

FULLY-KINETIC PARTICLE-IN-CELL SIMULATIONS OF TRIGGERED THREE-ELECTRODE GAS SWITCHES*

C. Thoma, D.R. Welch, D.V. Rose, W.R. Zimmerman, C. L. Miller, and R. E. Clark

Voss Scientific, LLC, Albuquerque, New Mexico

J. Schwarz, P. Rambo, M.E. Savage, and J.R. Woodworth

Sandia National Laboratory

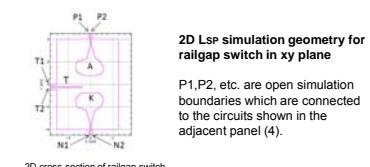
* Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Abstract

We present the results of 2D and 3D fully-kinetic electromagnetic particle-in-cell Monte Carlo (PICMC) simulations of triggered three-electrode gas switches using dry air as a gas (at pressures greater than 1 ATM). In such switches the AK gap voltage is set slightly below the breakdown threshold. A voltage pulse applied to a trigger needle placed in the AK gap allows breakdown to occur between, first, the trigger and anode, followed by the trigger and cathode. We demonstrate that a fully-kinetic PICMC approach can be used to follow the entire evolution of the switch, from the initial avalanche and streamer formation up to the fully conducting phase. We utilize an 18-species air chemistry model which is shown to agree with swarm parameters (breakdown threshold, drift velocity) obtained by experiment. Photon transport and photo-ionization are also included to permit the modeling of cathode directed streamers. This computational model will be used to help design closing switches for pulsed-power systems.

(1) Introduction and Outline

We describe the results of 2D and 3D hybrid-PIC simulations with the Lsp [1] code of a triggered three-electrode railgap closing switch being designed and fielded at Sandia National Laboratory (SNL) for pulsed power applications.

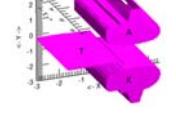

These are fully-kinetic electromagnetic simulations of the switch using air as the working gas at a pressure of many atmospheres.

A high density gas is required to hold off a 200 kV voltage (for an AK gap of ~ 1 cm) until a pulse applied to the trigger electrode initiates a multi-step closing process.

Outline:

- Description of the operation of three-electrode railgap switch and introduction of switch geometry, driving circuits, and operating parameters.
- Description of 18-species air chemistry including photon generation and transport, and description of PICMC algorithms for kinetic particle-based chemistry modeling.
- 2D Cartesian railgap simulation results.
- 3D Cartesian railgap simulation results.
- Conclusions

(3) Three Electrode "Railgap" Switch



2D Lsp simulation geometry for railgap switch in xy plane

P1, P2, etc. are open simulation boundaries which are connected to the circuits shown in the adjacent panel (4).

Full 3D railgap geometry
For the full switch the "rail" electrodes extend in the z-direction for 12 cm (6 cm length shown here).

Full 3D geometry of railgap switch

(6) Air chemistry model

18 Total Species: $e, N_2, O_2, Ar, N_2^+, O_2^+, Ar^+, N, N_2^-, O_2^-, O, O_2^+, NO^+, N^-, O^-, \gamma, N_2^*$

where N_2^* is an excited state of N_2 (13.0 eV) which can radiatively relax and act as a source of photons.

Included Reactions:

1. Collisional ionization
(including elastic and inelastic scattering)

a) $e + N_2 \rightarrow e + N_2^+$

b) $e + N_2^+ \rightarrow e + e + N$

c) $N + Ar \rightarrow e + e + Ar^+$

d) $e + O_2 \rightarrow e + O$

e) $e + NO \rightarrow e + O + N$

f) $e + O_2^+ \rightarrow e + O + O$

g) $N + O_2 \rightarrow N + O_2^+$

h) $N_2 + O_2 \rightarrow N + N + O_2$

i) $N_2 + O_2 \rightarrow N_2^+ + O_2$

j) $N_2^+ + O_2 \rightarrow N + O_2^+$

k) $e + O_2^+ \rightarrow e + O_2$

l) $e + O_2 \rightarrow O + O_2$

m) $e + O_2 \rightarrow O_2^+ + O$

n) $e + O_2 \rightarrow O_2^+ + O$

o) $O_2^+ + M \rightarrow e + O + M$

p) $O_2^+ + O \rightarrow O_2$

q) $O_2^+ + O \rightarrow O_2$

5. Formation and recombination of cluster ions

a) $O_2^+ + O_2 \rightarrow O_2^+ + O_2$

b) $O_2^+ + N \rightarrow O_2^+ + N$

c) $O_2^+ + N_2 \rightarrow O_2^+ + N_2$

d) $O_2^+ + O_2 \rightarrow O_2^+ + O_2$

e) $O_2^+ + O_2 \rightarrow O_2^+ + O_2$

6. Electron-ion recombination

a) $e + O_2^+ \rightarrow O + O$

b) $e + O_2^+ \rightarrow O_2^+ + O$

c) $e + O_2^+ \rightarrow O_2^+ + O$

d) $e + O_2^+ \rightarrow O_2^+ + O$

e) $e + O_2^+ \rightarrow O_2^+ + O$

f) $e + O_2^+ \rightarrow O_2^+ + O$

7. Detachment

a) $O_2^+ + M \rightarrow e + O + M$

b) $O_2^+ + O \rightarrow O_2$

c) $O_2^+ + O \rightarrow O_2$

d) $O_2^+ + O \rightarrow O_2$

e) $O_2^+ + O \rightarrow O_2$

f) $O_2^+ + O \rightarrow O_2$

8. Ion-ion recombination

a) $N_2^+ + N_2 \rightarrow N + O_2$

b) $N_2^+ + O_2 \rightarrow O_2^+ + O_2$

c) $N_2^+ + O_2 \rightarrow O_2^+ + O_2$

d) $N_2^+ + O_2 \rightarrow O_2^+ + O_2$

e) $N_2^+ + O_2 \rightarrow O_2^+ + O_2$

f) $N_2^+ + O_2 \rightarrow O_2^+ + O_2$

9. Miscellaneous

a) $N + O_2 \rightarrow NO^+ + O$

b) $O_2 + N \rightarrow NO^+ + O$

c) $O_2 + N \rightarrow NO^+ + O$

d) $O_2 + N \rightarrow NO^+ + O$

e) $O_2 + N \rightarrow NO^+ + O$

f) $O_2 + N \rightarrow NO^+ + O$

g) $O_2 + N \rightarrow NO^+ + O$

h) $O_2 + N \rightarrow NO^+ + O$

i) $O_2 + N \rightarrow NO^+ + O$

j) $O_2 + N \rightarrow NO^+ + O$

k) $O_2 + N \rightarrow NO^+ + O$

l) $O_2 + N \rightarrow NO^+ + O$

m) $O_2 + N \rightarrow NO^+ + O$

n) $O_2 + N \rightarrow NO^+ + O$

o) $O_2 + N \rightarrow NO^+ + O$

p) $O_2 + N \rightarrow NO^+ + O$

q) $O_2 + N \rightarrow NO^+ + O$

r) $O_2 + N \rightarrow NO^+ + O$

s) $O_2 + N \rightarrow NO^+ + O$

t) $O_2 + N \rightarrow NO^+ + O$

u) $O_2 + N \rightarrow NO^+ + O$

v) $O_2 + N \rightarrow NO^+ + O$

w) $O_2 + N \rightarrow NO^+ + O$

x) $O_2 + N \rightarrow NO^+ + O$

y) $O_2 + N \rightarrow NO^+ + O$

z) $O_2 + N \rightarrow NO^+ + O$

aa) $O_2 + N \rightarrow NO^+ + O$

bb) $O_2 + N \rightarrow NO^+ + O$

cc) $O_2 + N \rightarrow NO^+ + O$

dd) $O_2 + N \rightarrow NO^+ + O$

ee) $O_2 + N \rightarrow NO^+ + O$

ff) $O_2 + N \rightarrow NO^+ + O$

gg) $O_2 + N \rightarrow NO^+ + O$

hh) $O_2 + N \rightarrow NO^+ + O$

ii) $O_2 + N \rightarrow NO^+ + O$

jj) $O_2 + N \rightarrow NO^+ + O$

kk) $O_2 + N \rightarrow NO^+ + O$

ll) $O_2 + N \rightarrow NO^+ + O$

mm) $O_2 + N \rightarrow NO^+ + O$

nn) $O_2 + N \rightarrow NO^+ + O$

oo) $O_2 + N \rightarrow NO^+ + O$

pp) $O_2 + N \rightarrow NO^+ + O$

qq) $O_2 + N \rightarrow NO^+ + O$

rr) $O_2 + N \rightarrow NO^+ + O$

ss) $O_2 + N \rightarrow NO^+ + O$

tt) $O_2 + N \rightarrow NO^+ + O$

uu) $O_2 + N \rightarrow NO^+ + O$

vv) $O_2 + N \rightarrow NO^+ + O$

ww) $O_2 + N \rightarrow NO^+ + O$

xx) $O_2 + N \rightarrow NO^+ + O$

yy) $O_2 + N \rightarrow NO^+ + O$

zz) $O_2 + N \rightarrow NO^+ + O$

aa) $O_2 + N \rightarrow NO^+ + O$

bb) $O_2 + N \rightarrow NO^+ + O$

cc) $O_2 + N \rightarrow NO^+ + O$

dd) $O_2 + N \rightarrow NO^+ + O$

ee) $O_2 + N \rightarrow NO^+ + O$

ff) $O_2 + N \rightarrow NO^+ + O$

gg) $O_2 + N \rightarrow NO^+ + O$

hh) $O_2 + N \rightarrow NO^+ + O$

ii) $O_2 + N \rightarrow NO^+ + O$

jj) $O_2 + N \rightarrow NO^+ + O$

kk) $O_2 + N \rightarrow NO^+ + O$

ll) $O_2 + N \rightarrow NO^+ + O$

mm) $O_2 + N \rightarrow NO^+ + O$

nn) $O_2 + N \rightarrow NO^+ + O$

oo) $O_2 + N \rightarrow NO^+ + O$

pp) $O_2 + N \rightarrow NO^+ + O$

qq) $O_2 + N \rightarrow NO^+ + O$

rr) $O_2 + N \rightarrow NO^+ + O$

ss) $O_2 + N \rightarrow NO^+ + O$

tt) $O_2 + N \rightarrow NO^+ + O$

uu) $O_2 + N \rightarrow NO^+ + O$

vv) $O_2 + N \rightarrow NO^+ + O$

ww) $O_2 + N \rightarrow NO^+ + O$

xx) $O_2 + N \rightarrow NO^+ + O$

yy) $O_2 + N \rightarrow NO^+ + O$

zz) $O_2 + N \rightarrow NO^+ + O$

aa) $O_2 + N \rightarrow NO^+ + O$

bb) $O_2 + N \rightarrow NO^+ + O$

cc) $O_2 + N \rightarrow NO^+ + O$

dd) $O_2 + N \rightarrow NO^+ + O$

ee) $O_2 + N \rightarrow NO^+ + O$

ff) $O_2 + N \rightarrow NO^+ + O$

gg) $O_2 + N \rightarrow NO^+ + O$

hh) $O_2 + N \rightarrow NO^+ + O$

ii) $O_2 + N \rightarrow NO^+ + O$

jj) $O_2 + N \rightarrow NO^+ + O$

kk) $O_2 + N \rightarrow NO^+ + O$

ll) $O_2 + N \rightarrow NO^+ + O$

mm) $O_2 + N \rightarrow NO^+ + O$

nn) $O_2 + N \rightarrow NO^+ + O$

oo) $O_2 + N \rightarrow NO^+ + O$

pp) $O_2 + N \rightarrow NO^+ + O$

qq) $O_2 + N \rightarrow NO^+ + O$

rr) $O_2 + N \rightarrow NO^+ + O$

ss) $O_2 + N \rightarrow NO^+ + O$

tt) $O_2 + N \rightarrow NO^+ + O$

uu) $O_2 + N \rightarrow NO^+ + O$

vv) $O_2 + N \rightarrow NO^+ + O$

ww) $O_2 + N \rightarrow NO^+ + O$

xx) $O_2 + N \rightarrow NO^+ + O$

yy) $O_2 + N \rightarrow NO^+ + O$

zz) $O_2 + N \rightarrow NO^+ + O$

aa) $O_2 + N \rightarrow NO^+ + O$

bb) $O_2 + N \rightarrow NO^+ + O$

cc) $O_2 + N \rightarrow NO^+ + O$

dd) $O_2 + N \rightarrow NO^+ + O$

ee) $O_2 + N \rightarrow NO^+ + O$

ff) $O_2 + N \rightarrow NO^+ + O$

gg) $O_2 + N \rightarrow NO^+ + O$

hh) $O_2 + N \rightarrow NO^+ + O$

ii) $O_2 + N \rightarrow NO^+ + O$

jj) $O_2 + N \rightarrow NO^+ + O$

kk) $O_2 + N \rightarrow NO^+ + O$

ll) $O_2 + N \rightarrow NO^+ + O$

mm) $O_2 + N \rightarrow NO^+ + O$

nn) $O_2 + N \rightarrow NO^+ + O$

oo) $O_2 + N \rightarrow NO^+ + O$

pp) $O_2 + N \rightarrow NO^+ + O$

qq) $O_2 + N \rightarrow NO^+ + O$

rr) $O_2 + N \rightarrow NO^+ + O$

ss) $O_2 + N \rightarrow NO^+ + O$

tt) $O_2 + N \rightarrow NO^+ + O$

uu) $O_2 + N \rightarrow NO^+ + O$

vv) $O_2 + N \rightarrow NO^+ + O$

ww) $O_2 + N \rightarrow NO^+ + O$

xx) $O_2 + N \rightarrow NO^+ + O$

yy) $O_2 + N \rightarrow NO^+ + O$

zz) $O_2 + N \rightarrow NO^+ + O$

aa) $O_2 + N \rightarrow NO^+ + O$

bb) $O_2 + N \rightarrow NO^+ + O$

cc) $O_2 + N \rightarrow NO^+ + O$

dd) $O_2 + N \rightarrow NO^+ + O$

ee) $O_2 + N \rightarrow NO^+ + O$

ff) $O_2 + N \rightarrow NO^+ + O$