LA-UR-16-26040

Approved for public release; distribution is unlimited.

Title:
Author(s):

Intended for:

Issued:

FleCSI connection to Legion
Bergen, Benjamin Karl

ASC L2 Milestone Review

2016-08-04

VA

.
s LonLuamos

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

e LOos Alamos

NATIONAL LABORATORY
EST.1943

Delivering science and technology
to protect our nation
and promote world stability

UNCLASSIFIED

. curity
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

FleCSI: Connection to Legion

Ben Bergen
Wednesday, August 3 2016

gd

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

mm/dd/yyyy | 2

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

* Acknowledgements
Legion Backend
Distributed-Memory
Partitioning

Sparse Data
Representations
MPI—Legion
Interoperability

mm/dd/yyyy | 3

Los Alamos National Laboratory

Many people have made significant
contributions to FleCSl...

Nick Moss (CCS-7) 17,721 ++/ 10,167 -- (0.25 FTE)
Topology types, sparse data, design
Marc Charest (XCP-1) 19,582 ++ /6,074 --
Mesh specialization, data structures, design
Irina Demeshko (CCS-7)
Legion backend, MPI/Legion interoperability, design
John Wohlbier (formerly CCS-2)
Mesh specialization, I/O
Josh Payne (CCS-7)
Execution model, design
Gary Dilts (CCS-2)
Tree specialization, data structures, design

UNCLASSIFIED | LA-UR-yy-##t

Nathaniel Morgan (XCP-8), Vince Chiravalle (A-2), Joe Schmidt (XTD-NTA), Rao Garimella (T-7), Wes Even (CCS-2)

Requirements, mesh data structures, design

mm/dd/yyyy | 4

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

Legion Backend

mm/dd/yyyy | 5

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

What is the FleCSI data interface?

=] igh-Leve| — register_data(m, "pressure", 3, double, dense, cells);

User Interface

Data Manager

Storage Types

Runtime

mm/dd/yyyy | 6

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

What is the FleCSI data interface?

=] igh-Leve| — register_data(m, "pressure", 3, double, dense, cc?:ls);
User Interface topology / / [
versions storage
Data Manager identifier type
type
Storage Types index

space

Runtime

mm/dd/yyyy | 7

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

What is the FleCSI data interface?

Specialization

template<size t ST, typename T, size_t NS,
typename ... Args>

User Interface decltype(auto) register_data(

— data_client_t & data_client,

Data Manager const const_string _t & key,
size t versions=1,

Storage Types Args && ... args)

Runtime

mm/dd/yyyy | 8

Los Alamos National Laboratory

UNCLASSIFIED | LA-UR-yy-##H###

What is the FleCSI data interface?

Specialization

User Interface

Data Manager

storage type

type]
template<size t ST, typename T, size_t NS,

typename ... Args>
decltype(auto) register_data(

Storage Types

Runtime

— data_client_t & data_client, « topology
const const_string t & key, < identifier
size t versions=1, < versions

Args && ... args)

mm/dd/yyyy | 9

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

What is the FleCSI data interface?

Low-Level

User Interface

Data Manager

template<typename T, size t NS, typename ... Args>
static handle t<T> register_data(
_ — data_client_t & data_client,
Runtime data_store_t & data_store, const const_string_t & key,
size t versions, size t index_space, Args && ... args)

Storage Types

mm/dd/yyyy | 10

UNCLASSIFIED | LA-UR-yy-##t

Los Alamos National Laboratory

What is the FleCSI data interface?

Low-Level

User Interface

Mapped to specific
Data Manager storage type

template<typename T, size t NS, typename ... Args>
static handle t<T> register_data(
_ — data_client_t & data_client,
Runtime data_store_t & data_store, const const_string_t & key,
size t versions, size t index_space, Args && ... args)

Storage Types

mm/dd/yyyy | 11

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

What is the FleCSI data interface?

Backend

User Interface

Data Manager

Storage Types

Runtime

—> FieldSpace fs = runtime->create_field space(ctx);

mm/dd/yyyy | 12

What is the FleCSl data interface?

Backend

User Interface

Data Manager

Storage Types

Runtime Storage type uses Legion runtime
to create appropriate field space(s)

—> FieldSpace fs = runtime->create_field space(ctx);

mm/ddlyyyy | 13

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

What is the FleCSI data interface?

Example —> register_data(m, "pressure”, 3, double, dense, cells);

User Interface

Data Manager

Dense

Storage Types Storage

Runtime

—> FieldSpace fs = runtime->create_field space(ctx);

mm/dd/yyyy | 14

What storage types do we support?

Dense: One dimensional, contiguous array

» Use Case: Physics state data

Global: Single data instance (there’s only one...)
» Use Case: Simulation state data

Local: One dimensional, contiguous array

» Use Case: Scratch data

Sparse: Dense index space, sparse population

» Use Case: Material data, execution-dependent data, sparse matrices

Tuple: Combination of other storage types
« Use Case: Provide struct-like support for cleaner task definitions

mm/ddlyyyy | 15

Distributed-Memory Partitioning

IFIED | LA-UR-yy-####H#

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle distributed
memory?

mm/ddlyyyy | 17

How does FleCSI handle distributed
memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

o Q00 Q000 o @ primary 1
Yo} Yo} (o)e) o o @ primary 2
e) ee ee eee ee primary 3

Mesh

The mesh is partitioned by
entities in one of the topological

dimensions, e.g., cells.

How does FleCSI handle distributed
memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

) (O O)@) O0O0O0))
oo oo oo)))
] oo oo eee oo

The primary partitioning splits the
topology into contiguous sets of cells.

Mesh

The mesh is partitioned by
entities in one of the topological

dimensions, e.g., cells.

primary 1
primary 2
primary 3

How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

00 000 o O local 1
(@) Q0 ®) ®) @ local 2

e e e local 3

@) @) O shared 1
@) (eJe) shared 2

®) 00 o shared 3

Mesh

o o o o ghost 1

Using a strategy defined by the
ghost 2

specialization, the dependency (0]0) O O
closure of the mesh is formed, ® ® ® ghost 3
creating several sets of indices

(index spaces).

mm/dd/yyyy | 20

How does FleCSI handle distributed

memory ?
123 456 7 8 91011121314 1516 1718 19 20 21 22 23 24 25 26 27 28 29

olojojolo)e)

(eo)e) Q00 (@) (@) local 1

®) o0 o o @ local 2

CYC) CYC) CYC) local 3
0 @) @) shared 1
Local: | own them, and nobody else shared 2
cares about them shared 3

Shared: | own them, and some other
people care about them

Mesh

. : host 1
Using a strategy defined by the | Ghost: | don’t own them, but | care g
specialization, the dependency bout th ghost 2
closure of the mesh is formed, abou em ghost 3

creating several sets of indices
(index spaces).

mm/dd/yyyy | 21

How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

00 000 o O local 1
(@) Q0 ®) ®) @ local 2

e e e local 3

o) O O shared 1
@) (eJe) shared 2

®) 00 o shared 3

Mesh

Multiple partitionings and * ® @ e ghost 1

partition closure strategies can 0 O) ghost 2
be employed within the same ® ® ® ghost 3
specialization.

mm/ddlyyyy | 22

How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

00 000 o O local 1

rrrrrrrrr

@) @) O shared 1

Mesh

On each SPMD task (rank), the
closure forms a set of virtual
index spaces that represent a
complete set of dependency
data.

mm/ddlyyyy | 23

o o o o ghost 1

How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

00 000 (@) o local 1
©) o o shared 1
O O O O ghost 1

rrrrrrrrr

Mesh

The virtual index spaces can be
iterated using foreach semantics.

mm/ddlyyyy | 24

How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

00 000 (@) o local 1
©) o o shared 1
O O O O ghost 1
@) 00 0000 0000 00 @)

foreach(auto c: mesh.cells()) { // traverse all cells (union of sets Q)

Mesh

The virtual index spaces can be
iterated using foreach semantics.

mm/ddlyyyy | 25

How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

00 000 o O local 1
o O O shared 1
O O O O ghost 1
O Y Y} 0000 O O

foreach(auto c: mesh.cells(unknowns)) { // traverse cells in the
// union of local and shared @

Mesh

The virtual index spaces can be
iterated using foreach semantics.

mm/ddlyyyy | 26

How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

00 000 o O local 1
o O O shared 1
O O O O ghost 1
O O O O

foreach(auto c: mesh.cells(ghost)) { / traverse cells in the ghost set @

Mesh

The virtual index spaces can be
iterated using foreach semantics.

mm/ddlyyyy | 27

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle distributed
memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

00 000 o O local 1

©) ©) o shared 1
O O O O ghost 1

rrrrrrrrr

{

auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(unknowns)) {
foreach(auto i: c.materials()) {

Mesh m[i] = 1.0;
} /Il for
This provides a clean interface }/ for
for complex data access and } /I scope

execution that handles
dependency updates using
permissions specified for the
Legion task and logical regions.

mm/ddlyyyy | 28

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI use Legion for dependency
updates?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojolo)e)

(eJe) Q00 o @ local1
O O O shared 1
O O O O ghost 1
\ topology type:
N partition_t * partition partition[0]:
IndexSpace local 1
Mesh IndexSpace shared 1

IndexSpace ghost 1
The local mesh stores the

partition information as several
index spaces using an
IndexPartition

(a Legion C++ type).

mm/ddlyyyy | 29

How do the topology and data
models work together for Legion?

Topology

|

Index
Space(s)

|

Logical . Field Data
Region Space(s) Manager

How do the topology and data

models work together for Legion?

When a user registers data, the data manager and
Topology topology cooperate to create several logical regions...
l (
register_data(“pressure”, double, cells, dense);
} /I scope
Index

Space(s) The Legion backend will use local 1, shared 1, and ghost
1 with new field spaces of type double to create three
l new logical regions.

Logical . Field Data
Region Space(s) Manager

mm/dd/yyyy | 31

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How do the topology and data
models work together for Legion?

FleCSl tasks operate transparently on Legion logical
Topology regions using compile-time data handles that are
available through the FleCSl interface:
{
auto r = get_handle(“density”, double, cells, local, dense, ro);
Index auto e = get_handle(“internal energy”, double, cells, local, dense, ro);
Space(s) auto p = get_handle(“pressure”, double, cells, local, dense, rw);
auto p = execute(eos, r, €);
} I/ scope
Logical) Field Data
Region Space(s) Manager

mm/ddlyyyy | 32

UNCLASSIFIED

Sparse Data Representations

LA-UR-yy-#####

mm/dd/yyyy | 33

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

Managing sparse data representations
presents some challenges...

Initial Distribution Matrix Representation
material 1 - m1 m2
\.'.l
Bl material 2 At c0 v
c1 v2
Compressed Storage
c2 v3

offsets Ojl112]3

values vi| v2] v3

indices Ol 111

mm/ddlyyyy | 34

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

Managing sparse data representations
presents some challenges...

Evolved Distribution Matrix Representation
material 1 - m1 m2
\.'J
B material 2 At — linear advection €0 V1

¢l vn V2
Compressed Storage

e s c2 v3
offsets 011|134
values vilvn|v2|Vv3 | ——— Mutated Structure!!!

indices ojo|111|—

mm/ddlyyyy | 35

How does FleCSI handle sparse data?

offsets | 021 | 231 | 1351

1 0 2 0 O
A=|0 0 0 3 O
0 4 0 0 5

indices 0|2 31111] 4

values| 1121 314]| 5

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 36

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle sparse data?

[0,2] | [2,3] | [3.5]

—

o
= O O
SO
o W o
U1 O O

O

Code block to mutate sparse structure — {
m = get_mutator(A, 3);
m[0][1] = 6;
} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 37

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle sparse data?

[0,2] | [3.4] | [6.8]

1 0 2 0 0
A=ooo3o‘
0 4 0 0 5
02 3 1] 4
1]2 3 415

{

Constructor inserts space for new values — m = get_mutator(A, 3);
m[0][1] = 6;
} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/dd/yyyy | 38

Los Alamos National Laboratory

UNCLASSIFIED | LA-UR-yy-##t

How does FleCSI handle sparse data?

[0,2] | [3.4] | [6.8]

1 0 2 0 O
K A=10 0 0 3 0
0O 4 0 0 5
0] 2 3 114
User specifies
112 3 415 maximum total

slots

: l

Constructor inserts space for new values — m = get_mutator(A, 3);
m[0][1] = 6;
} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 39

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle sparse data?

031 | B4 | ©81 1 ® 2 0 0
A=10 0 0 3 O
0O 4 0 0 5

N
w
RN
AN

RN
03"_\
N(!
w

AN

(&)]

{

m = get_mutator(A, 3);
Intuitive interface to set non-zeros — m[0][1] = 6;

} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 40

Los Alamos National Laboratory

UNCLASSIFIED | LA-UR-yy-##t

How does FleCSI handle sparse data?

++

[0,3] | [3.4] | [6.8]

S O =
SO
o W o

o1 © O
—

N
w
RN
AN

RN
03"_\
N(!
w
AN

(&)]

{
m = get_mutator(A, 3);
Intuitive interface to set non-zeros — m[0][1] = 6;

(logically, m has a 5x3 dense structure like A) } I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/dd/yyyy | 41

Los Alamos National Laboratory

UNCLASSIFIED | LA-UR-yy-##t

How does FleCSI handle sparse data?

++

[0,3] | [3.4] | [6.8]

1 ® 2 0 0
A=lo 0 0 3 o
0 4 0 0 5§
o112 3 114
TRVIE 4|5

Column order is preserved, single-slot shift,

o {
only slot end is incremented m = get_mutator(A, 3):

Intuitive interface to set non-zeros — m[0][1] = 6;
} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 42

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle sparse data?

[0,3] | [3.4] | [6.8]

1 6 2 0 O
A=00030‘
0 4 0 0 5
0111213 114
1161213 415

{

m = get_mutator(A, 3);
What if we need more than 3 non-zeros? — m[0][1] = 6;

} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 43

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle sparse data?

[0,3] | [3.4] | [6.8]

1 6 230
A=00030‘
0 4 0 0 5
Oj12]3 114
11612]3 415

{

m = get_mutator(A, 3);
What if we need more than 3 non-zeros? — m[0][3] = 7;

} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 44

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle sparse data?

031 | 341 | ©8] spare map
S - ((0.4).7) 1 6 20
A=10 0 0 3 O‘
0 4 0 0 5
0111213 114
1161213 415

{

m = get_mutator(A, 3);
What if we need more than 3 non-zeros? — m[0][3] = 7;

} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 45

How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

{
m = get_mutator(A, 3);
m[0][3] = 7;

Destructor recompresses data — } // scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 46

How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

The time complexity for inserting n non-zeros is 0(n)
for direct insertion and O(n log(n)) for indirect insertion.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 47

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

The memory complexity depends on the application,
but can be quite efficient if good estimates are known.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 48

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

Implementation will support ELL-like dense number of
materials format, i.e., all rows have space for m non-zeros

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/ddlyyyy | 49

How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

We will also support nested sparsity through the use of
data handles.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/dd/yyyy | 50

How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

We will also support nested sparsity through the use of
data handles.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

mm/dd/yyyy | 51

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

Where are we at?

« Sparse data type is implemented and in friendly user mode
« Serial implementation done
« Working on Legion backend
* Most other storage types have been implemented in serial
* Legion backend implementation is straightforward
* Legion task implementation is being finalized
» Execution model for tasks is in place, i.e., friendly user mode
« Data model structure is in place, but requires more work
« ParMETIS partitioning is in progress...
* Primary partitioning in place
« Working on dependency closure abstractions
 MPI+Legion interoperability
» Working prototype is being integrated into FleCSlI

mm/ddlyyyy | 52

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

MPI-Legion Interoperability

mm/ddlyyyy | 53

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

Initialization begins with MPI runtime...

mm/ddlyyyy | 54

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

Initialization begins with MPI runtime...

MPI MPI MPI MPI
rank O rank 1 rank 2 rank 4

mm/ddlyyyy | 55

Los Alamos National Laboratory

Each MPI rank starts the top-level Legion
task...

UNCLASSIFIED | LA-UR-yy-##t

MPI MPI MPI MPI
rank O rank 1 rank 2 rank 4
Legion Legion Legion Legion

Top-Level Top-Level Top-Level Top-Level

Task Task Task Task

mm/ddlyyyy | 56

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

Legion uses PGAS-MPI interoperability
mode to synchronize tasks...

MPI MPI MPI MPI
rank O rank 1 rank 2 rank 4
Legion Legion Legion Legion

Top-Level [¢e— Top-Level [¢—>| Top-Level [¢e—>| Top-Level

Task Task Task Task

mm/ddlyyyy | 57

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

Once the Legion runtime has initialized, a SPMD
task is launched and the system is ready...

MPI MPI MPI MPI
rank O rank 1 rank 2 rank 4
Legion Legion Legion Legion

Top-Level [¢e— Top-Level [¢—>| Top-Level [¢e—>| Top-Level
Task Task Task Task
Initialization Initialization Initialization Initialization
Complete Complete Complete Complete

mm/ddlyyyy | 58

UNCLASSIFIED | LA-UR-yy-##t

Los Alamos National Laboratory

Subsequent calls to the MPI runtime can
be made from the SPMD tasks...

driver.h (Legion Runtime) mpi_tasks.h (MPI Runtime)
#include “mpi_tasks.h” int mpi_task_1(double * data) {
int rank;

int driver(int argc, char ** argv) { MPI_Comm_rank(MPl_COMM_WORLD, &rank);

execute_mpi(mpi_task_1, data); for(i=start_range; i<end_range; ++i) {

data[i] = math();
execute_task(legion_task_1, data); } /] for
}

execute_mpi(mpi_task 2, data);
} int mpi_task_2(double * data) {

// algorithm logic

mm/ddlyyyy | 59

Subsequent calls to the MPI runtime can

be made from the SPMD tasks...

driver.h (Legion Runtime) mpi_tasks.h (MPI Runtime)
#include “mpi_tasks.h” int mpi_task_1(double * data) {
int rank;

int driver(int argc, char ** argv) { MPI_Comm_rank(MPl_COMM_WORLD, &rank);

execute_mpi(mpi_task_1, data); for(i=start_range; i<end_range; ++i) {

data[i] = math();
execute_task(legion_task_1, data); } /] for
}

execute_mpi(mpi_task 2, data);
} int mpi_task_2(double * data) {

' - /I algorithm logi
Each runtime has exclusive algorithm fogic

execution (bulk synchronous }
between runtimes)

mm/dd/yyyy | 60

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How do the runtimes manage the

interaction?
. 7 Execute
Acauire - Queec
MPI Task
Runtime

Release[

Mutex

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How do the runtimes manage the

interaction?
N 4
execute_mpi(mpi_task)
MPI
Runtime

¢

mm/ddlyyyy | 62

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How do the runtimes manage the
interaction?

. F
Acquire
Mutex

execute_mpi(mpi_task) ——

MPI
Runtime

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How do the runtimes manage the
interaction?

_—

7 Execute
Queued
MPI Task

Runtime

¢

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How do the runtimes manage the
interaction?

MPI
Runtime

Release(

Mutex

Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How do the runtimes manage the
interaction?

MPI
Runtime

¢

execute_task(next_legion_task) «——

mm/ddlyyyy | 66

