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Abstract. The modeling of the detectability of special nuclear material (SNM) at ports and border crossings
requires accurate knowledge of the background radiation at those locations. Background radiation originates from
two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays
(GCR) entering the atmosphere inducing a cascade of particles that eventually impact the earth’s surface. The
solar modulation potential represents one of the primary inputs to modeling cosmic background radiation.
Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic
ray particle inside the heliosphere...” Modulation potential, a function of elevation, location, and time, shares an
inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require
adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do
so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar
modulation potential, respectively. This study focuses on solar modulation’s time dependence and seeks the best
method to predict modulation for future dates using Python. To address the task of predicting future solar
modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This
material will be published in transactions of the ANS winter meeting of November, 2016 [1].
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1. Internship Project

INTRODUCTION

The modeling of the detectability of special nuclear material (SNM) at ports and border crossings
requires accurate knowledge of the background radiation at those locations. Background radiation
originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-
energy galactic cosmic rays (GCR) entering the atmosphere inducing a cascade of particles that
eventually impact the earth’s surface. The solar modulation potential represents one of the primary
inputs to modeling cosmic background radiation.

Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit
charge] of a cosmic ray particle inside the heliosphere...” [2]. Modulation potential, a function of
elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a
result, radiation detector background thresholds require adjustment to account for differing background
levels, caused in part by differing solar modulations. Failure to do so can result in higher rates of false
positives and failed detection of SNM for low and high levels of solar modulation potential,
respectively. This study focuses on solar modulation’s time dependence and seeks the best method to
predict modulation for future dates. The best method will be incorporated into NINESIM, a discrete
event simulator. An in-depth description of NINESIM is beyond the scope and purpose of this paper.

DESCRIPTION OF THE ACTUAL WORK

We utilize two approaches to address the task of predicting future solar modulation: curve fitting

and interpolation/extrapolation.
Curve Fitting

This approach follows the methodology of Liegey et al [3]. Solar modulation occurs on 11 and
22 year cycles, with the shorter cycle exerting the stronger influence over modulation. In predicting
modulation potential on the order of weeks to a few years into the future, we neglect the 22 year cycle.

Due to solar modulation’s cyclic nature, Liegey et al. assume a correlation of the form

¢ = Asin(wt) + B cos(wt) + C (1)

where ¢ (MV), w (yr?), and t (yr) represent solar modulation potential, angular frequency, and time,



respectively. A, B, and C (MV) represent constants. Since this equation models the 11 year cycle, an

expected value of w = 0.57 yr* may be estimated.

The effect of solar modulation on background neutron count rate may be approximated by
differentiating McKinney et al.’s linearity equation [4], giving

ac _ counts

e —230 poy (2)

Since Usoskin et al.’s modulation data ranges from 170 MV to 2016 MV, this suggests a background
neutron count rate difference of up to 4.2 x 10° counts/hr when comparing background on different
dates.

Accurately predicting solar modulation potential on dates in the near future requires a careful
choice of the range of data points to include in the curve fitting process. Data over too large a time span
results in a poor fit in the region of interest because the local period of measured solar modulation varies
from 8.4 to 12.3 years. On the other hand, a curve fitted from data over too small a duration does not
give the curve fitting process enough information for an accurate fit. Liegey et al. concluded that using
data over the range of a few years longer than the span of the most recent local maximum and minimum
(half the local period) results in the best fit.

Instead of following the Fortran algorithm that Liegey et al. developed, this study takes
advantage of Python’s built-in non-linear least squares curve fitting optimization function to fit a curve

to known solar modulation data.
Choosing Data for the Best Fit

At the time of writing, Usoskin et al. provide averaged monthly solar modulation data for the
time period 1936 — 2015. Due to the data’s averaged nature, we assume that the given solar modulation
occurs during the middle of each month.

The developed Python function receives the date of desired solar modulation potential and
returns the corresponding modulation. In accordance with Liegey et al., an algorithm seeks information
about the local period to determine the range of data to pass into the curve fitting process. If the input
date occurs after the latest value in the data set (i.e., in the future), the algorithm seeks the two most
recent local extrema in the set. If the input date occurs within the set (i.e., in the past, but between

known data points), the algorithm seeks the two closest local extrema on either side of the input date.



If the local extrema seeking algorithm attempts to use the original Usoskin et al. data, it returns
meaningless extrema due to noise and data fluctuations caused by the 28 day solar rotation cycle [4].
Methods that coarsen and smooth the data remedy this issue.

Coarsening the data removes some of its fluctuations while retaining its general sinusoidal trend.
This study employs two coarsening methods. The first retains every nth data point while discarding all
other points. The second method averages, before discarding, all data points into every nth point. The
value of n determines the coarseness of the data. For example, if n = 6, a coarse point occurs every 6
months. The local extrema seeking algorithm then receives the coarse data and returns coarse local
extrema. These extrema represent true extrema more accurately than those given by the original noisy
data.

Data smoothing, an alternative to data coarsening, attempts to reduce fluctuations via Python’s
built-in Savizky-Golay filter. The filter smooths the data by fitting a third order polynomial to a window

size of every m data points. Figure 1 shows examples of the two coarsening methods and the smoothing

method.
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The extrema seeking algorithm uses one of these three methods to locate the local maximum and
minimum relevant to the input date. To ensure the validity of the located extrema, the function requires a
time range between the two extrema, half the local period, of 4 - 10 years. The larger upper bound
allows the few additional years to the span of half the local period that results in the best fit. Once the
algorithm identifies the relevant local extrema, the function passes the original Usoskin et al. data
between these extrema into the curve fitter.

To obtain the best possible fit, the first version of the curve fitting function computes curves for

numerous values of n (coarseness) and m (window size). In coarsening computations, n ranges between



6 and 84. The smoothing method sets m values from 71 to 349. The function returns the fit with the

highest coefficient of determination (R? value).

Figure 2 illustrates how each method works. The legend may be interpreted as follows:

Blue points:
potential.
Red points:
algorithm.
Green points:

fitting function.

Original Usoskin et al. data. Points are monthly averages of solar modulation
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Original Usoskin et al. data between the chosen local extrema. Passed into the curve

The best curve fitted to the green points.

Dark violet star:

Point on the fitted curve at the input date, the date of desired modulation potential.

The function returns the predicted modulation potential at this point.
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Figure 2 - Top: non-averaging coarsening
method to predict modulation on 1/1/2017.
Middle: averaging coarsening method to predict
modulation on 1/1/2005. The algorithm finds
local extrema with respect to the coarse points
for these two methods. Bottom: smoothing
method to predict modulation on 1/1/2017. The
algorithm finds local extrema with respect to the

smoothed points.

Note the relatively large values of n in Figure 2. As the value of n increases, the coarse points

spread out, reducing the probability that a course point occurs precisely at the time of a true local

extrema. Recalling that half the local period plus a few years results in the best curve fit, higher n values

provide a better fit: although they do not locate extrema as accurately and precisely as smaller n

(assuming the smaller n values are large enough to ignore noise and fluctuations), the extrema they do

find add those few extra years to half the true local period.



Interpolation/Extrapolation

The other modulation predictor method involves fitting cubic splines to the Usoskin et al. data.
While curve fitting provides the curve of best fit for a group of data points, cubic spline interpolation
joins individual data points with smooth, third degree polynomials. For highly accurate data, this may
improve modulation prediction compared to curve fitting. However, the usefulness of cubic splines
decreases as noise in the data increases. Figure 3 provides examples of interpolation/extrapolation.
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Function Development

To test the quality of the curves that version 1 generates, a script ran the function for 243 dates in

the period 1931 — 2020. Figure 4 summarizes the results.
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According to the R? values after 1951, the coarsening and smoothing methods seem sound.

Usoskin et al. explain that because pre-1951 data is measured differently, it “...is characterized by large



uncertainties and should be taken with caveats.” This explains the higher noise in the earlier data,
resulting in lower R? values. In addition, the use of another data acquisition method during the period
1951 — 1964 results in uncertain data. From this point, this study excludes data occurring prior to 1965.

Version 2 sacrifices accuracy to decrease computation time. Instead of using n € [6, 84] and m
€ [71, 349], we retained the top 10% most frequently occurring n and m values from the version 1 test,
which, when combined, occured 61.7% (coarse no avg.), 62.6% (coarse avg.), and 89.7% (smooth) of
the time.

The same test on version 2 yields an R? plot similar in shape to, but slightly less in magnitude
than that in version 1. Excluding the 88 pre-1965 dates, versions 1 and 2 return average R? values of
0.9186 and 0.9100, respectively. In addition, version 2 runs 6.0 times faster than version 1.

Version 3 seeks to further reduce computation time. If the curve fitting function cannot compute
a converged solution within 10 iterations (10° in versions 1 & 2) or the solution gives o & [0.45 yrY,
0.79 yr], it fixes o to a value of 0.57 yr'! and tries again. On average, version 3 runs 1.3 times faster

than version 2.
RESULTS

Short Term Prediction
To test its accuracy, the function predicted solar modulation for Usoskin et al. points using both a
past and future mode. Past mode provides the function with all available Usoskin et al. data, minus the

point occurring on the prediction date, Table I — Self-comparison of v3 predictions with Usoskin

i O Coarse
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data set. Future mode passes only the data Avg. g

Relative | Past | 37.8599 42.4576 101.7844  1.0000

occurring prior to the prediction date into | gyntime | Future | 13.8017 16.344 125.8868  1.0000

the function, with prediction dates Past | 0.8143 0.8168  0.8400
P Mean| e ure| 0.7830 07811  o0.8167 VA

occurring a month after the most recent | Past | 0.9508 0.9508 0.9489
data point. We set the future mode | Mex Future| 0.9492 09478 0.9196 WA
P ' Min Past | 0.2035 0.2035 0.6716 N/A

prediction date period to 1975 — 2015 (492 " |Future| 0.0541 0.1315 0.579%4
.. —~ Mean | Past 9.83 9.81 9.69 5.37
prediction dates) to ensure that future mode S| 452 |Future| 1606  17.16 17.57 7 3E4
did not consider pre-1965 data in the curve | 5| Max.| Past | 5244 = 4503 58.05  37.24
o o <|10.20 | Future | 66.35 60.68 59.4 3.2E7
fitting process. The past mode prediction 'ij Min. | Past | 0.04 0.00 0.00 0.00

o

date period was set to 1970 — 2010 (480 1.29 [Futre| 001 001 0.15 0.08




prediction dates) for the same reason, and to ensure that later prediction dates rested between two local
extrema. Table | summarizes the resulting R? values and percent errors between predictions and Usoskin
et al. data.

Long Term Prediction

Figure 5 illustrates the curve of best fit when passing data prior to December 1998 into version 3
of the function.
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Furthermore, to aid understanding of prediction behavior under various circumstances, we
averaged prediction percent error in four types of localized Usoskin et al. data regions. The localized
data regions include peak, valley, ascending, and descending data. Thus, if the user knows that solar
modulation currently resides at a maximum or minimum in its cycle, or is increasing or decreasing, they
may scale predictions accordingly to account for the Python function’s systematic error. Figure 6

summarizes the results.
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When using version 2 to compute localized data region percent errors, we found consistently
higher percent errors than in version 3 — up to 400% higher. Because version 2 allows any value of o,
deeper predictions suffer in accuracy when compared to version 3 because unphysical ® values
eventually shift out of phase with data with a different @ value.

These results suggest that, in general, the three curve fitting methods perform comparably,
although the smoothing method takes much longer than the coarsening methods. Figure 6 indicates that
the best method depends on the prediction depth and where the last recorded solar modulation potential
resides in its sinusoidal cycle. For predictions in the very near future (i.e., a month), the user should
consider version 2 over version 3.

Cubic spline interpolants give more accurate answers than curve fitting when predicting
modulation within the data set. However, the non-sinusoidal nature of the splines render them useless in
predicting future solar modulation potentials.

2. Impact of Internship on My Career

The majority of my internship involved developing and debugging Python code to predict future
solar modulation. This taught me new Python skills, such as exception handling, and improved previous
skills, such as using Matplotlib. In addition, verifying my code’s output required me to expand my
critical thinking skills. Finally, I attained basic knowledge of MCNP 6.1.1 and increased my previous
knowledge of Monte Carlo methods through a week long intermediate course sponsored by the lab.

Although I had many positive experiences this summer, | made a few mistakes which taught me
valuable lessons. First, | spent too much time testing my code in ways not as relevant to the code’s
overall purpose as other tests were. For example, | spent too much time working with data sets other
than the Usoskin set for verification and validation purposes, when the Usoskin set accomplishes the
same goal. Second, | kept adding features to my code because | was never satisfied with it. As a result of
both mistakes, | ran out of time towards the end of my internship.

Prior to beginning my internship, | considered pursuing a career in computation. The
computational experience | gained through this internship has convinced me to continue in the field of
computational nuclear engineering. As a result, I will most likely attend Texas A&M University for

graduate school, which hosts one of the best nuclear engineering computational groups in the country.
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