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Abstract. The modeling of the detectability of special nuclear material (SNM) at ports and border crossings 
requires accurate knowledge of the background radiation at those locations. Background radiation originates from 
two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays 
(GCR) entering the atmosphere inducing a cascade of particles that eventually impact the earth’s surface. The 
solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. 
Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic 
ray particle inside the heliosphere…”  Modulation potential, a function of elevation, location, and time, shares an 
inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require 
adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do 
so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar 
modulation potential, respectively. This study focuses on solar modulation’s time dependence and seeks the best 
method to predict modulation for future dates using Python. To address the task of predicting future solar 
modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This 
material will be published in transactions of the ANS winter meeting of November, 2016 [1]. 
 

  



1. Internship Project 

INTRODUCTION 

The modeling of the detectability of special nuclear material (SNM) at ports and border crossings 

requires accurate knowledge of the background radiation at those locations. Background radiation 

originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-

energy galactic cosmic rays (GCR) entering the atmosphere inducing a cascade of particles that 

eventually impact the earth’s surface. The solar modulation potential represents one of the primary 

inputs to modeling cosmic background radiation. 

Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit 

charge] of a cosmic ray particle inside the heliosphere…” [2]. Modulation potential, a function of 

elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a 

result, radiation detector background thresholds require adjustment to account for differing background 

levels, caused in part by differing solar modulations. Failure to do so can result in higher rates of false 

positives and failed detection of SNM for low and high levels of solar modulation potential, 

respectively. This study focuses on solar modulation’s time dependence and seeks the best method to 

predict modulation for future dates. The best method will be incorporated into NINESIM, a discrete 

event simulator. An in-depth description of NINESIM is beyond the scope and purpose of this paper. 

DESCRIPTION OF THE ACTUAL WORK 

We utilize two approaches to address the task of predicting future solar modulation: curve fitting 

and interpolation/extrapolation. 

Curve Fitting 

This approach follows the methodology of Liegey et al [3]. Solar modulation occurs on 11 and 

22 year cycles, with the shorter cycle exerting the stronger influence over modulation. In predicting 

modulation potential on the order of weeks to a few years into the future, we neglect the 22 year cycle. 

Due to solar modulation’s cyclic nature, Liegey et al. assume a correlation of the form 

 𝜙𝜙 = 𝐴𝐴 sin(𝜔𝜔𝜔𝜔) + 𝐵𝐵 cos(𝜔𝜔𝜔𝜔) + 𝐶𝐶  (1) 

where 𝜙𝜙 (MV), 𝜔𝜔 (yr-1), and t (yr) represent solar modulation potential, angular frequency, and time, 



respectively. A, B, and C (MV) represent constants. Since this equation models the 11 year cycle, an 

expected value of 𝜔𝜔 = 0.57 yr-1 may be estimated. 

The effect of solar modulation on background neutron count rate may be approximated by 

differentiating McKinney et al.’s linearity equation [4], giving 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≅  −230 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
ℎ𝑟𝑟⋅𝑀𝑀𝑀𝑀

 (2) 

Since Usoskin et al.’s modulation data ranges from 170 MV to 2016 MV, this suggests a background 

neutron count rate difference of up to 4.2 x 105 counts/hr when comparing background on different 

dates. 

Accurately predicting solar modulation potential on dates in the near future requires a careful 

choice of the range of data points to include in the curve fitting process. Data over too large a time span 

results in a poor fit in the region of interest because the local period of measured solar modulation varies 

from 8.4 to 12.3 years. On the other hand, a curve fitted from data over too small a duration does not 

give the curve fitting process enough information for an accurate fit. Liegey et al. concluded that using 

data over the range of a few years longer than the span of the most recent local maximum and minimum 

(half the local period) results in the best fit. 

 Instead of following the Fortran algorithm that Liegey et al. developed, this study takes 

advantage of Python’s built-in non-linear least squares curve fitting optimization function to fit a curve 

to known solar modulation data. 

Choosing Data for the Best Fit 

At the time of writing, Usoskin et al. provide averaged monthly solar modulation data for the 

time period 1936 – 2015. Due to the data’s averaged nature, we assume that the given solar modulation 

occurs during the middle of each month. 

The developed Python function receives the date of desired solar modulation potential and 

returns the corresponding modulation. In accordance with Liegey et al., an algorithm seeks information 

about the local period to determine the range of data to pass into the curve fitting process. If the input 

date occurs after the latest value in the data set (i.e., in the future), the algorithm seeks the two most 

recent local extrema in the set. If the input date occurs within the set (i.e., in the past, but between 

known data points), the algorithm seeks the two closest local extrema on either side of the input date. 



If the local extrema seeking algorithm attempts to use the original Usoskin et al. data, it returns 

meaningless extrema due to noise and data fluctuations caused by the 28 day solar rotation cycle [4]. 

Methods that coarsen and smooth the data remedy this issue. 

Coarsening the data removes some of its fluctuations while retaining its general sinusoidal trend. 

This study employs two coarsening methods. The first retains every nth data point while discarding all 

other points. The second method averages, before discarding, all data points into every nth point. The 

value of n determines the coarseness of the data. For example, if n = 6, a coarse point occurs every 6 

months. The local extrema seeking algorithm then receives the coarse data and returns coarse local 

extrema. These extrema represent true extrema more accurately than those given by the original noisy 

data. 

Data smoothing, an alternative to data coarsening, attempts to reduce fluctuations via Python’s 

built-in Savizky-Golay filter. The filter smooths the data by fitting a third order polynomial to a window 

size of every m data points. Figure 1 shows examples of the two coarsening methods and the smoothing 

method.

Figure 1 - Comparison of local extrema seeking 

methods for data taken 1995-2004. The original 

noisy data gives many false local extrema. 

Coarsening the data lessens this effect.

 The extrema seeking algorithm uses one of these three methods to locate the local maximum and 

minimum relevant to the input date. To ensure the validity of the located extrema, the function requires a 

time range between the two extrema, half the local period, of 4 - 10 years. The larger upper bound 

allows the few additional years to the span of half the local period that results in the best fit. Once the 

algorithm identifies the relevant local extrema, the function passes the original Usoskin et al. data 

between these extrema into the curve fitter. 

To obtain the best possible fit, the first version of the curve fitting function computes curves for 

numerous values of n (coarseness) and m (window size). In coarsening computations, n ranges between 



6 and 84. The smoothing method sets m values from 71 to 349. The function returns the fit with the 

highest coefficient of determination (R2 value). 

Figure 2 illustrates how each method works. The legend may be interpreted as follows: 

Blue points: Original Usoskin et al. data. Points are monthly averages of solar modulation 

potential. 

Red points: Result of the coarsening or smoothing process. Passed into the extrema seeking 

algorithm. 

Green points: Original Usoskin et al. data between the chosen local extrema. Passed into the curve 

fitting function. 

Cyan line: The best curve fitted to the green points. 

Dark violet star: Point on the fitted curve at the input date, the date of desired modulation potential. 

The function returns the predicted modulation potential at this point. 

Figure 2 - Top: non-averaging coarsening 

method to predict modulation on 1/1/2017. 

Middle: averaging coarsening method to predict 

modulation on 1/1/2005. The algorithm finds 

local extrema with respect to the coarse points 

for these two methods. Bottom: smoothing 

method to predict modulation on 1/1/2017. The 

algorithm finds local extrema with respect to the  

smoothed points.

 

Note the relatively large values of n in Figure 2. As the value of n increases, the coarse points 

spread out, reducing the probability that a course point occurs precisely at the time of a true local 

extrema. Recalling that half the local period plus a few years results in the best curve fit, higher n values 

provide a better fit: although they do not locate extrema as accurately and precisely as smaller n 

(assuming the smaller n values are large enough to ignore noise and fluctuations), the extrema they do 

find add those few extra years to half the true local period.  



Interpolation/Extrapolation 

 The other modulation predictor method involves fitting cubic splines to the Usoskin et al. data. 

While curve fitting provides the curve of best fit for a group of data points, cubic spline interpolation 

joins individual data points with smooth, third degree polynomials. For highly accurate data, this may 

improve modulation prediction compared to curve fitting. However, the usefulness of cubic splines 

decreases as noise in the data increases. Figure 3 provides examples of interpolation/extrapolation. 

Figure 3 – Cubic spline interpolation to predict 

modulation. Top: predicted modulation on 

1/1/2005. Bottom: predicted modulation on 

1/1/2017. Extrapolation poorly predicts 

modulation for dates far outside the data range.

Function Development 

To test the quality of the curves that version 1 generates, a script ran the function for 243 dates in 

the period 1931 – 2020. Figure 4 summarizes the results.

Figure 4 - Testing of version 1 of the curve 

fitting function. From top to bottom: curve R2 

values, relative frequency of n values (coarse 

data), and relative frequency of m values 

(smoothed data).

According to the R2 values after 1951, the coarsening and smoothing methods seem sound. 

Usoskin et al. explain that because pre-1951 data is measured differently, it “…is characterized by large 



Table I – Self-comparison of v3 predictions with Usoskin 

Stat. Mode 
Coarse 
Non-
Avg. 

Coarse 
Avg. Smooth Interp. 

Relative 
Runtime 

Past 37.8599 42.4576 101.7844 1.0000 
Future 13.8017 16.344 125.8868 1.0000 

R
2  

Mean Past 0.8143 0.8168 0.8400 N/A Future 0.7839 0.7811 0.8167 

Max. Past 0.9508 0.9508 0.9489 N/A Future 0.9492 0.9478 0.9196 

Min. Past 0.2035 0.2035 0.6716 N/A Future 0.0541 0.1315 0.5794 

%
 E

rr
or

 (%
) Mean 

4.52 
Past 9.83 9.81 9.69 5.37 

Future 16.06 17.16 17.57 7.3E4 
Max. 
10.20 

Past 52.44 45.03 58.05 37.24 
Future 66.35 60.68 59.4 3.2E7 

Min. 
1.29 

Past 0.04 0.00 0.00 0.00 
Future 0.01 0.01 0.15 0.08 

 

uncertainties and should be taken with caveats.” This explains the higher noise in the earlier data, 

resulting in lower R2 values. In addition, the use of another data acquisition method during the period 

1951 – 1964 results in uncertain data. From this point, this study excludes data occurring prior to 1965. 

Version 2 sacrifices accuracy to decrease computation time. Instead of using  n ∈ [6, 84] and m 

∈ [71, 349], we retained the top 10% most frequently occurring n and m values from the version 1 test, 

which, when combined, occured 61.7% (coarse no avg.), 62.6% (coarse avg.), and 89.7% (smooth) of 

the time. 

The same test on version 2 yields an R2 plot similar in shape to, but slightly less in magnitude 

than that in version 1. Excluding the 88 pre-1965 dates, versions 1 and 2 return average R2 values of 

0.9186 and 0.9100, respectively. In addition, version 2 runs 6.0 times faster than version 1. 

Version 3 seeks to further reduce computation time. If the curve fitting function cannot compute 

a converged solution within 104 iterations (106 in versions 1 & 2) or the solution gives ω ∉ [0.45 yr-1, 

0.79 yr-1], it fixes ω to a value of 0.57 yr-1 and tries again. On average, version 3 runs 1.3 times faster 

than version 2. 

RESULTS 

Short Term Prediction 

To test its accuracy, the function predicted solar modulation for Usoskin et al. points using both a 

past and future mode. Past mode provides the function with all available Usoskin et al. data, minus the 

point occurring on the prediction date, 

which occurs within the date range of the 

data set. Future mode passes only the data 

occurring prior to the prediction date into 

the function, with prediction dates 

occurring a month after the most recent 

data point. We set the future mode 

prediction date period to 1975 – 2015 (492 

prediction dates) to ensure that future mode 

did not consider pre-1965 data in the curve 

fitting process. The past mode prediction 

date period was set to 1970 – 2010 (480 



prediction dates) for the same reason, and to ensure that later prediction dates rested between two local 

extrema. Table I summarizes the resulting R2 values and percent errors between predictions and Usoskin 

et al. data. 

Long Term Prediction 

 Figure 5 illustrates the curve of best fit when passing data prior to December 1998 into version 3 

of the function.

Figure 5 - Predicting solar modulation for dates 

after November 1998. From top to bottom: 

coarse non-averaging, coarse averaging, and 

smoothing methods.

 Furthermore, to aid understanding of prediction behavior under various circumstances, we 

averaged prediction percent error in four types of localized Usoskin et al. data regions. The localized 

data regions include peak, valley, ascending, and descending data. Thus, if the user knows that solar 

modulation currently resides at a maximum or minimum in its cycle, or is increasing or decreasing, they 

may scale predictions accordingly to account for the Python function’s systematic error. Figure 6 

summarizes the results.

Figure 6 - Average expected percent errors and 

the Usoskin et al. data regions used in their 

computation. From top to bottom: peaks, 

valleys, ascensions, and descensions.



 

When using version 2 to compute localized data region percent errors, we found consistently 

higher percent errors than in version 3 – up to 400% higher. Because version 2 allows any value of ω, 

deeper predictions suffer in accuracy when compared to version 3 because unphysical ω values 

eventually shift out of phase with data with a different ω value. 

These results suggest that, in general, the three curve fitting methods perform comparably, 

although the smoothing method takes much longer than the coarsening methods. Figure 6 indicates that 

the best method depends on the prediction depth and where the last recorded solar modulation potential 

resides in its sinusoidal cycle. For predictions in the very near future (i.e., a month), the user should 

consider version 2 over version 3. 

Cubic spline interpolants give more accurate answers than curve fitting when predicting 

modulation within the data set. However, the non-sinusoidal nature of the splines render them useless in 

predicting future solar modulation potentials. 

2. Impact of Internship on My Career 

The majority of my internship involved developing and debugging Python code to predict future 

solar modulation. This taught me new Python skills, such as exception handling, and improved previous 

skills, such as using Matplotlib. In addition, verifying my code’s output required me to expand my 

critical thinking skills. Finally, I attained basic knowledge of MCNP 6.1.1 and increased my previous 

knowledge of Monte Carlo methods through a week long intermediate course sponsored by the lab. 

 Although I had many positive experiences this summer, I made a few mistakes which taught me 

valuable lessons. First, I spent too much time testing my code in ways not as relevant to the code’s 

overall purpose as other tests were. For example, I spent too much time working with data sets other 

than the Usoskin set for verification and validation purposes, when the Usoskin set accomplishes the 

same goal. Second, I kept adding features to my code because I was never satisfied with it. As a result of 

both mistakes, I ran out of time towards the end of my internship. 

 Prior to beginning my internship, I considered pursuing a career in computation. The 

computational experience I gained through this internship has convinced me to continue in the field of 

computational nuclear engineering. As a result, I will most likely attend Texas A&M University for 

graduate school, which hosts one of the best nuclear engineering computational groups in the country. 
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