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Objective & Characterization Methods Oxide Electromechanlcal Pro erties

Nanosecond pulsed laser irradiation of stainless steel 304L substrates Conducting nanoindentation measured current response to voltage sweeps and indicates a
leads to the growth of highly colored oxide films for use as passive correlation between laser exposure, current-voltage behavior at a constant load of 10mN.
indicators of tamper 1in welded or sealed components of energy systems. Figure 8: Polarization curves for 225kHz oxides, S—
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were 1nvestigated with a varlety of nanoindentation techniques. g 2 concentration, c. : Appliec

Environmental resistance was evaluated with immersion testing followed | B ” T
by focused 10n beam sectioning and energy dispersive spectroscopy. Flgure el e

Oxide Phase & Morphology

3° grazing incidence x-ray diffraction and multiscale microscopy reveal formation of multiple
oxides with composition gradients and highlights distinct morphology and microstructure.
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Figure 9: Loading regime used for
conducting indentation, showing applied
potential and resulting load-depth record.

Oxide System Environmental Resistance
e Figure 2: GIXRD of 250kHz SS

~omm | &»-é« 0l oxides (left). Peak ID indicates Oxided areas were 1solated then submerged in a 3% NaCl solution (simulated sea water) tor 25
—tomms | _ [ predominant oxides are Fe,0, days. Uniform corrosion product indicates exposure of an altered substrate.

Fe,0, Liketr | el N ond o Cr-Ni-Fe oxide. STEM EDS Figure 10: Post-immersion
> S [l (right) reveals a sharp interface optical image (middle); of
\ | *~ between substrate and oxide, but corrosion product covers
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Figure 11: Deposition of a uniform corrosion [ e = =S U R S TR
product suggests substrate composition is i gy R ey
altered. FIB cross-sectioning (left) followed by
EDS dot-mapping reveals a Cr-gradient
between the bulk substrate and oxide layers.

Overlayed Fe-Cr and O-Cr maps (middle) show ‘ Rve | - and Cr
E—— n development of layers, while individual
Flgure 3: SEM |mage (Ieft) showing rippled surface Figure 4: FIB cross-section (left) used to measure element dot maps indicate relative amounts
topography, inset shows schematic of laser raster oxide thickness reveals interfacial delamination; top- and areas of intensity for Fe, Cr, O used to
resulting in ripples. AFM image (right) of a single down SEM (right) shows pervasive surface cracks create overlap maps.
ridge-valley period leading to large scale ripples. formed to relieve residual film stress post-processing.
: ) _ : Figure 12: Metallographic cross
Oxide Mechanical Properties & Fracture Behavior o | | sections examined with EDS spot
e . ~ Substrate | B profiles provide a semi-quantitative
Dynamic nanoindentation yielded modulus, hardness, and stiffness values. High-load quasi- : ‘M analysis of microconstituents. Cr
static (QS) conical indentation was used to determine load/depth at oxide fracture events. iSpectrum 2 content decreases near the substrate-
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Table 1: Average modulus and hardness o>§ide ir_mterface _and the_n_ increases
slightly in the oxide (positions shown

data. Values are means of maximums, . .
on left, amounts in plot on right).

averaged over all four scan rates per 4 Specium | + | Depletion of Cr increases susceptibilit
frequency. D e e R

Spectrum Position to seawater attack.
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Laser Scan Rates Pulse Frequency Hardness Modulus
(mm/s) (kHz) (GPa) (GPa)

30, 47,80, 175 92421 | 155£25

; 10, 50, 90, 130 8.8x2.1 | 145%39
1O%Ont2§gt D;&% n 310)0 10, 50, 90, 130 11.6£3.5 | 166132
40, 50, 60, 70 114126 | 198+43
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Figure 13: STEM EDS of an oxide-
substrate interface which was not
exposed to salt water also reveals a Cr
gradient, further corroborating the
proposal that substrate heating during
laser processing results in Cr diffusion
through the bulk substrate into the oxide
cracks at contact radius leading to a Cr-depleted, “sensitized-like”
correspond to load-depth s - @ microstructure immediately beneath the
excursions at higher loads Chromium Distribution oxide that is prone to sea water attack.

(left), while inner, nested

cracks in high-load COﬂCIUSlOnS

iIndents correlate with e
excursions at low loads * Oxides grown via nanosecond pulsed laser irradiation are composed of multiple phases. High residual

Aol L (right). S_Chemati_cs are stresses from formation are relieved through oxide delamination and through-thickness cracking.
Contact Depth (nm) | e shown in insets (middle).
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Figure 6: Circumferential
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- relatively insensitive to processing parameters. However, faster laser scan rates (1.

Figure 7: Cumulative distribution plot of fracture loads (determined from R —ri YT lead to oxides that fracture at higher loads for a given contact probe.
excursions in conical tip load-depth data like that shown in middle plot - 250K YKL

of Fig. 8). The critical load required to cause fracture is a function of
processing parameters: faster laser scan rates require a higher applied
load to cause through-thickness fracture. Similarly, faster laser scan
rates have higher maximum fracture loads than their slower
counterparts. Since load at fracture can be used to calculate fracture
toughness, Fig. 7 indicates there should be a correlation between
processing parameters and fracture toughness.
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* Conducting nanoindentation manifests a unique correlation between lase
oxide conductivity—faster laser scan rates correspond with higher
presence of point defects such as vacancies as well as large defects su
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Cumulative Fraction of Events
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» Immersion in simulated seawater results in corrosion of the stee
surface cracks are through-thickness and substrate compositic
EDS reveals Cr-depletion, increasing susceptibility to seawats
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