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FleCSI: Connection to Legion

Ben Bergen
Wednesday, August 3rd 2016
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• Acknowledgements
• Legion Backend
• Distributed-Memory 

Partitioning
• Sparse Data 

Representations
• MPI–Legion 

Interoperability
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Many people have made significant 
contributions to FleCSI…

Nick Moss (CCS-7) 17,721 ++ / 10,167 -- (0.25 FTE)
Topology types, sparse data, design

Marc Charest (XCP-1) 19,582 ++ / 6,074 --

Mesh specialization, data structures, design
Irina Demeshko (CCS-7)

Legion backend, MPI/Legion interoperability, design
John Wohlbier (formerly CCS-2)

Mesh specialization, I/O

Josh Payne (CCS-7)
Execution model, design

Gary Dilts (CCS-2)
Tree specialization, data structures, design

Nathaniel Morgan (XCP-8), Vince Chiravalle (A-2), Joe Schmidt (XTD-NTA), Rao Garimella (T-7), Wes Even (CCS-2)
Requirements, mesh data structures, design
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Legion Backend
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

register_data(m, "pressure", 3, double, dense, cells);High-Level
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

register_data(m, "pressure", 3, double, dense, cells);

topology

identifier
versions

type

storage
type

index
space

High-Level
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<size_t ST, typename T, size_t NS, 
typename ... Args>
decltype(auto) register_data(
data_client_t & data_client,
const const_string_t & key,
size_t versions=1,
Args && ... args)

Specialization
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<size_t ST, typename T, size_t NS, 
typename ... Args>
decltype(auto) register_data(
data_client_t & data_client,
const const_string_t & key,
size_t versions=1,
Args && ... args)

storage
type type

topology
identifier
versions

Specialization
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<typename T, size_t NS, typename ... Args>  
static handle_t<T> register_data(

data_client_t & data_client,
data_store_t & data_store, const const_string_t & key, 
size_t versions, size_t index_space, Args && ... args)

Low-Level
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<typename T, size_t NS, typename ... Args>  
static handle_t<T> register_data(

data_client_t & data_client,
data_store_t & data_store, const const_string_t & key, 
size_t versions, size_t index_space, Args && ... args)

Mapped to specific
storage type

Low-Level



Los Alamos National Laboratory

mm/dd/yyyy |  12

UNCLASSIFIED  |  LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

FieldSpace fs = runtime->create_field_space(ctx);

Backend
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

FieldSpace fs = runtime->create_field_space(ctx);

Storage type uses Legion runtime
to create appropriate field space(s)

Backend
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What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

register_data(m, "pressure", 3, double, dense, cells);

FieldSpace fs = runtime->create_field_space(ctx);

Dense
Storage

Example
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What storage types do we support?

• Dense: One dimensional, contiguous array
• Use Case: Physics state data

• Global: Single data instance (there’s only one…)
• Use Case: Simulation state data

• Local: One dimensional, contiguous array
• Use Case: Scratch data

• Sparse: Dense index space, sparse population
• Use Case: Material data, execution-dependent data, sparse matrices

• Tuple: Combination of other storage types
• Use Case: Provide struct-like support for cleaner task definitions



Los Alamos National Laboratory

mm/dd/yyyy |  16

UNCLASSIFIED  |  LA-UR-yy-#####

Distributed-Memory Partitioning
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How does FleCSI handle distributed 
memory?

Mesh
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

primary 1
primary 2
primary 3

The mesh is partitioned by 
entities in one of the topological 
dimensions, e.g., cells.
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

primary 1
primary 2
primary 3

The mesh is partitioned by 
entities in one of the topological 
dimensions, e.g., cells.

The primary partitioning splits the 
topology into contiguous sets of cells.
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
local 2
local 3

shared 1
shared 2
shared 3

ghost 1
ghost 2
ghost 3

Using a strategy defined by the 
specialization, the dependency 
closure of the mesh is formed, 
creating several sets of indices
(index spaces).
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
local 2
local 3

shared 1
shared 2
shared 3

ghost 1
ghost 2
ghost 3

Using a strategy defined by the 
specialization, the dependency 
closure of the mesh is formed, 
creating several sets of indices
(index spaces).

Local: I own them, and nobody else 
cares about them
Shared: I own them, and some other 
people care about them
Ghost: I don’t own them, but I care 
about them
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
local 2
local 3

shared 1
shared 2
shared 3

ghost 1
ghost 2
ghost 3

Multiple partitionings and 
partition closure strategies can 
be employed within the same 
specialization.
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1

shared 1

ghost 1On each SPMD task (rank), the 
closure forms a set of virtual 
index spaces that represent a 
complete set of dependency 
data.
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

The virtual index spaces can be 
iterated using foreach semantics.

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells()) {
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells()) { // traverse all cells (union of sets    )
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

The virtual index spaces can be 
iterated using foreach semantics.
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(unknowns)) { // traverse cells in the
foreach(auto i: c.materials()) {                // union of local and shared

m[i] = 1.0;
} // for

} // for
} // scope

The virtual index spaces can be 
iterated using foreach semantics.
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(ghost)) { // traverse cells in the ghost set
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

The virtual index spaces can be 
iterated using foreach semantics.
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How does FleCSI handle distributed 
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(unknowns)) {
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

This provides a clean interface 
for complex data access and 
execution that handles 
dependency updates using 
permissions specified for the 
Legion task and logical regions.
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How does FleCSI use Legion for dependency 
updates?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

The local mesh stores the 
partition information as several 
index spaces using an 
IndexPartition
(a Legion C++ type).

topology type:
partition_t * partition partition[0]:

IndexSpace local 1
IndexSpace shared 1
IndexSpace ghost 1
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How do the topology and data 
models work together for Legion?

Topology

Index
Space(s)

Data
Manager

Field
Space(s)

Logical
Region



Los Alamos National Laboratory

mm/dd/yyyy |  31

UNCLASSIFIED  |  LA-UR-yy-#####

How do the topology and data 
models work together for Legion?

Topology

Index
Space(s)

Data
Manager

Field
Space(s)

Logical
Region

When a user registers data, the data manager and 
topology cooperate to create several logical regions…

{
register_data(“pressure”, double, cells, dense);
} // scope

The Legion backend will use local 1, shared 1, and ghost 
1 with new field spaces of type double to create three 
new logical regions.
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How do the topology and data 
models work together for Legion?

Topology

Index
Space(s)

Data
Manager

Field
Space(s)

Logical
Region

FleCSI tasks operate transparently on Legion logical 
regions using compile-time data handles that are 
available through the FleCSI interface:

{
auto r = get_handle(“density”, double, cells, local, dense, ro);
auto e = get_handle(“internal energy”, double, cells, local, dense, ro);
auto p = get_handle(“pressure”, double, cells, local, dense, rw);

auto p = execute(eos, r, e);
} // scope
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Sparse Data Representations
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Managing sparse data representations 
presents some challenges…

material 1

material 2

Initial Distribution Matrix Representation

0 1 2 3

v1 v2 v3

0 1 1

offsets

values

indices

Compressed Storage

Δ𝑡

m1 m2

c0 v1

c1 v2

c2 v3
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material 1

material 2

Evolved Distribution

m1 m2

c0 v1

c1 vn v2

c2 v3

Matrix Representation

0 1 3 4

v1 vn v2

0 0 1

offsets

values

indices

Compressed Storage

Δ𝑡

v3

1

linear advection

++ ++

Mutated Structure!!!

Managing sparse data representations 
presents some challenges…
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [2,3] [3,5]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

offsets

indices

values
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [2,3] [3,5]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Code block to mutate sparse structure
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [3,4] [6,8]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Constructor inserts space for new values
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [3,4] [6,8]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Constructor inserts space for new values

User specifies 
maximum total 

slots
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

++

=

=

→

→

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Intuitive interface to set non-zeros
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

++

=

=

→

→

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Intuitive interface to set non-zeros
(logically, m has a 5x3 dense structure like A)
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

++

=

=

→

→

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Intuitive interface to set non-zeros

Column order is preserved, single-slot shift, 
only slot end is incremented
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

What if we need more than 3 non-zeros?

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][3] = 7;
} // scope

What if we need more than 3 non-zeros?

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][3] = 7;
} // scope

What if we need more than 3 non-zeros?

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

spare map
((0,4),7)



Los Alamos National Laboratory

mm/dd/yyyy |  46

UNCLASSIFIED  |  LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][3] = 7;
} // scopeDestructor recompresses data
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

The time complexity for inserting 𝑛 non-zeros is O 𝑛
for direct insertion and O 𝑛	𝑙𝑜𝑔 𝑛 for indirect insertion.

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

The memory complexity depends on the application, 
but can be quite efficient if good estimates are known.

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

Implementation will support ELL-like dense number of 
materials format, i.e., all rows have space for m non-zeros

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

We will also support nested sparsity through the use of 
data handles.

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5
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How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

We will also support nested sparsity through the use of 
data handles.
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Where are we at?

• Sparse data type is implemented and in friendly user mode
• Serial implementation done
• Working on Legion backend

• Most other storage types have been implemented in serial
• Legion backend implementation is straightforward

• Legion task implementation is being finalized
• Execution model for tasks is in place, i.e., friendly user mode
• Data model structure is in place, but requires more work

• ParMETIS partitioning is in progress…
• Primary partitioning in place
• Working on dependency closure abstractions

• MPI+Legion interoperability
• Working prototype is being integrated into FleCSI
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MPI–Legion Interoperability
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Initialization begins with MPI runtime…
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Initialization begins with MPI runtime…
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Each MPI rank starts the top-level Legion 
task…
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Legion uses PGAS–MPI interoperability 
mode to synchronize tasks…
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Once the Legion runtime has initialized, a SPMD 
task is launched and the system is ready…
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Subsequent calls to the MPI runtime can 
be made from the SPMD tasks…

#include “mpi_tasks.h”

int driver(int argc, char ** argv) {

execute_mpi(mpi_task_1, data);

execute_task(legion_task_1, data);

execute_mpi(mpi_task_2, data);
}

driver.h (Legion Runtime) mpi_tasks.h (MPI Runtime)
int mpi_task_1(double * data) {

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for(i=start_range; i<end_range; ++i) {
data[i] = math();

} // for
}

int mpi_task_2(double * data) {

// algorithm logic

}
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Subsequent calls to the MPI runtime can 
be made from the SPMD tasks…

#include “mpi_tasks.h”

int driver(int argc, char ** argv) {

execute_mpi(mpi_task_1, data);

execute_task(legion_task_1, data);

execute_mpi(mpi_task_2, data);
}

driver.h (Legion Runtime) mpi_tasks.h (MPI Runtime)
int mpi_task_1(double * data) {

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for(i=start_range; i<end_range; ++i) {
data[i] = math();

} // for
}

int mpi_task_2(double * data) {

// algorithm logic

}
Each runtime has exclusive 
execution (bulk synchronous 
between runtimes)
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Execute 
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Runtime

How do the runtimes manage the 
interaction?
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MPI
Runtime

execute_mpi(mpi_task)

How do the runtimes manage the 
interaction?
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MPI
Runtime

How do the runtimes manage the 
interaction?
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MPI
Runtime

How do the runtimes manage the 
interaction?
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