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Little Grand Wash Fault, Crystal Geyser, Utah

= Observations along the surface exposure of the Grand Wash fault indicate alteration
zones of 10-50 m width with spacing on the order of 100 m

= Locations of conduits controlled by fault-segment intersections and topography

= Sandstone permeability reduced by 3 to 4 orders of magnitude in alteration zones by
carbonate cementation
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Little Grand Wash Fault, Crystal Geyser, Utah

= Observations along the surface exposure of the Grand Wash fault indicate alteration
zones of 10-50 m width with spacing on the order of 100 m

= Locations of conduits controlled by fault-segment intersections and/or topography

= Sandstone permeability reduced by 3 to 4 orders of magnitude in alteration zones by
carbonate cementation
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Natural CO, alteration and shale seal capacity

MANCOS SHALE
HANGING WALL

Mancos Shale Transect
Pc vs. distance from fault (CO, alteration intensity)
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SEM images of unaltered shale (< 10 wt% carbonate)
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SEM images of CO,-altered shale (~60 wt% carbonate)
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Conceptual Model of Cementation Patterns

Thin-Section Scale Spatial Distribution
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Reactive Transport Modeling Framework

Pore scale reactive transport model can System parameters Time = 118 min
_ L a=Usmin / B\ '/," o //
provide a tool to develop functional Flow rate, Mineral ~ \ ,
i type LN R >
forms of reaction rates for CaCO, yp 3 74

recipitation and dissolution as a
fp P ] based Chemistry (e.g., >_ \ N\
unction of system parameters based on oH & CO3 conc) /,

. . . = \ w x\ — \ |
fundamental principles without model :
assumptions from Yoon et al. (2012)

Pore-scale modeling results will be able Not far from eqwllbrl_um (log Q =~0.7)
to develop the response functional forms - ML =CAgY |
of permeability, porosity, and surface

area changes as a function of pore | | Da=0.028" |
structures, volume, Pe, Da number, R

[-m-Pe=3.47, Da=0.028|

Total Mass of Precipitate (mol)

. . : =~3.7
mineral types, and influent solution )
chemistry
Response surface results can be used as Ee=(i-4117

a=l1.

input for continuum scale reactive
transport modeling

Time (min)
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Pore Scale Model Framework

horizontal velocity {cm/min)

N 7

Lattice Boltzmann Method:

. Velocity at 1 micron

Velocity field (u) at pore scale - :
‘Q . resolution
Finite Volume Method: Reactive transport at pore scale

¥ =C, +ZUJI( Chemical equilibrium in bulk fluid (e.g., H*, HCOg, ...)
Extended Debye-Hiickel Equation for activity coefficients
| = (Q] —1)ﬂ Q= Qch or In[QCCj

Update of CaCO, volumetric content (V ) A
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Functional Relationships based on Pore Scale Simulations

e Pe & Da numbers

Pe(uL/D) = 0.08, 0.8, 8 =)
0.5 — +1 —
Da(kL/(KSE xlz)) i 0.902, 0.02,0.1 [Ca?*],= mp
(Ksp, calcite — 3.3*10° M ) 5
. . [COs7 ]+ =
e Chemical speciation

Speciation: Ca?*, H*, CO,2> HCO;", H,CO, =20mM =

No speciation: Ca?*, CO,*

e Pore structures Grain with reactive surface

fracture network with varying apertures and patterns

lon Activity Product X 10-8

{J__L;

Length scale ~ 20cm

T [ca29,=[c0.2].=20mM
Yoon et al. (in prep)
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Permeability-Porosity Relationships

Carbonate speciation
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Direction of precipitation and pore clogging

Medium Pe & High Da

=  Simulation results under two different Pe and Da regimes show fast
precipitation from the top — this example show multiple possible pathways for
field observations
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High Pe & High Da

CaCO, volumetric content

T=175 days )

T=245 days | ;

T=350 days

| l _ 02

0

t [Ccaz'],=[CO,2],=20mM
= Precipitation occurs near the main fault and clogging of fracture networks

moves away from the main fault conduit as observed in the outcrop
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Summary

=  Fault-controlled CO2 leakage conduits are sites of preferred carbonate
pore and fracture cementation

= Carbonate cementations significantly increases caprock sealing
capacity

= Vigorously tested pore-scale model was used to develop a
permeability and porosity (k-¢€) relationship for continuum-scale model

= Pore scale model was able to qualitatively capture pore clogging
patterns in a simple fracture network model mimicking the Little
Grand Wash fault

= An adaptive strategy to couple pore- and continuum scale will be
tested against cement precipitation patterns observed in the Little
Grand Wash fault

= Algorithms developed in this work will be implemented into a
continuum scale reactive transport model
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Questions?
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Back-Up Slides
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High Pe & Medium Da

CaCO, volumetric content
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Simple chemistry & mineralogy

Spring water: Low temperature and Mg concentrations; high concentrations
of dissolved CO, (pCO, =~ 100 kPa)

Aragonite precipitation indicates large, sudden increase of supersaturation
with respect to CaCO; in solution -> high CO, degassing rate

Both calcite and aragonite are present

pCO, = ~100 kPa [Ca2*]=7~192 mM

Surface Calcium
QDegassing “"- Vein formation
...... ‘ Sea— Bleaching - —f
: I Fluid
Nucleation C.m EV paths
threshold", : ; F
@ Supersaturation |
* point : Normal Fault
v “‘.. N - '
Depth --- Equilibrium
— Fluid conc.

Gratier et al., Geology, 2012



Continuum Scale Reactive Transport Modeling

= Simplified, two-dimensional response surface

= Permeability reduction due to CaCO, precipitation is a function of
cumulative pore volume (Q) of groundwater and fluid pressure (P)

= Fluid pressure is taken as a gross proxy for chemical conditions in which
higher CaCOj, solubility is associated with higher fluid pressure (greater
depth)
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Crystal Geyser Site: Grand Wash Fault Modeling

= Unconditional geostatistical simulation

= |nitial simulated steady-state flow
pattern is qualitatively similar to the
spacing of seeps along the Grand Wash
fault (~100’s of m between locations of
groundwater discharge)

= Transient flow simulation includes explicit
updating of permeability (k) at each time
step using the response surface (FEHM)

= kisreduced by several orders of magnitude
by calcite precipitation, primarily in the
shallower high-flow channels

= Evolution of the flow field results in more

dispersed groundwater discharge at the
surface
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Functional relationships based on Pore Scale
Simulations

= Vigorously tested pore-scale model can be used to develop a
response function (or dimension reduction model) for

continuum-scale permeability and porosity (k-g)
relationships

= k-g and surface area-¢ relationships will be developed over a
range of solution chemistry, chemical reaction, and pore
structure configurations in addition to Pe and Da numbers

Changes in porosity due to precipitation ~tortuosity and permeability by
phenomenological power law relations

n n 3;’3
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Permeability (k/k,)

Permeability- Por05|ty Relationships
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Field Observations

MANCOS SHALE
HANGING WALL

Summerville transect: Bulk mineral
major phases
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