
LA-UR-16-26040
Approved for public release; distribution is unlimited.

Title: FleCSI connection to Legion

Author(s): Bergen, Benjamin Karl

Intended for: ASC L2 Milestone Review

Issued: 2016-08-04

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSAUNCLASSIFIED

Los Alamos National Laboratory

mm/dd/yyyy | 2

UNCLASSIFIED | LA-UR-yy-#####

FleCSI: Connection to Legion

Ben Bergen
Wednesday, August 3rd 2016

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

mm/dd/yyyy | 3

UNCLASSIFIED | LA-UR-yy-#####

• Acknowledgements
• Legion Backend
• Distributed-Memory

Partitioning
• Sparse Data

Representations
• MPI–Legion

Interoperability

Los Alamos National Laboratory

mm/dd/yyyy | 4

UNCLASSIFIED | LA-UR-yy-#####

Many people have made significant
contributions to FleCSI…

Nick Moss (CCS-7) 17,721 ++ / 10,167 -- (0.25 FTE)
Topology types, sparse data, design

Marc Charest (XCP-1) 19,582 ++ / 6,074 --

Mesh specialization, data structures, design
Irina Demeshko (CCS-7)

Legion backend, MPI/Legion interoperability, design
John Wohlbier (formerly CCS-2)

Mesh specialization, I/O

Josh Payne (CCS-7)
Execution model, design

Gary Dilts (CCS-2)
Tree specialization, data structures, design

Nathaniel Morgan (XCP-8), Vince Chiravalle (A-2), Joe Schmidt (XTD-NTA), Rao Garimella (T-7), Wes Even (CCS-2)
Requirements, mesh data structures, design

Los Alamos National Laboratory

mm/dd/yyyy | 5

UNCLASSIFIED | LA-UR-yy-#####

Legion Backend

Los Alamos National Laboratory

mm/dd/yyyy | 6

UNCLASSIFIED | LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

register_data(m, "pressure", 3, double, dense, cells);High-Level

Los Alamos National Laboratory

mm/dd/yyyy | 7

UNCLASSIFIED | LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

register_data(m, "pressure", 3, double, dense, cells);

topology

identifier
versions

type

storage
type

index
space

High-Level

Los Alamos National Laboratory

mm/dd/yyyy | 8

UNCLASSIFIED | LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<size_t ST, typename T, size_t NS,
typename ... Args>
decltype(auto) register_data(
data_client_t & data_client,
const const_string_t & key,
size_t versions=1,
Args && ... args)

Specialization

Los Alamos National Laboratory

mm/dd/yyyy | 9

UNCLASSIFIED | LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<size_t ST, typename T, size_t NS,
typename ... Args>
decltype(auto) register_data(
data_client_t & data_client,
const const_string_t & key,
size_t versions=1,
Args && ... args)

storage
type type

topology
identifier
versions

Specialization

Los Alamos National Laboratory

mm/dd/yyyy | 10

UNCLASSIFIED | LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<typename T, size_t NS, typename ... Args>
static handle_t<T> register_data(

data_client_t & data_client,
data_store_t & data_store, const const_string_t & key,
size_t versions, size_t index_space, Args && ... args)

Low-Level

Los Alamos National Laboratory

mm/dd/yyyy | 11

UNCLASSIFIED | LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

template<typename T, size_t NS, typename ... Args>
static handle_t<T> register_data(

data_client_t & data_client,
data_store_t & data_store, const const_string_t & key,
size_t versions, size_t index_space, Args && ... args)

Mapped to specific
storage type

Low-Level

Los Alamos National Laboratory

mm/dd/yyyy | 12

UNCLASSIFIED | LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

FieldSpace fs = runtime->create_field_space(ctx);

Backend

Los Alamos National Laboratory

mm/dd/yyyy | 13

UNCLASSIFIED | LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

FieldSpace fs = runtime->create_field_space(ctx);

Storage type uses Legion runtime
to create appropriate field space(s)

Backend

Los Alamos National Laboratory

mm/dd/yyyy | 14

UNCLASSIFIED | LA-UR-yy-#####

What is the FleCSI data interface?

User Interface

Data Manager

Storage Types

Runtime

register_data(m, "pressure", 3, double, dense, cells);

FieldSpace fs = runtime->create_field_space(ctx);

Dense
Storage

Example

Los Alamos National Laboratory

mm/dd/yyyy | 15

UNCLASSIFIED | LA-UR-yy-#####

What storage types do we support?

• Dense: One dimensional, contiguous array
• Use Case: Physics state data

• Global: Single data instance (there’s only one…)
• Use Case: Simulation state data

• Local: One dimensional, contiguous array
• Use Case: Scratch data

• Sparse: Dense index space, sparse population
• Use Case: Material data, execution-dependent data, sparse matrices

• Tuple: Combination of other storage types
• Use Case: Provide struct-like support for cleaner task definitions

Los Alamos National Laboratory

mm/dd/yyyy | 16

UNCLASSIFIED | LA-UR-yy-#####

Distributed-Memory Partitioning

Los Alamos National Laboratory

mm/dd/yyyy | 17

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

Los Alamos National Laboratory

mm/dd/yyyy | 18

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

primary 1
primary 2
primary 3

The mesh is partitioned by
entities in one of the topological
dimensions, e.g., cells.

Los Alamos National Laboratory

mm/dd/yyyy | 19

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

primary 1
primary 2
primary 3

The mesh is partitioned by
entities in one of the topological
dimensions, e.g., cells.

The primary partitioning splits the
topology into contiguous sets of cells.

Los Alamos National Laboratory

mm/dd/yyyy | 20

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
local 2
local 3

shared 1
shared 2
shared 3

ghost 1
ghost 2
ghost 3

Using a strategy defined by the
specialization, the dependency
closure of the mesh is formed,
creating several sets of indices
(index spaces).

Los Alamos National Laboratory

mm/dd/yyyy | 21

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
local 2
local 3

shared 1
shared 2
shared 3

ghost 1
ghost 2
ghost 3

Using a strategy defined by the
specialization, the dependency
closure of the mesh is formed,
creating several sets of indices
(index spaces).

Local: I own them, and nobody else
cares about them
Shared: I own them, and some other
people care about them
Ghost: I don’t own them, but I care
about them

Los Alamos National Laboratory

mm/dd/yyyy | 22

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
local 2
local 3

shared 1
shared 2
shared 3

ghost 1
ghost 2
ghost 3

Multiple partitionings and
partition closure strategies can
be employed within the same
specialization.

Los Alamos National Laboratory

mm/dd/yyyy | 23

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1

shared 1

ghost 1On each SPMD task (rank), the
closure forms a set of virtual
index spaces that represent a
complete set of dependency
data.

Los Alamos National Laboratory

mm/dd/yyyy | 24

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

The virtual index spaces can be
iterated using foreach semantics.

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells()) {
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

Los Alamos National Laboratory

mm/dd/yyyy | 25

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells()) { // traverse all cells (union of sets)
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

The virtual index spaces can be
iterated using foreach semantics.

Los Alamos National Laboratory

mm/dd/yyyy | 26

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(unknowns)) { // traverse cells in the
foreach(auto i: c.materials()) { // union of local and shared

m[i] = 1.0;
} // for

} // for
} // scope

The virtual index spaces can be
iterated using foreach semantics.

Los Alamos National Laboratory

mm/dd/yyyy | 27

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(ghost)) { // traverse cells in the ghost set
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

The virtual index spaces can be
iterated using foreach semantics.

Los Alamos National Laboratory

mm/dd/yyyy | 28

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle distributed
memory?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

{
auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(unknowns)) {
foreach(auto i: c.materials()) {

m[i] = 1.0;
} // for

} // for
} // scope

This provides a clean interface
for complex data access and
execution that handles
dependency updates using
permissions specified for the
Legion task and logical regions.

Los Alamos National Laboratory

mm/dd/yyyy | 29

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI use Legion for dependency
updates?

Mesh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

local 1
shared 1
ghost 1

The local mesh stores the
partition information as several
index spaces using an
IndexPartition
(a Legion C++ type).

topology type:
partition_t * partition partition[0]:

IndexSpace local 1
IndexSpace shared 1
IndexSpace ghost 1

Los Alamos National Laboratory

mm/dd/yyyy | 30

UNCLASSIFIED | LA-UR-yy-#####

How do the topology and data
models work together for Legion?

Topology

Index
Space(s)

Data
Manager

Field
Space(s)

Logical
Region

Los Alamos National Laboratory

mm/dd/yyyy | 31

UNCLASSIFIED | LA-UR-yy-#####

How do the topology and data
models work together for Legion?

Topology

Index
Space(s)

Data
Manager

Field
Space(s)

Logical
Region

When a user registers data, the data manager and
topology cooperate to create several logical regions…

{
register_data(“pressure”, double, cells, dense);
} // scope

The Legion backend will use local 1, shared 1, and ghost
1 with new field spaces of type double to create three
new logical regions.

Los Alamos National Laboratory

mm/dd/yyyy | 32

UNCLASSIFIED | LA-UR-yy-#####

How do the topology and data
models work together for Legion?

Topology

Index
Space(s)

Data
Manager

Field
Space(s)

Logical
Region

FleCSI tasks operate transparently on Legion logical
regions using compile-time data handles that are
available through the FleCSI interface:

{
auto r = get_handle(“density”, double, cells, local, dense, ro);
auto e = get_handle(“internal energy”, double, cells, local, dense, ro);
auto p = get_handle(“pressure”, double, cells, local, dense, rw);

auto p = execute(eos, r, e);
} // scope

Los Alamos National Laboratory

mm/dd/yyyy | 33

UNCLASSIFIED | LA-UR-yy-#####

Sparse Data Representations

Los Alamos National Laboratory

mm/dd/yyyy | 34

UNCLASSIFIED | LA-UR-yy-#####

Managing sparse data representations
presents some challenges…

material 1

material 2

Initial Distribution Matrix Representation

0 1 2 3

v1 v2 v3

0 1 1

offsets

values

indices

Compressed Storage

Δ𝑡

m1 m2

c0 v1

c1 v2

c2 v3

Los Alamos National Laboratory

mm/dd/yyyy | 35

UNCLASSIFIED | LA-UR-yy-#####

material 1

material 2

Evolved Distribution

m1 m2

c0 v1

c1 vn v2

c2 v3

Matrix Representation

0 1 3 4

v1 vn v2

0 0 1

offsets

values

indices

Compressed Storage

Δ𝑡

v3

1

linear advection

++ ++

Mutated Structure!!!

Managing sparse data representations
presents some challenges…

Los Alamos National Laboratory

mm/dd/yyyy | 36

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [2,3] [3,5]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

offsets

indices

values

Los Alamos National Laboratory

mm/dd/yyyy | 37

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [2,3] [3,5]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Code block to mutate sparse structure

Los Alamos National Laboratory

mm/dd/yyyy | 38

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [3,4] [6,8]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Constructor inserts space for new values

Los Alamos National Laboratory

mm/dd/yyyy | 39

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,2] [3,4] [6,8]

0 2 3 1 4

1 2 3 4 5

𝐴 =
1 0 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Constructor inserts space for new values

User specifies
maximum total

slots

Los Alamos National Laboratory

mm/dd/yyyy | 40

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

++

=

=

→

→

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Intuitive interface to set non-zeros

Los Alamos National Laboratory

mm/dd/yyyy | 41

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

++

=

=

→

→

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Intuitive interface to set non-zeros
(logically, m has a 5x3 dense structure like A)

Los Alamos National Laboratory

mm/dd/yyyy | 42

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

++

=

=

→

→

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

Intuitive interface to set non-zeros

Column order is preserved, single-slot shift,
only slot end is incremented

Los Alamos National Laboratory

mm/dd/yyyy | 43

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

𝐴 =
1 6 2 0 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][1] = 6;
} // scope

What if we need more than 3 non-zeros?

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

Los Alamos National Laboratory

mm/dd/yyyy | 44

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][3] = 7;
} // scope

What if we need more than 3 non-zeros?

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

Los Alamos National Laboratory

mm/dd/yyyy | 45

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][3] = 7;
} // scope

What if we need more than 3 non-zeros?

[0,3] [3,4] [6,8]

0 1 2 3 1 4

1 6 2 3 4 5

spare map
((0,4),7)

Los Alamos National Laboratory

mm/dd/yyyy | 46

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

{
m = get_mutator(A, 3);
m[0][3] = 7;
} // scopeDestructor recompresses data

Los Alamos National Laboratory

mm/dd/yyyy | 47

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

The time complexity for inserting 𝑛 non-zeros is O 𝑛
for direct insertion and O 𝑛	𝑙𝑜𝑔 𝑛 for indirect insertion.

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

Los Alamos National Laboratory

mm/dd/yyyy | 48

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

The memory complexity depends on the application,
but can be quite efficient if good estimates are known.

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

Los Alamos National Laboratory

mm/dd/yyyy | 49

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

Implementation will support ELL-like dense number of
materials format, i.e., all rows have space for m non-zeros

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

Los Alamos National Laboratory

mm/dd/yyyy | 50

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

We will also support nested sparsity through the use of
data handles.

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

Los Alamos National Laboratory

mm/dd/yyyy | 51

UNCLASSIFIED | LA-UR-yy-#####

How does FleCSI handle sparse data?

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing

[0,4] [4,5] [5,7]

0 1 2 3

1 6 2 7

3 1 4

3 4 5

𝐴 =
1 6 2 7 0
0 0 0 3 0
0 4 0 0 5

We will also support nested sparsity through the use of
data handles.

Los Alamos National Laboratory

mm/dd/yyyy | 52

UNCLASSIFIED | LA-UR-yy-#####

Where are we at?

• Sparse data type is implemented and in friendly user mode
• Serial implementation done
• Working on Legion backend

• Most other storage types have been implemented in serial
• Legion backend implementation is straightforward

• Legion task implementation is being finalized
• Execution model for tasks is in place, i.e., friendly user mode
• Data model structure is in place, but requires more work

• ParMETIS partitioning is in progress…
• Primary partitioning in place
• Working on dependency closure abstractions

• MPI+Legion interoperability
• Working prototype is being integrated into FleCSI

Los Alamos National Laboratory

mm/dd/yyyy | 53

UNCLASSIFIED | LA-UR-yy-#####

MPI–Legion Interoperability

Los Alamos National Laboratory

mm/dd/yyyy | 54

UNCLASSIFIED | LA-UR-yy-#####

Initialization begins with MPI runtime…

Los Alamos National Laboratory

mm/dd/yyyy | 55

UNCLASSIFIED | LA-UR-yy-#####

Initialization begins with MPI runtime…

MPI
rank 0

MPI
rank 1

MPI
rank 2

MPI
rank 4

Los Alamos National Laboratory

mm/dd/yyyy | 56

UNCLASSIFIED | LA-UR-yy-#####

Each MPI rank starts the top-level Legion
task…

MPI
rank 0

MPI
rank 1

MPI
rank 2

MPI
rank 4

Legion
Top-Level

Task

Legion
Top-Level

Task

Legion
Top-Level

Task

Legion
Top-Level

Task

Los Alamos National Laboratory

mm/dd/yyyy | 57

UNCLASSIFIED | LA-UR-yy-#####

Legion uses PGAS–MPI interoperability
mode to synchronize tasks…

MPI
rank 0

MPI
rank 1

MPI
rank 2

MPI
rank 4

Legion
Top-Level

Task

Legion
Top-Level

Task

Legion
Top-Level

Task

Legion
Top-Level

Task

Los Alamos National Laboratory

mm/dd/yyyy | 58

UNCLASSIFIED | LA-UR-yy-#####

Once the Legion runtime has initialized, a SPMD
task is launched and the system is ready…

MPI
rank 0

MPI
rank 1

MPI
rank 2

MPI
rank 4

Legion
Top-Level

Task

Legion
Top-Level

Task

Legion
Top-Level

Task

Legion
Top-Level

Task

Initialization
Complete

Initialization
Complete

Initialization
Complete

Initialization
Complete

Los Alamos National Laboratory

mm/dd/yyyy | 59

UNCLASSIFIED | LA-UR-yy-#####

Subsequent calls to the MPI runtime can
be made from the SPMD tasks…

#include “mpi_tasks.h”

int driver(int argc, char ** argv) {

execute_mpi(mpi_task_1, data);

execute_task(legion_task_1, data);

execute_mpi(mpi_task_2, data);
}

driver.h (Legion Runtime) mpi_tasks.h (MPI Runtime)
int mpi_task_1(double * data) {

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for(i=start_range; i<end_range; ++i) {
data[i] = math();

} // for
}

int mpi_task_2(double * data) {

// algorithm logic

}

Los Alamos National Laboratory

mm/dd/yyyy | 60

UNCLASSIFIED | LA-UR-yy-#####

Subsequent calls to the MPI runtime can
be made from the SPMD tasks…

#include “mpi_tasks.h”

int driver(int argc, char ** argv) {

execute_mpi(mpi_task_1, data);

execute_task(legion_task_1, data);

execute_mpi(mpi_task_2, data);
}

driver.h (Legion Runtime) mpi_tasks.h (MPI Runtime)
int mpi_task_1(double * data) {

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for(i=start_range; i<end_range; ++i) {
data[i] = math();

} // for
}

int mpi_task_2(double * data) {

// algorithm logic

}
Each runtime has exclusive
execution (bulk synchronous
between runtimes)

Los Alamos National Laboratory

mm/dd/yyyy | 61

UNCLASSIFIED | LA-UR-yy-#####

Execute
Queued

Task

Release
Mutex

Acquire
Mutex

MPI
Runtime

How do the runtimes manage the
interaction?

Los Alamos National Laboratory

mm/dd/yyyy | 62

UNCLASSIFIED | LA-UR-yy-#####

Execute
Queued

Task

Release
Mutex

Acquire
Mutex

MPI
Runtime

execute_mpi(mpi_task)

How do the runtimes manage the
interaction?

Los Alamos National Laboratory

mm/dd/yyyy | 63

UNCLASSIFIED | LA-UR-yy-#####

MPI
Runtime

execute_mpi(mpi_task)

How do the runtimes manage the
interaction?

Execute
Queued

Task

Release
Mutex

Acquire
Mutex

Los Alamos National Laboratory

mm/dd/yyyy | 64

UNCLASSIFIED | LA-UR-yy-#####

MPI
Runtime

How do the runtimes manage the
interaction?

Execute
Queued

Task

Release
Mutex

Acquire
Mutex

Los Alamos National Laboratory

mm/dd/yyyy | 65

UNCLASSIFIED | LA-UR-yy-#####

MPI
Runtime

How do the runtimes manage the
interaction?

Execute
Queued

Task

Release
Mutex

Acquire
Mutex

Los Alamos National Laboratory

mm/dd/yyyy | 66

UNCLASSIFIED | LA-UR-yy-#####

Execute
Queued

Task

Release
Mutex

Acquire
Mutex

MPI
Runtime

execute_task(next_legion_task)

How do the runtimes manage the
interaction?

