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lterative image reconstruction techniques such as maximum likelihood expectation maximization (MLEM) are attractive for coded aperture systems
because they allow the use of arbitrarily complex detector response functions, which are needed for non-ideal situations (often encountered in gamma-
ray or fast neutron imaging)such as semi-transparent masks, thick masks, and near-field imaging, as well as for advanced imaging tasks such as multi-

view tomographic reconstruction.

In some scenarios, a significant fraction of detected events are “unmodulated” by the mask, meaning that they lack the characteristic shadow pattern of
the mask because they are due either to detector effects such as hot pixels or to particles that enter the detection elements without passing through the
mask (e.g. backgrounds or room scatter). In these scenarios, a standard technique is to image using both the mask and its inverse, the anti-mask. The
two datasets can be subtracted to isolate the relevant data by removing unmodulated events, which contribute equally to mask and anti-mask data.

The subtracted mask/anti-mask data cannot be used as input to MLEM and similar techniques, which rely on Poisson-distributed raw data. A method
has been developed to use mask/anti-mask data with MLEM to reap the benefits of both techniques. This method treats the unmodulated data as a
source term indexed by detector pixel. The unmodulated data is then reconstructed by MLEM in parallel with the "“true"” image in the physical space. As
a result, MLEM converges to a simultaneous estimate of the true image and the unmodulated event rates per pixel.
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Top Left: Input source distribution (point source). Bottom Left: Input hot pixels
(unmodulated data). Top Middle: Simulated mask data: modulated pattern from the point
source plus hot pixels. Bottom Middle: Simulated anti-mask data. Top Right:
Reconstructed point source. Bottom Right: Reconstructed hot pixels.

aperture imager), and M is the response matrix that connects S and O, i.e. each element of
the matrix gives the probability to observe a particle emitted from a particular source pixel in a
particular detector pixel.

For the technique described here, the source and observation spaces are both enlarged, and
the response matrix is correspondingly more complex:

O Omask C_D O anti—mask
S S image C_B S unmodulated
The §;,,5c Subspace connects to the mask and anti-mask observations in the usual way, with

the attenuation from the mask being the most important contributor to the response. The
S, modulateg SUDSpPace has the same dimensions as the observation space, and each “pixel” in
S, modulateg N@S NON-zero probability only in the corresponding pixels of O, . and O, . mask-
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The second image below is an extended neutron source imaged in a high-resolution
configuration.
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Any maximum likelihood reconstruction is only as good as the response function it uses.
Patterns in the reconstructed “unmodulated” data can point to areas where the detector itself
or the response function should be improved.

A related approach could be taken in the future to reconstruct multiple images from correlated
datasets. For example, the liquid scintillator in the ORNL/SNL imager is sensitive to both
neutrons and gammas, although the particle identification by pulse shape discrimination
(PSD) is not perfect, especially at low energies. If the misidentification probabilities are well
understood as a function of energy and pixel, all of the data (in bins of n/y likelihood ratio for
example) can be used to simultaneously reconstruct both gamma and neutron images.
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