s})}$ versus the other samples (Figures 3 and S4; Table S1). This confirms
243 that the phyllosilicate sheet structure remains intact during long-term interaction with
244 Mn(II)_(aq) under the conditions of this study, and indicates that the $\text{MnO}_{2(\text{s})}$ substrate does not
245 undergo major changes in bulk mineralogy, consistent with the XRD results (Figure 2). This lack
246 of change in $\text{MnO}_{2(\text{s})}$ bulk structure is notable in view of the ⁵⁴Mn results presented in Figure 1,
247 which suggest that full exchange occurs between solid-phase and aqueous Mn (see discussion in
248 previous section). It also is a distinct and notable difference with our previous study conducted at
249 pH 7.5, where ⁵⁴Mn isotope equilibration occurred concurrent with bulk mineralogical
250 transformation of $\text{MnO}_{2(\text{s})}$ into Mn(III)OOH phases.⁵⁹ The mechanistic interpretations and
251 implications of these findings are discussed next.

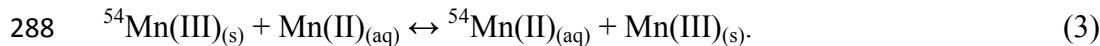

252

253 *Mechanisms of Mn atom exchange*

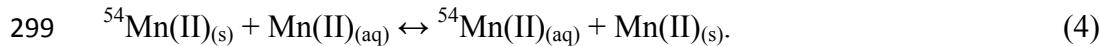
254 The combined results of the ⁵⁴Mn radiotracer experiments and the structural analyses
255 demonstrate that $\text{MnO}_{2(\text{s})}$ is dynamic in the presence of Mn(II)_(aq). The mineral substrate is
256 engaged in continuous reactions exchanging aqueous Mn(II) and solid-phase Mn without
257 undergoing phase changes. This “swapping” of Mn atoms between the aqueous and solid phase
258 cannot be observed macroscopically through changes in $[\text{Mn(II)}]_{\text{aq}}$, as shown by the results of

259 experiment 3 in Figure 1. This indicates the establishment of a dynamic equilibrium between
260 $\text{MnO}_{2(\text{s})}$ dissolution (which involves conversion of solid-phase Mn into aqueous Mn(II)) and
261 $\text{MnO}_{2(\text{s})}$ precipitation (conversion of aqueous Mn(II) into solid-phase Mn), where the fluxes of
262 Mn between the solid and liquid phase are at steady state. The interaction of $\text{MnO}_{2(\text{s})}$ with
263 aqueous Mn(II) thus induces a continuous recrystallization of the mineral substrate without
264 causing bulk structural changes in the $\text{MnO}_{2(\text{s})}$ substrate .

265 The average oxidation state of the $\text{MnO}_{2(\text{s})}$ starting sorbent is ~ 3.74 , indicating that it
266 contains a considerable fraction ($\sim 26\%$) of structural and interlayer Mn(III) (see discussion in
267 SI). The heterogeneity of solid-phase Mn valence implies that exchange with aqueous Mn(II)
268 proceeds through different pathways that vary with Mn oxidation state. Since Mn(IV) is the
269 dominant solid-phase Mn species, $\text{Mn(IV)}_{(\text{s})}$ - $\text{Mn(II)}_{(\text{aq})}$ atom exchange predominates. Exchange
270 of lattice $^{54}\text{Mn(IV)}$ can be summarized as:

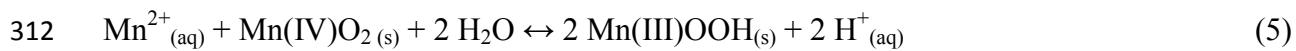

272 Mechanistically, this reaction likely involves coupled comproportionation-disproportionation
273 reactions at the $\text{MnO}_{2(\text{s})}$ surface, as discussed in our previous study.⁵⁹ The process is initiated by
274 interfacial electron transfer from adsorbed Mn(II) to lattice Mn(IV), which produces transient
275 Mn(III) species that disproportionate to re-form aqueous Mn(II) and solid phase Mn(IV).⁵⁹ An
276 example of a specific pathway is interfacial $^{54}\text{Mn(IV)}$ -Mn(II) comproportionation generating
277 transient $^{54}\text{Mn(III)}$ species (denoted as $>^{54}\text{Mn(III)}$) that disproportionate to form $^{54}\text{Mn(II)}_{(\text{aq})}$:

279 yielding reaction (1). Other pathways of coupled comproportionation-disproportionation can be
280 envisioned. For instance, $>\text{Mn(III)}$ produced by interfacial Mn(II)-Mn(IV) comproportionation
281 may disproportionate with structural Mn(III) of the $\text{MnO}_{2(\text{s})}$ starting substrate, or lattice $^{54}\text{Mn(IV)}$


282 may react with two aqueous Mn(II) atoms to form aqueous Mn and two >Mn(III) atoms that
283 subsequently undergo disproportionation. It is likely that these and other pathways of Mn(II)-
284 Mn(IV) exchange, mediated by transient Mn(III), operate simultaneously to drive vernadite
285 recrystallization.

286 Interaction of aqueous Mn(II) with solid-phase $^{54}\text{Mn}(\text{III})$ may lead to Mn atom exchange
287 through interfacial electron transfer according to:⁵⁹

289 Such coupled electron transfer and atom exchange reactions between solid-phase Mn(III) and
290 aqueous Mn(II) were proposed by Elzinga⁵⁶ to explain Mn(II)-catalyzed conversion of
291 metastable feitknechtite (β -MnOOH) into manganite (γ -MnOOH), and were recently proposed to
292 explain oxygen isotope exchange between manganite and solutions containing $\text{Mn}(\text{II})_{(\text{aq})}$.⁷¹ The
293 Mn(II)-Mn(III) exchange described by reaction 3 may couple with Mn(II)-Mn(IV) exchange
294 described by reaction 1. This would occur if Mn(III) produced by interfacial Mn(II)-Mn(IV)
295 comproportionation (reaction 2) engages in electron transfer and atom exchange with aqueous
296 Mn(II).


297 A final pathway to consider is homovalent exchange between aqueous Mn(II) and solid-
298 phase $^{54}\text{Mn}(\text{II})$, described by:

300 The results of the Ni(II)- and Zn(II)- $^{54}\text{MnO}_{2(\text{s})}$ sorption experiments (Figure S1) suggest that
301 exchangeable $^{54}\text{Mn}(\text{II})$ is a minor species at the surface of the $^{54}\text{MnO}_{2(\text{s})}$ starting substrate, as
302 noted earlier. Moreover, ion exchange is a rapid mechanism that typically equilibrates on a time
303 scale of minutes to hours,⁷² while ^{54}Mn isotope equilibration in the current experiments requires

304 > 3 months (Figure 1). The interfacial redox processes defined by reactions 1 and 3 are therefore
305 most relevant to the solid-liquid exchange of Mn observed here.

306 Our previous study of ^{54}Mn exchange employed identical $\text{MnO}_{2(\text{s})}$ and $\text{Mn(II)}_{(\text{aq})}$
307 concentrations as used here, but was conducted at pH 7.5 instead of pH 5.0.⁵⁹ This pH difference
308 has a tremendous impact on the rate of ^{54}Mn solid-liquid exchange, with Mn isotope equilibrium
309 reached within 4 days at pH 7.5⁵⁹ while the equilibration time required in the current
310 experiments conducted at pH 5.0 is > 3 months (Figure 1). In the pH 7.5 study, vernadite
311 underwent bulk reductive transformation into MnOOH according to:

313 This bulk phase change, which went to completion within four days in this earlier study,⁵⁹ is
314 expected to promote ^{54}Mn isotope equilibration as it enables extensive solid-fluid interaction and
315 likely involves dissolution of $\text{MnO}_{2(\text{s})}$ and reprecipitation as secondary $\text{MnOOH}_{(\text{s})}$. It does not
316 occur in the current experiments (Figure 2) because it is thermodynamically unfavorable at pH
317 5.0 at the aqueous Mn(II) level used here.⁵⁷ This slows down ^{54}Mn isotope exchange at pH 5.0
318 relative to pH 7.5 in these systems. A second factor is in play as well. In the pH 7.5 experiments,
319 we observed that >75% of the structural Mn atoms in vernadite had exchanged in the first 2
320 hours of reaction before nucleation of secondary $\text{MnOOH}_{(\text{s})}$ phases was observed.⁵⁹ This
321 suggests recrystallization of the vernadite starting solid as a major cause of ^{54}Mn redistribution
322 during the early stages of reaction at pH 7.5, proceeding at a rate much faster than observed here
323 at pH 5.0 (Figure 1). The most plausible explanation for this pH effect is that the adsorption of
324 Mn(II) onto the $\text{MnO}_{2(\text{s})}$ surface, a step critical to initiate interfacial Mn(II)-Mn(IV)
325 comproportionation, is more favorable at higher pH due to reduced competition by protons for
326 inner-sphere surface complexation.⁷³ This would allow for more extensive Mn(II)- $\text{MnO}_{2(\text{s})}$

327 interaction speeding up vernadite dissolution-reprecipitation at higher pH. This finding
328 additionally suggests that at pH 7.5 the rate and extent of Mn(III) production through interfacial
329 comproportionation well exceeds the stabilization of Mn(III) through formation of MnOOH_(s)
330 during the early stages of Mn(II)-MnO_{2(s)} interaction. As a result, Mn(III) is not stabilized, but
331 instead undergoes disproportionation to drive recrystallization of the vernadite solid. The gradual
332 nucleation of secondary MnOOH_(s) stabilizing Mn(III) ultimately causes bulk reductive
333 transformation of the MnO_{2(s)} substrate at pH 7.5.⁵⁶⁻⁵⁹ At the lower pH value of 5.0 studied here,
334 precipitation of Mn(III) phases does not occur (Figure 2) due to the lack of thermodynamic
335 favorability under the reaction conditions applied, as noted above. The absence of a mechanism
336 stabilizing Mn(III) formed through interfacial Mn(II)-Mn(IV) comproportionation explains why
337 the MnO_{2(s)} substrate undergoes continuous recrystallization at this lower pH value.

338 The main finding of the current study is that the interaction of aqueous Mn(II) with
339 vernadite at pH 5.0 leads to continuous Mn(II)-driven dissolution-reprecipitation of the vernadite
340 substrate, without major changes in its mineralogical form. Such recrystallization processes have
341 not been previously observed for phyllosilicates, but have been demonstrated during
342 interaction of Fe(III)-oxides with aqueous Fe(II).⁷⁴⁻⁷⁹ However, the exchange processes are not
343 equivalent in the Mn and Fe systems. This is because Fe(III)-oxide recrystallization involves
344 direct Fe(II)-Fe(III) electron exchange reactions, while that of MnO_{2(s)} predominantly involves
345 Mn(II)-Mn(IV) exchange presumably with formation of transient Mn(III) intermediates. The
346 mechanisms of Mn solid-liquid exchange and the resulting impacts on Mn-oxide structure,
347 morphology and reactivity require further study.

348

349 ENVIRONMENTAL IMPLICATIONS

350 The results from this study provide, for the first time, direct evidence for Mn atom exchange
351 between aqueous Mn(II) and vernadite without concurrent mineralogical phase transformations.
352 These findings indicate that aqueous Mn(II) drives continuous dissolution and reprecipitation of
353 the phyllo-manganate substrate. Hexagonal phyllo-manganates are important mineral regulators of
354 the distribution and speciation of trace metals in terrestrial and marine environments.^{e.g. 4-10} The
355 dynamic nature of the $\text{MnO}_{2(s)}$ -Mn(II)_(aq) interface implies that metal adsorbates may be subject
356 to substantial changes in partitioning and speciation during Mn(II)-driven dissolution and re-
357 precipitation of the mineral sorbent, as observed for the Fe(III)-oxides.⁷⁶⁻⁷⁸ An important
358 additional implication is the formation of transient Mn(III) surface species through interfacial
359 Mn(II)-Mn(IV) comproportionation as the main driver of Mn atom exchange. These Mn(III)
360 species may impact the adsorption and redox reactivity of the $\text{MnO}_{2(s)}$ substrate by engaging in
361 complexation,^{54, 57} redox,⁸⁰⁻⁸⁵ or competitive interactions^{50, 57, 86} with metal(loid) sorbates, and
362 may be a source of dissolved Mn(III).^{49, 87-90} The results from this study thus have important
363 implications for the cycling of Mn and trace metals in aqueous environments where
364 phyllo-manganates are in contact with dissolved Mn(II). This scenario is common in settings such
365 as suboxic riparian soils, the redox-clines of stratified marine and lake water columns, and
366 aquifers impacted by acid mine drainage. The combined results of the current study conducted at
367 pH 5.0 and previous studies performed at pH > 7⁵⁶⁻⁵⁹ demonstrate the importance of pH as a
368 control on the impacts of Mn(II)_(aq)- $\text{MnO}_{2(s)}$ interaction. At neutral pH and higher, Mn(III)
369 produced through interfacial comproportionation may precipitate as secondary Mn(III)-
370 hydroxide minerals⁵⁶⁻⁵⁹ or be stabilized by incorporation into the phyllo-manganate sheets,⁶⁰
371 whereas at lower pH values these Mn(III) species drive recrystallization of the $\text{MnO}_{2(s)}$ substrate
372 without inducing observable structural changes, as shown by the current data. Effects of aqueous

373 Mn(II) on Mn-oxide geochemistry will thus be quite different in marine environments (pH~8.3)
374 and suboxic soils (pH~7) than in acid mine drainage systems. Further work is needed to elucidate
375 the dynamics and processes of Mn(II)_(aq)-MnO_{2(s)} interaction and resulting impacts on the
376 biogeochemical cycling of Mn and trace metal(loid)s.

377

378 SUPPORTING INFORMATION AVAILABLE

379 Description of: (1) the control experiments; (2) the XRD measurements; (3) the Mn K-edge XAS
380 measurements and analyses of the MnO_{2(s)} samples, including assessment of the Mn oxidation
381 state based on near-edge spectra.

382

383 ACKNOWLEDGMENTS

384 Funding for this work was provided by Rutgers University. Use of the Bruker D8 Advance X-
385 ray diffractometer at Rutgers-Newark was supported by the NSF through award EAR-1337450. I
386 thank Adam Kustka for use of the radio-isotope facility at Rutgers-Newark, and Sungsik Lee and
387 Ben Reinhart at APS beamline 12BMB-B for assistance during XAS data collection. I would
388 also like to thank Daniel Giammar and six anonymous reviewers for their constructive and
389 insightful comments that improved this paper.

390

391 REFERENCES

392

393 (1) Borch, T.; Kretzschmar, R.; Kappler, A.; Cappellen, P. Van; Ginder-Vogel, M.; Voegelin, A.;
394 Campbell, K. Biogeochemical redox processes and their impact on contaminant dynamics.
395 *Environ. Sci. Technol.* **2010**, 44, 15–23.

396

397 (2) Fuller, C.C.; Bargar, J.R. Processes of zinc attenuation by biogenic manganese oxides
398 forming in the hyporheic zone of Pinal Creek, Arizona. *Environ. Sci. Technol.* **2014**, 48, 2165–
399 2172.

400

401 (3) Manceau, A.; Lanson, B.; Schlegel, M. L.; Harge, J. C.; Musso, M.; Eybert-Berard L,
402 Hazemann, J. L.; Chateigner, D., Lamble, G. M. Quantitative Zn speciation in smelter-
403 contaminated soils by EXAFS spectroscopy. *Geochim. Cosmochim. Acta* **2000**, 66, 2639-2663.
404

405 (4) Peacock, C. L.; Sherman, D. M. Sorption of Ni by birnessite: Equilibrium controls on Ni in
406 seawater. *Chem. Geol.* **2007**, 238, 94-106.
407

408 (5) Toner, B.; Manceau, A.; Webb, S. M.; Sposito, G. Zinc sorption to biogenic hexagonal-
409 birnessite particles within a hydrated bacterial biofilm. *Geochim. Cosmochim. Acta* **2006**, 70,
410 27-43.
411

412 (6) Marcus, M. A.; Manceau, A.; Kersten, M. Mn, Fe, Zn and As speciation in a fast-growing
413 ferromanganese marine nodule. *Geochim. Cosmochim. Acta* **2004**, 68, 3125-3136.
414

415 (7) Peacock, C. L.; Moon, E. M., Oxidative scavenging of thallium by birnessite: Explanation for
416 thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates.
417 *Geochimica et Cosmochimica Acta* **2012**, 84, 297-313.
418

419 (8) Manceau, A.; Tamura, N.; Celestre, R. S.; MacDowell A. A.; Geoffroy N.; Sposito, G.;
420 Padmore, H. A. Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from
421 loess soils of the Mississippi basin. *Environ. Sci. Technol.* **2003**, 37, 75-80.
422

423 (9) Oze, C.; Bird, D.K.; Fendorf, S. Genesis of hexavalent chromium from natural sources in
424 soil and groundwater. *Proc. Natl. Acad. Sci. U.S.A.* **2007**, 104, 6544-6549.
425

426 (10) O'Reilly, S. E.; Hochella, M. F. Lead sorption efficiencies of natural and synthetic Mn and
427 Fe-oxides, *Geochim. Cosmochim. Acta* **2003**, 67, 4471-4487.
428

429 (11) Stone A.T.; Morgan J.J. Reduction and dissolution of manganese(III) and manganese(IV)
430 oxides by organics. 2. Survey of the reactivity of organics. *Environ. Sci. Technol* **1984**, 18, 617-
431 624.
432

433 (12) Matocha C.J.; Sparks D.L.; Ammonette J.W.; Kukkadapu R.K. Kinetics and mechanism of
434 birnessite reduction by catechol. *Soil Sci. Soc. Am. J.* **2001**, 65, 58-66.
435

436 (13) Banerjee D.; Nesbitt H.W. XPS study of dissolution of birnessite by humate with
437 constraints on reaction mechanism. *Geochim. Cosmochim. Acta* **2001**, 65, 1703-1714.
438

439 (14) Sunda ,W.G.; Kieber, D.J. Oxidation of humic substances by manganese oxides yields low-
440 molecular-weight organic substrates. *Nature* **1994**, 367, 62-64.
441

442 (15) Stone A.T. Microbial metabolites and the reductive dissolution of manganese oxides:
443 Oxalate and pyruvate. *Geochim. Cosmochim. Acta* **1987**, 51, 919-925.
444

445 (16) Banerjee, D.; Nesbitt W. XPS study of reductive dissolution of birnessite by oxalate: rates
446 and mechanistic aspects of dissolution and redox processes. *Geochim. Cosmochim. Acta* **1999**, 63,
447 3025–3038.

448

449 (17) Nealson, K.H.; Saffarini, D. Iron and manganese in anaerobic respiration: Environmental
450 significance, physiology, and regulation. *Annual Rev. Microbiol.* **1994**, 48, 311-343.

451

452 (18) Fischer, T.B.; Heaney, P.J.; Ross, D.E.; Brantley, D.L.; Post, J.E.; Tien, M. Continuous
453 time-resolved X-ray diffraction of the biocatalyzed reduction of Mn oxide. *Am. Mineral.* **2008**,
454 93, 1929-1932.

455

456 (19) Lin, H.; Szeinbaum, N.H.; DiChristina, T.J.; Taillefert, M. 2012. Microbial Mn(IV)
457 reduction requires an initial one-electron reductive solubilization step. *Geochim. Cosmochim. Acta*
458 **2012**, 99, 179–192.

459

460 (20) Ehrlich, H.L. Manganese oxide reduction as a form of anaerobic respiration. *Geomicrobiol. J.* **1987**, 5, 423–431.

461

462

463 (21) Weber, F.A.; Voegelin, A.; Kretzschmar, R. Multi-metal contaminant dynamics in a
464 temporarily flooded soil under sulfate limitation. *Geochim. Cosmochim. Acta* **2009**, 73, 5513-
465 5527.

466

467 (22) Post J. E. Manganese oxide minerals: Crystal structures and economic and environmental
468 significance. *Proc. Natl. Acad. Sci. U. S. A.*, **1999**, 96, 3447-3454.

469

470 (23) Silvester, E.; Manceau, M.; and Drits, V. A. Structure of synthetic monoclinic Na-rich
471 birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS spectroscopy.
472 *Am. Mineral.* **1997**, 82, 962-978.

473

474 (24) Drits, V. A.; Silvester, E.; Gorshkov, A. I.; and Manceau, A. Structure of synthetic
475 monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction and
476 selected-area electron diffraction. *Am. Mineral.* **1997**, 82, 946-961.

477

478 (25) Lanson, B.; Drits, V. A.; Silvester, E.; and Manceau, A. Structure of H-exchanged
479 hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low
480 pH. *Am. Mineral.* **2000**, 85, 826-838.

481

482 (26) Villalobos, M.; Toner, B.; Bargar, J. R.; Sposito, G. Characterization of the manganese
483 oxide produced by *Pseudomonas putida* strain MnB1. *Geochim. Cosmochim. Acta* **2003**, 67,
484 2649-2662.

485

486 (27) Tebo, B. M.; Bargar, J. R.; Clement, B. G.; Dick, G. J.; Parker, D.; Verity, R.; Webb S. M.
487 Biogenic manganese oxides: Properties and mechanisms of formation. *Annu. Rev. Earth Planet.
488 Sci.* **2004**, 32, 287-328.

489

490 (28) Villalobos, M.; Lanson, B.; Manceau, A.; Toner, B.; Sposito, G. Structural model for the
491 biogenic Mn oxide produced by *Pseudomonas putida*. *Am. Mineral.* **2006**, 91, 489-
492 502.

493

494 (29) Spiro, T. G.; Bargar, J. R.; Sposito, G.; Tebo, B.M. Bacteriogenic manganese oxides. *Acc.*
495 *Chem. Res.* **2010**, 43, 2-9.

496

497 (30) Learman D. R.; Voelker B. M.; Vazquez-Rodriguez, A. I.; Hansel, C. M. Formation of
498 manganese oxides by bacterially generated superoxide. *Nat. Geosci.* **2011**, 4, 95-98.

499

500 (31) Bargar, J. R.; Tebo, B. M.; Bergmann, U.; Webb, S. M.; Glatzel, P.; Chiu V. Q.; Villalobos,
501 M. Biotic and abiotic products of Mn(II) oxidation by spores of the marine *Bacillus sp.* strain
502 SG-1. *Am. Mineral.* **2005**, 90, 143-154.

503

504 (32) Webb, S. M.; Tebo, B. M.; Bargar, J. R. Structural characterization of biogenic Mn oxides
505 produced in seawater by the marine *bacillus sp.* strain SG-1. *Am. Mineral.* **2005**, 90, 1342-1357.

506

507 (33) Santelli, C. M.; Webb, S. M.; Dohnalkova, A. C.; Hansel C. M. Diversity of Mn oxides
508 produced by Mn(II)-oxidizing fungi. *Geochim. Cosmochim. Acta* **2011**, 75, 2762-2776.

509

510 (34) Grangeon, S.; Lanson, B.; Miyata N.; Tani, Y.; Manceau, A. Structure of nanocrystalline
511 phyllo manganeseates produced by freshwater fungi. *Am. Mineral.* **2010**, 95, 1608-1616.

512

513 (35) Learman, D. R.; Wankel, S.D.; Webb, S.M.; Martinez, N.; Madden, A. S.; Hansel, C. M.
514 Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and structural evolution
515 of biogenic Mn oxides. *Geochim. Cosmochim. Acta* **2011**, 75, 6048-6063.

516

517 (36) Hansel, C. M.; Zeiner, C. A.; Santelli, C. M.; Webb, S.M. Mn(II) oxidation by an
518 ascomycete fungus is linked to superoxide production during asexual reproduction. *Proc. Natl.*
519 *Acad. Sci. U. S. A.* **2012**, 109, 12621-12625.

520

521 (37) Jurgensen, A.; Widmeyer, J. R.; Gordon, R. A.; Bendell-Young, L. I.; Moore, M. M.;
522 Crozier, E. D. The structure of the manganese oxide on the sheath of the bacterium *Leptothrix*
523 *discophora*: An XAFS study. *Am. Mineral.* **2004**, 89, 1110-1118.

524

525 (38) Saratovsky, I.; Wightman, P. G.; Pasten, P. A.; Gaillard, J. F.; Poeppelmeier, K. R.
526 Manganese oxides: Parallels between abiotic and biotic structures. *J. Am. Chem. Soc.* **2006**, 128,
527 11188-11198.

528

529 (39) Friedich, A.J.; Hasenmueller, E.A.; Catalano, J.G. Composition and structure of
530 nanocrystalline Fe and Mn oxide cave deposits: Implications for trace element mobility in
531 karst systems. *Chem. Geol.* **2011**, 284, 82-96..

532

533 (40) Bargar, J.R.; Fuller, C.C.; Marcus, M.A.; Brearley, A.J.; De la Rosa, M.P.; Webb, S.M.;
534 Caldwell, W.A. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek,
535 AZ. *Geochim. Cosmochim. Acta* **2009**, 73, 889-910.

536
537 (41) Mandernack, K.W.; Post, J.; Tebo, B.M. Manganese mineral formation by bacterial spores
538 of the marine *Bacillus*, strain SG- 1: Evidence for the direct oxidation of Mn(II) to Mn(IV).
539 *Geochim. Cosmochim. Acta* **1995**, 59, 4393–4408.

540
541 (42) Droz, B.; Dumas, N.; Duckworth, O.W.; Pena, J. A comparison of the sorption reactivity of
542 bacteriogenic and mycogenic Mn oxide nanoparticles. *Environ. Sci. Technol.* **2015**, 49, 4200–
543 4208.

544
545 (43) Lafferty, B.M.; Ginder-Vogel, M.; Sparks, D.L. Arsenite oxidation by a poorly crystalline
546 manganese oxide 1. Stirred flow experiments. *Environ. Sci. Technol.* **2010**, 44, 8460–8466.

547
548 (44) Lafferty, B.M.; Ginder-Vogel, M.; Zhu, M.; Livi, K.J.T.; Sparks, D.L. Arsenite oxidation by
549 a poorly crystalline manganese oxide 2. Results from X-ray absorption spectroscopy and X-ray
550 diffraction. *Environ. Sci. Technol.* **2010**, 44, 8467–8472.

551
552 (45) Parikh, S.J.; Lafferty, B.J.; Sparks, D.L. An ATR-FTIR spectroscopic approach for
553 measuring rapid kinetics at the mineral/water interface. *J. Colloid Interface Sci.* **2008**, 320, 177–
554 185.

555
556 (46) Landrot, G.; Ginder-Vogel, M.; Livi, K.; Fitts, J.P.; Sparks, D.L. Chromium(III) oxidation
557 by three poorly-crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity. *Env. Sci.
558 Technol.* **2012**, 46, 11594–11600.

559
560 (47) Postma, D.; Appelo, C.A.J. Reduction of Mn-oxides by ferrous iron in a flow system:
561 Column experiment and reactive transport modeling. *Geochim. Cosmochim. Acta* **2000**, 64,
562 1237–1247.

563
564 (48) Fendorf, S.; Jardine, P.M.; Patterson, R.R.; Taylor, D.L.; Brooks, S.C. Pyrolusite surface
565 transformations measured in real-time during the reactive transport of Co(II)EDTA²⁻. *Geochim.
566 Cosmochim. Acta* **1999**, 63, 3049–3057.

567
568 (49) Webb, S.M.; Dick, G.J.; Bargar, J.R.; Tebo, B.M. Evidence for the presence of Mn(III)
569 intermediates in the bacterial oxidation of Mn(II). *Proc. Natl. Acad. Sci. U. S. A.* **2005**, 102,
570 5558–5563.

571
572 (50) Zhu, M.; Ginder-Vogel, M.; Parikh, S.J.; Feng, X.H.; Sparks, D.L. Cation effects on the
573 layer structure of biogenic Mn-oxides. *Environ. Sci. Technol.* **2010**, 44, 4465–4471.

574
575 (51) Perez-Benito, J. F. Reduction of colloidal manganese dioxide by manganese(II). *J. Colloid
576 Interface Sci.* **2002**, 248, 130–135.

577
578 (52) Tu, S.; Racz, G. J.; Goh, T. B. Transformations of synthetic birnessite as affected by pH and
579 manganese concentration. *Clays Clay Minerals* **1994**, 42, 321–330.

580

581 (53) Feng, X. H.; Zhu, M.; Ginder-Vogel, M.; Nic, C.; Parikh, S. J.; D. L. Sparks. Formation of
582 nano-crystalline todorokite from biogenic Mn oxides. *Geochim. Cosmochim. Acta.* **2010**, 74,
583 3232-3245.

584

585 (54) Chang, J. N.; Tani, Y.; Naitou, H.; Miyata, N.; Tojo F.; Seyama, H. Zn(II) sequestration by
586 fungal biogenic manganese oxide through enzymatic and abiotic processes. *Chem. Geol.* **2014**,
587 383, 155-163.

588

589 (55) Atkins, A. L.; Shawn, S.; Peacock, C. L. Nucleation and growth of todorokite from
590 birnessite: Implications for trace metal cycling in marine sediments. *Geochim. Cosmochim. Acta.*
591 **2014**, 144, 109-125.

592

593 (56) Elzinga, E. J. Reductive transformation of birnessite by aqueous Mn(II). *Environ. Sci.
594 Technol.* **2011**, 45, 6366-6372.

595

596 (57) Lefkowitz, J. P.; Rouff, A. A.; Elzinga, E. J. Influence of pH on the reductive transformation
597 of birnessite by aqueous Mn(II). *Environ. Sci. Technol.* **2013**, 47, 10364-10371.

598

599 (58) Lefkowitz, J.P.; Elzinga, E.J. Impacts of aqueous Mn(II) on the sorption of Zn(II) by
600 hexagonal birnessite. *Environ. Sci. Technol.* **2015**, 49, 4886-4893.

601

602 (59) Elzinga, E.J.; Kustka, A.B. A Mn-54 radiotracer study of Mn Isotope solid-liquid exchange
603 during reductive transformation of vernadite (δ -MnO₂) by aqueous Mn(II). *Environ. Sci.
604 Technol.* **2015**, 49, 4310-4316.

605

606 (60) Zhao, H.; Zhu, M.; Li, W.; Elzinga, E.J.; Villalobos, M.; Liu, F.; Zhang, J.; Feng, X.;
607 Sparks, D.L. Redox reactions between Mn(II) and hexagonal birnessite change it layer
608 symmetry. *Environ. Sci. Technol.* **2016**, 50, 1750-1758.

609

610 (61) Ehlert, K.; Mikutta, C.; Kretzschmar, R. Impact of birnessite on arsenic and iron speciation
611 during microbial reduction of arsenic-bearing ferrihydrite. *Environ. Sci. Technol.* **2014**, 48,
612 11320-11329.

613

614 (62) Johnson, J.E.; Savalia, P.; Davis, R.; Kocar, B.D.; Webb, S.M.; Nealson, K.H.; Fischer,
615 W.W. Real-time manganese phase dynamics during biological and abiotic manganese oxide
616 reduction. *Environ. Sci. Technol.* **2016**, 50, 4248-4258.

617

618 (63) Gadde, R.R.; Laitinen, H.A. Heavy metal adsorption by hydrous iron and manganese
619 oxides. *Anal. Chem.* **1974**, 46, 2022-2026.

620

621 (64) Murray, J. W.; Balistrieri, L. S.; Paul, B. The oxidation-state of manganese in marine-
622 sediments and ferromanganese nodules. *Geochim. Cosmochim. Acta* **1984**, 48, 1237-1247.

623

624 (65) Burle, E.; Kirby-Smith, W.W. Application of formaldoxime colorimetric method for the
625 determination of manganese in the pore water of anoxic estuarine sediments. *Estuaries Coasts*
626 **1979**, 2, 198-201.

627
628 (66) Lanson, B.; Marcus, M. A.; Fakra, S.; Panfili, F.; Geoffroy, N.; Manceau, A. Formation of
629 Zn-Ca phyllosilicate nanoparticles in grass roots. *Geochim. Cosmochim. Acta*. **2008**, *72*,
630 2478-2490.

631
632 (67) Drits, V. A.; Lanson, B.; Gaillot, A.C. Birnessite polytype systematics and identification by
633 powder X-ray diffraction. *Am. Mineral.* **2007**, *92*, 771-788.

634
635 (68) Grangeon, S.; Lanson, B.; Lanson, M.; Manceau, A. Crystal structure of Ni-sorbed synthetic
636 vernadite: A powder X-ray diffraction study. *Mineralogical Magazine*, **2008**, *72*, 1279-1291

637
638 (69) Grangeon, S.; Manceau A.; Guilhermet, J.; Gaillot, A.C.; Lanson, M.; Lanson B. Zn
639 sorption dynamically modifies the layer and interlayer structure of vernadite. *Geochim.*
640 *Cosmochim. Acta* **2012**, *85*, 302-313.

641
642 (70) Faber, J.; Fawcett, T. The Powder Diffraction File: Present and future. *Acta Cryst.* **2002**,
643 *B58*, 325-332

644
645 (71) Friedich, A.J.; Spicuzza, M.J.; Scherer, M.M. Oxygen isotope evidence for Mn(II)-
646 catalyzed recrystallization of manganite (γ -MnOOH). *Environ. Sci. Technol.*
647 DOI: 10.1021/acs.est.6b01463.

648
649 (72) Sparks, D.L. 1999. Kinetics and mechanisms of chemical reactions at the soil mineral/water
650 interface. p. 135-192 In: D.L. Sparks (ed). *Soil Physical Chemistry*, 2nd edition. CRC Press,
651 Boca Raton, FL.

652
653 (73) Sparks, D. L. Toxic metals in the environment: The role of surfaces. *Elements* **2005**, *1*, 193-
654 197.

655
656 (74) Handler, R.M.; Beard, B.L.; Johnson, C.M.; Scherer, M.M. Atom exchange between
657 aqueous Fe(II) and goethite: an Fe isotope tracer study. *Environ. Sci. Technol.* **2009**, *43*, 1102-
658 1107.

659
660 (75) Rosso, K.M.; Yanina, S.V.; Gorski, C.A.; Larese-Casanova, P.; Scherer, M.M. Connecting
661 observations of hematite (α -Fe₂O₃) growth catalyzed by Fe(II). *Environ. Sci. Technol.* **2010**, *44*,
662 61-67.

663
664 (76) Friedich, A.J.; Luo, Y.; Catalano, J.G. Trace element cycling through iron oxide
665 minerals during redox-driven dynamic recrystallization. *Geology* **2011**, *39*, 1083-1086.

666
667 (77) Friedich, A.J.; Catalano J.G. Controls on Fe(II)-activated trace element release from
668 goethite and hematite. *Environ. Sci. Technol.* **2012**, *46*, 1519-1526.

669
670 (78) Latta, D.E.; Gorski, C.A.; Scherer, M.M. Influence of Fe²⁺-catalysed iron oxide
671 recrystallization on metal cycling. *Biogeochem. Soc. Transactions* **2012**, *40*, 1191-1197.

672

673 (79) Handler, R.M; Friedich, A.J.; Johnson C.M.; Rosso, K.M.; Beard, B.L.; Wang, C.; Latta,
674 D.E.; Neumann, A.; Pasakarnis, T.; Premaratne, W.A.P.J.; Scherer M.M. Fe(II)-catalyzed
675 recrystallization of goethite revisited. *Environ. Sci. Technol.* **2014**, *48*, 11302-11311.

676

677 (80) Kostka, J. E.; Luther, G. W.; Nealson, K. H. Chemical and biological reduction of Mn(III)-
678 pyrophosphate complexes – Potential importance of dissolved Mn(III) as an environmental
679 oxidant. *Geochim. Cosmochim. Acta* **1995**, *59*, 885–894.

680

681 (81) Nico, P. S.; Zasoki, R. J. Importance of Mn(III) availability on the rate of Cr(III) oxidation
682 on δ -MnO₂. *Environ. Sci. Technol.* **2000**, *36*, 3363-3367.

683

684 (82) Weaver, R.M.; Hochella, M.F. The reactivity of seven Mn-oxides with Cr³⁺(aq): A
685 comparative analysis of a complex, environmentally important redox reaction. *Am. Mineralogist*
686 **2003**, *88*, 2016-2027.

687

688 (83) Simanova, A.A.; Pena, J. Time-resolved investigation of cobalt oxidation by Mn(III)-rich δ -
689 MnO₂ using quick X-ray absorption spectroscopy. *Environ. Sci. Technol.* **2015**, *49*, 10867-
690 10876.

691

692 (84) Wang, Z.; Xiong, W.; Tebo, B. M.; Giamar, D. E. Oxidative UO₂ dissolution induced by
693 soluble Mn(III). *Environ. Sci. Technol.* **2014**, *48*, 289-298.

694

695 (85) Tang, Y.Z.; Webb, S.M.; Estes, E.R.; Hansel, C.M. Chromium(III) oxidation by biogenic
696 manganese oxides with varying structural ripening. *Environ. Sci. Processes Impacts.* **2014**, *16*,
697 2127-2136.

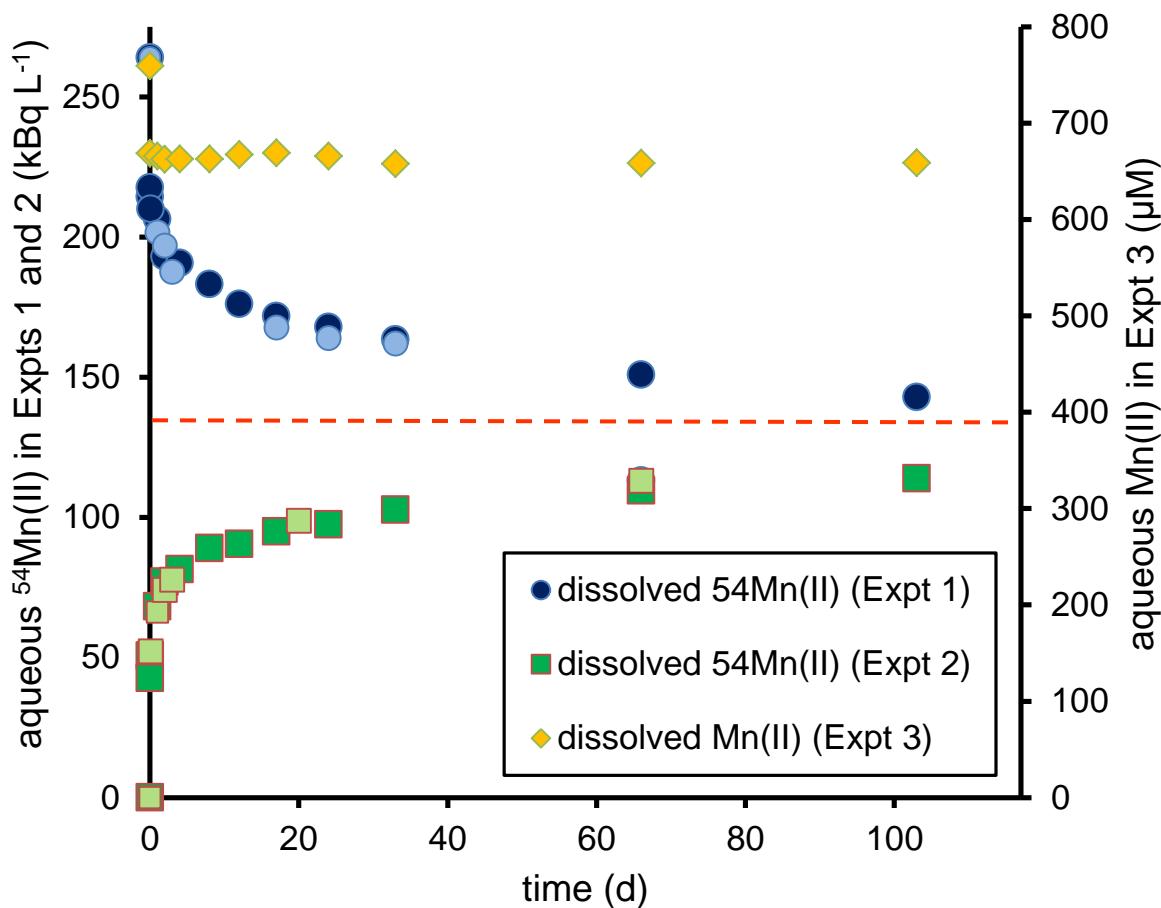
698

699 (86) Simanova, A.A.; Kwon, K.D.; Bone, S.E.; Bargar, J.R.; Refson, K.; Sposito, G.; Pena, J.
700 Probing the sorption reactivity of the edge surface in birnessite nanoparticles using nickel(II).
701 *Geochim. Cosmochim. Acta* **2015**, *164*, 191-204.

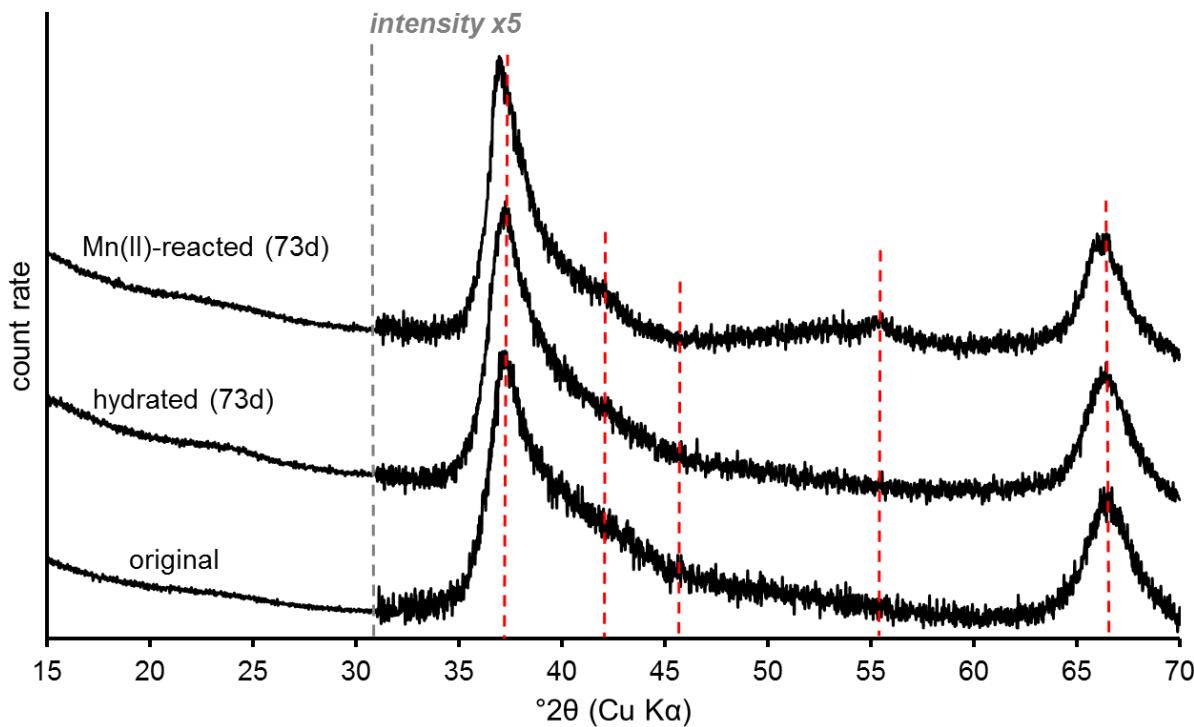
702

703 (87) Wang Y., Stone A. T. Phosphonate- and carboxylate-based chelating agents that solubilize
704 (hydr)oxide-bound Mn(III). *Environ. Sci. Technol.* **2008**, *42*, 4397–4403.

705


706 (88) Trouwborst, R. E.; Clement, B. G.; Tebo, B. M.; Glazer, B. T.; Luther, G. W. Soluble
707 Mn(III) in suboxic zones. *Science*. **2006**, *313* (5795), 1955–1957.

708


709 (89) Madison, A. S.; Tebo, B. M.; Luther, G. W. Simultaneous determination of soluble
710 manganese(III), manganese(II) and total manganese in natural (pore)waters. *Talanta*. **2011**, *84*,
711 374–381.

712

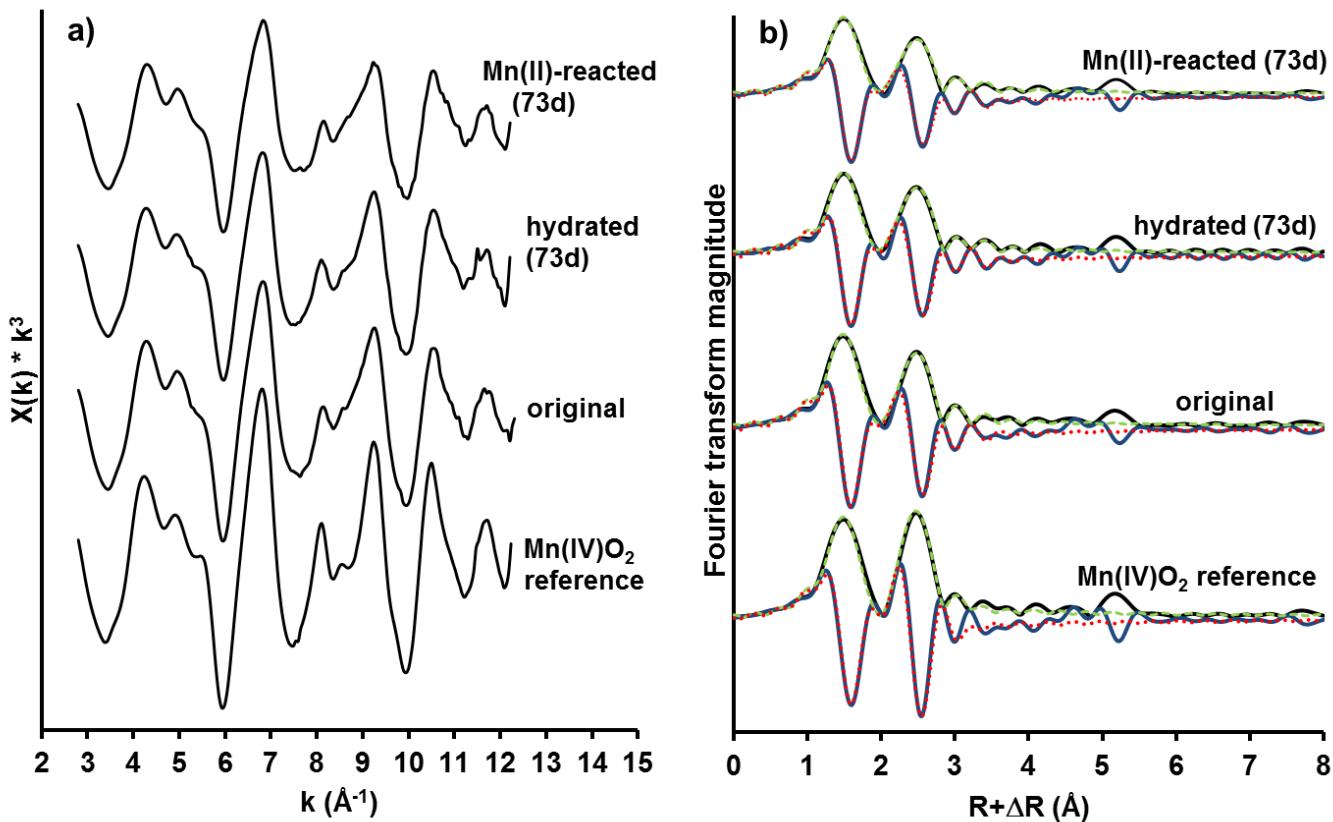

713 (90) Madison, A. S.; Tebo, B. M.; Mucci, A.; Sundby, B.; Luther, G. W. Abundant porewater
714 Mn(III) is a major component of the sedimentary redox system. *Science*. **2013**, *341* (6148),
715 875–878.

Figure 1. Time-dependencies of the concentrations of dissolved $^{54}\text{Mn(II)}$ ($[^{54}\text{Mn(II)}]_{\text{aq}}$) in experiments 1 and 2, and of total dissolved Mn(II) ($[\text{Mn(II)}]_{\text{aq}}$) measured in experiment 3. In experiment 1, aqueous $^{54}\text{Mn(II)}$ was reacted with $\text{MnO}_{2(\text{s})}$; in experiment 2, aqueous Mn(II) was reacted with $^{54}\text{MnO}_{2(\text{s})}$; experiment 3 involved reaction of aqueous Mn(II) with $\text{MnO}_{2(\text{s})}$. Darker and lighter data points in the data series of experiments 1 and 2 represent results from different experiments, and demonstrate the reproducibility of the results. All experiments were conducted under identical conditions, using suspensions with a $\text{MnO}_{2(\text{s})}$ particle loading of 530 μM ($\sim 0.05 \text{ g L}^{-1}$), a pH of 5.0, and an initial $\text{Mn(II)}_{\text{aq}}$ concentration of 760 μM . The total ^{54}Mn activity in the suspensions of experiments 1 and 2 was 264 kBq L^{-1} . The red dashed line indicates the $[^{54}\text{Mn(II)}]_{\text{aq}}$ solution level predicted for isotope equilibrium (135 kBq L^{-1}), as explained in the main text.

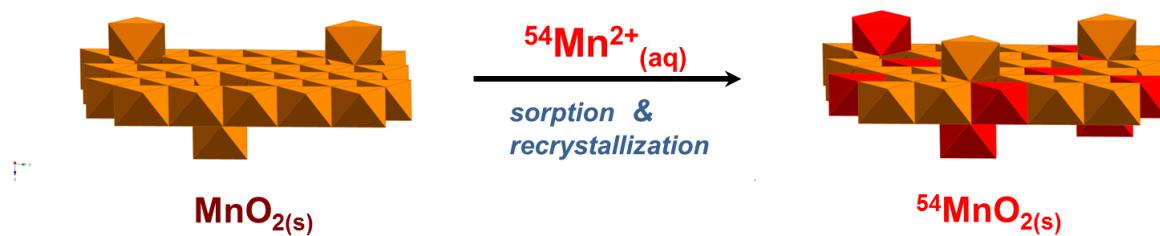


Figure 2. Powder X-ray diffraction (XRD) patterns of: (i) $\text{MnO}_{2(s)}$ following 73 d of reaction with 760 μM $\text{Mn(II)}_{(\text{aq})}$ at pH 5.0 and a suspension density of 530 μM $\text{MnO}_{2(s)}$ (top pattern); (ii) $\text{MnO}_{2(s)}$ following hydration at pH 5.0 without $\text{Mn(II)}_{(\text{aq})}$ at a suspension density of 530 μM $\text{MnO}_{2(s)}$ (middle pattern); and (iii) the $\text{MnO}_{2(s)}$ starting substrate (bottom pattern). The regions to the high-angle side of the grey dashed line were scaled by a factor 5. The red dashed lines locate differences in the diffractogram of the Mn(II) -reacted material relative to the original and hydrated control samples as discussed in the main text.

Figure 3. Mn K-edge EXAFS data of the $\text{MnO}_{2(s)}$ samples: (a) k^3 -weighted χ spectra; and (b) raw and fitted Fourier transforms. The blue and black solid lines in (b) represent the imaginary part and magnitude of the Fourier transforms of the raw spectra, respectively; while the corresponding fits are represented by the green and red dotted lines. The fitting procedure and fit results are summarized in the SI (section 3.3 and Table S1). The Mn(IV)O_2 reference is vernadite with an average Mn oxidation state of 4.0, as described in the SI (section 3.2). An overlay of the χ spectra is presented in SI Figure S4 to compare their oscillation patterns and intensities.

TOC art

