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Los Alamos National Laboratory

Many people have made significant
contributions to FleCSl...

Nick Moss (CCS-7) 17,721 ++/ 10,167 -- (0.25 FTE)
Topology types, sparse data, design
Marc Charest (XCP-1) 19,582 ++ /6,074 --
Mesh specialization, data structures, design
Irina Demeshko (CCS-7)
Legion backend, MPI/Legion interoperability, design
John Wohlbier (formerly CCS-2)
Mesh specialization, I/O
Josh Payne (CCS-7)
Execution model, design
Gary Dilts (CCS-2)
Tree specialization, data structures, design
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Nathaniel Morgan (XCP-8), Vince Chiravalle (A-2), Joe Schmidt (XTD-NTA), Rao Garimella (T-7), Wes Even (CCS-2)

Requirements, mesh data structures, design
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Legion Backend
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What is the FleCSI data interface?

=] igh-Leve| — register_data(m, "pressure", 3, double, dense, cells);

User Interface

Data Manager

Storage Types

Runtime
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What is the FleCSI data interface?

=] igh-Leve| — register_data(m, "pressure", 3, double, dense, cc?:ls);
User Interface topology / / [
versions storage
Data Manager identifier type
type
Storage Types index

space

Runtime
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What is the FleCSI data interface?

Specialization

template<size t ST, typename T, size_t NS,
typename ... Args>

User Interface decltype(auto) register_data(

— data_client_t & data_client,

Data Manager const const_string _t & key,
size t versions=1,

Storage Types Args && ... args)

Runtime
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What is the FleCSI data interface?

Specialization

User Interface

Data Manager

storage type

type ]
template<size t ST, typename T, size_t NS,

typename ... Args>
decltype(auto) register_data(

Storage Types

Runtime

— data_client_t & data_client, « topology
const const_string t & key, < identifier
size t versions=1, < versions

Args && ... args)
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What is the FleCSI data interface?

Low-Level

User Interface

Data Manager

template<typename T, size t NS, typename ... Args>
static handle t<T> register_data(
_ — data_client_t & data_client,
Runtime data_store_t & data_store, const const_string_t & key,
size t versions, size t index_space, Args && ... args)

Storage Types

mm/dd/yyyy | 10



UNCLASSIFIED | LA-UR-yy-##t

Los Alamos National Laboratory

What is the FleCSI data interface?

Low-Level

User Interface

Mapped to specific
Data Manager storage type

template<typename T, size t NS, typename ... Args>
static handle t<T> register_data(
_ — data_client_t & data_client,
Runtime data_store_t & data_store, const const_string_t & key,
size t versions, size t index_space, Args && ... args)

Storage Types
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What is the FleCSI data interface?

Backend

User Interface

Data Manager

Storage Types

Runtime

—> FieldSpace fs = runtime->create_field space(ctx);
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What is the FleCSl data interface?

Backend

User Interface

Data Manager

Storage Types

Runtime Storage type uses Legion runtime
to create appropriate field space(s)

—> FieldSpace fs = runtime->create_field space(ctx);

mm/ddlyyyy | 13



Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

What is the FleCSI data interface?

Example —> register_data(m, "pressure”, 3, double, dense, cells);

User Interface

Data Manager

Dense

Storage Types Storage

Runtime

—> FieldSpace fs = runtime->create_field space(ctx);
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What storage types do we support?

Dense: One dimensional, contiguous array

» Use Case: Physics state data

Global: Single data instance (there’s only one...)
» Use Case: Simulation state data

Local: One dimensional, contiguous array

» Use Case: Scratch data

Sparse: Dense index space, sparse population

» Use Case: Material data, execution-dependent data, sparse matrices

Tuple: Combination of other storage types
« Use Case: Provide struct-like support for cleaner task definitions

mm/ddlyyyy | 15



Distributed-Memory Partitioning

IFIED | LA-UR-yy-####H#



Los Alamos National Laboratory UNCLASSIFIED | LA-UR-yy-##H###

How does FleCSI handle distributed
memory?
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How does FleCSI handle distributed
memory?
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Mesh

The mesh is partitioned by
entities in one of the topological

dimensions, e.g., cells.



How does FleCSI handle distributed
memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
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The primary partitioning splits the
topology into contiguous sets of cells.

Mesh

The mesh is partitioned by
entities in one of the topological

dimensions, e.g., cells.

primary 1
primary 2
primary 3



How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojololololololololololololololololololololololololo)e)

00 000 o O local 1
(@) Q0 ®) ®) @ local 2

e e e local 3

@) @) O shared 1
@) (eJe) shared 2

®) 00 o shared 3

Mesh

o o o o ghost 1

Using a strategy defined by the
ghost 2

specialization, the dependency (0]0) O O
closure of the mesh is formed, ® ® ® ghost 3
creating several sets of indices

(index spaces).
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How does FleCSI handle distributed

memory ?
123 456 7 8 91011121314 1516 1718 19 20 21 22 23 24 25 26 27 28 29

olojojololololololololololololololololololololololololo)e)

(eo)e) Q00 (@) (@) local 1

®) o0 o o @ local 2

CYC) CYC) CYC) local 3
0 @) @) shared 1
Local: | own them, and nobody else shared 2
cares about them shared 3

Shared: | own them, and some other
people care about them

Mesh

. : host 1
Using a strategy defined by the | Ghost: | don’t own them, but | care g
specialization, the dependency bout th ghost 2
closure of the mesh is formed, abou em ghost 3

creating several sets of indices
(index spaces).
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How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojololololololololololololololololololololololololo)e)

00 000 o O local 1
(@) Q0 ®) ®) @ local 2

e e e local 3

o) O O shared 1
@) (eJe) shared 2

®) 00 o shared 3

Mesh

Multiple partitionings and * ® @ e ghost 1

partition closure strategies can 0 O ) ghost 2
be employed within the same ® ® ® ghost 3
specialization.
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How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojololololololololololololololololololololololololo)e)

00 000 o O local 1

rrrrrrrrr

@) @) O shared 1

Mesh

On each SPMD task (rank), the
closure forms a set of virtual
index spaces that represent a
complete set of dependency
data.
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How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
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00 000 (@) o local 1
©) o o shared 1
O O O O ghost 1
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Mesh

The virtual index spaces can be
iterated using foreach semantics.
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How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
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00 000 (@) o local 1
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@) 00 0000 0000 00 @)

foreach(auto c: mesh.cells()) { // traverse all cells (union of sets Q)

Mesh

The virtual index spaces can be
iterated using foreach semantics.
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How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojololololololololololololololololololololololololo)e)

00 000 o O local 1
o O O shared 1
O O O O ghost 1
O Y Y} 0000 O O

foreach(auto c: mesh.cells(unknowns)) { // traverse cells in the
// union of local and shared @

Mesh

The virtual index spaces can be
iterated using foreach semantics.
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How does FleCSI handle distributed

memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojololololololololololololololololololololololololo)e)

00 000 o O local 1
o O O shared 1
O O O O ghost 1
O O O O

foreach(auto c: mesh.cells(ghost)) { / traverse cells in the ghost set @

Mesh

The virtual index spaces can be
iterated using foreach semantics.
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How does FleCSI handle distributed
memory?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojololololololololololololololololololololololololo)e)

00 000 o O local 1

©) ©) o shared 1
O O O O ghost 1

rrrrrrrrr

{

auto m = get_accessor(“materials”, material_t, cells, sparse, rw);

foreach(auto c: mesh.cells(unknowns)) {
foreach(auto i: c.materials()) {

Mesh m[i] = 1.0;
} /Il for
This provides a clean interface }/ for
for complex data access and } /I scope

execution that handles
dependency updates using
permissions specified for the
Legion task and logical regions.
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How does FleCSI use Legion for dependency
updates?

123456 7 891011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
olojojololololololololololololololololololololololololo)e)

(eJe) Q00 o @ local1
O O O shared 1
O O O O ghost 1
\ topology type:
N partition_t * partition partition[0]:
IndexSpace local 1
Mesh IndexSpace shared 1

IndexSpace ghost 1
The local mesh stores the

partition information as several
index spaces using an
IndexPartition

(a Legion C++ type).
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How do the topology and data
models work together for Legion?

Topology

|

Index
Space(s)

|

Logical . Field Data
Region Space(s) Manager




How do the topology and data

models work together for Legion?

When a user registers data, the data manager and
Topology topology cooperate to create several logical regions...
l (
register_data(“pressure”, double, cells, dense);
} /I scope
Index

Space(s) The Legion backend will use local 1, shared 1, and ghost
1 with new field spaces of type double to create three
l new logical regions.

Logical . Field Data
Region Space(s) Manager
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How do the topology and data
models work together for Legion?

FleCSl tasks operate transparently on Legion logical
Topology regions using compile-time data handles that are
available through the FleCSl interface:
{
auto r = get_handle(“density”, double, cells, local, dense, ro);
Index auto e = get_handle(“internal energy”, double, cells, local, dense, ro);
Space(s) auto p = get_handle(“pressure”, double, cells, local, dense, rw);
auto p = execute(eos, r, €);
} I/ scope
Logical ) Field Data
Region Space(s) Manager
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Managing sparse data representations
presents some challenges...

Initial Distribution Matrix Representation
material 1 - m1 m2
\.'.l
Bl material 2 At c0 v
c1 v2
Compressed Storage
c2 v3

offsets Ojl112]3

values vi| v2 ] v3

indices Ol 111
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Managing sparse data representations
presents some challenges...

Evolved Distribution Matrix Representation
material 1 - m1 m2
\.'J
B material 2 At — linear advection €0 V1

¢l vn V2
Compressed Storage

e s c2 v3
offsets 011|134
values vilvn|v2|Vv3 | ——— Mutated Structure!!!

indices ojo|111|—
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How does FleCSI handle sparse data?

offsets | 021 | 231 | 1351

1 0 2 0 O
A=|0 0 0 3 O
0 4 0 0 5

indices 0|2 31111] 4

values| 1121 314]| 5

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,2] | [2,3] | [3.5]

—

o
= O O
SO
o W o
U1 O O

O

Code block to mutate sparse structure —  {
m = get_mutator(A, 3);
m[0][1] = 6;
} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,2] | [3.4] | [6.8]

1 0 2 0 0
A=ooo3o‘
0 4 0 0 5
02 3 1] 4
1]2 3 415

{

Constructor inserts space for new values —  m = get_mutator(A, 3);
m[0][1] = 6;
} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,2] | [3.4] | [6.8]

1 0 2 0 O
K A=10 0 0 3 0
0O 4 0 0 5
0] 2 3 114
User specifies
112 3 415 maximum total

slots

: l

Constructor inserts space for new values —  m = get_mutator(A, 3);
m[0][1] = 6;
} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

031 | B4 | ©81 1 ® 2 0 0
A=10 0 0 3 O
0O 4 0 0 5

N
w
RN
AN

RN
03"\_\
N(!
w

AN

(&) ]

{

m = get_mutator(A, 3);
Intuitive interface to set non-zeros —  m[0][1] = 6;

} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

++

[0,3] | [3.4] | [6.8]

S O =
SO
o W o

o1 © O
—

N
w
RN
AN

RN
03"\_\
N(!
w
AN

(&) ]

{
m = get_mutator(A, 3);
Intuitive interface to set non-zeros —  m[0][1] = 6;

(logically, m has a 5x3 dense structure like A) } I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

++

[0,3] | [3.4] | [6.8]

1 ® 2 0 0
A=lo 0 0 3 o
0 4 0 0 5§
o112 3 114
TRVIE 4|5

Column order is preserved, single-slot shift,

o {
only slot end is incremented m = get_mutator(A, 3):

Intuitive interface to set non-zeros —  m[0][1] = 6;
} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,3] | [3.4] | [6.8]

1 6 2 0 O
A=00030‘
0 4 0 0 5
0111213 114
1161213 415

{

m = get_mutator(A, 3);
What if we need more than 3 non-zeros? —  m[0][1] = 6;

} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,3] | [3.4] | [6.8]

1 6 230
A=00030‘
0 4 0 0 5
Oj12]3 114
11612]3 415

{

m = get_mutator(A, 3);
What if we need more than 3 non-zeros? —  m[0][3] = 7;

} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

031 | 341 | ©8] spare map
S - ((0.4).7) 1 6 20
A=10 0 0 3 O‘
0 4 0 0 5
0111213 114
1161213 415

{

m = get_mutator(A, 3);
What if we need more than 3 non-zeros? —  m[0][3] = 7;

} I/ scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

{
m = get_mutator(A, 3);
m[0][3] = 7;

Destructor recompresses data —  } // scope

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

The time complexity for inserting n non-zeros is 0(n)
for direct insertion and O(n log(n)) for indirect insertion.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

The memory complexity depends on the application,
but can be quite efficient if good estimates are known.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

Implementation will support ELL-like dense number of
materials format, i.e., all rows have space for m non-zeros

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

We will also support nested sparsity through the use of
data handles.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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How does FleCSI handle sparse data?

[0,4] | [4,5] | [5.7]

—

o
= O O
SO
S W
U1 O O

O

We will also support nested sparsity through the use of
data handles.

Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTL4 and FEniCS
POOSC '09 Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing
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Where are we at?

« Sparse data type is implemented and in friendly user mode
« Serial implementation done
« Working on Legion backend
* Most other storage types have been implemented in serial
* Legion backend implementation is straightforward
* Legion task implementation is being finalized
» Execution model for tasks is in place, i.e., friendly user mode
« Data model structure is in place, but requires more work
« ParMETIS partitioning is in progress...
* Primary partitioning in place
« Working on dependency closure abstractions
 MPI+Legion interoperability
» Working prototype is being integrated into FleCSlI
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MPI-Legion Interoperability
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Initialization begins with MPI runtime...
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Initialization begins with MPI runtime...

MPI MPI MPI MPI
rank O rank 1 rank 2 rank 4
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Each MPI rank starts the top-level Legion
task...

UNCLASSIFIED | LA-UR-yy-##t

MPI MPI MPI MPI
rank O rank 1 rank 2 rank 4
Legion Legion Legion Legion

Top-Level Top-Level Top-Level Top-Level

Task Task Task Task
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Legion uses PGAS-MPI interoperability
mode to synchronize tasks...

MPI MPI MPI MPI
rank O rank 1 rank 2 rank 4
Legion Legion Legion Legion

Top-Level [¢e— Top-Level [¢—>| Top-Level [¢e—>| Top-Level

Task Task Task Task
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Once the Legion runtime has initialized, a SPMD
task is launched and the system is ready...

MPI MPI MPI MPI
rank O rank 1 rank 2 rank 4
Legion Legion Legion Legion

Top-Level [¢e— Top-Level [¢—>| Top-Level [¢e—>| Top-Level
Task Task Task Task
Initialization Initialization Initialization Initialization
Complete Complete Complete Complete
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Los Alamos National Laboratory

Subsequent calls to the MPI runtime can
be made from the SPMD tasks...

driver.h (Legion Runtime) mpi_tasks.h (MPI Runtime)
#include “mpi_tasks.h” int mpi_task_1(double * data) {
int rank;

int driver(int argc, char ** argv) { MPI_Comm_rank(MPl_COMM_WORLD, &rank);

execute_mpi(mpi_task_1, data); for(i=start_range; i<end_range; ++i) {

data[i] = math();
execute_task(legion_task_1, data); } /] for
}

execute_mpi(mpi_task 2, data);
} int mpi_task_2(double * data) {

// algorithm logic
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Subsequent calls to the MPI runtime can

be made from the SPMD tasks...

driver.h (Legion Runtime) mpi_tasks.h (MPI Runtime)
#include “mpi_tasks.h” int mpi_task_1(double * data) {
int rank;

int driver(int argc, char ** argv) { MPI_Comm_rank(MPl_COMM_WORLD, &rank);

execute_mpi(mpi_task_1, data); for(i=start_range; i<end_range; ++i) {

data[i] = math();
execute_task(legion_task_1, data); } /] for
}

execute_mpi(mpi_task 2, data);
} int mpi_task_2(double * data) {

' - /I algorithm logi
Each runtime has exclusive algorithm fogic

execution (bulk synchronous }
between runtimes)
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How do the runtimes manage the

interaction?
. 7 Execute
Acauire - Queec
MPI Task
Runtime

Release[

Mutex
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How do the runtimes manage the

interaction?
N 4
execute_mpi(mpi_task)
MPI
Runtime

¢
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How do the runtimes manage the
interaction?

. F
Acquire
Mutex

execute_mpi(mpi_task) ——

MPI
Runtime
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How do the runtimes manage the
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7 Execute
Queued
MPI Task

Runtime
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MPI
Runtime

Release(

Mutex
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MPI
Runtime

¢

execute_task(next_legion_task) «——
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