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Little Grand Wash Fault, Crystal Geyser, Utah 

 Observations along the surface exposure of the Grand Wash fault indicate alteration 
zones of 10-50 m width with spacing on the order of 100 m 

 Locations of conduits controlled by fault-segment intersections and topography  

 Sandstone permeability reduced by 3 to 4 orders of magnitude in alteration zones by 
carbonate cementation 
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Little Grand Wash Fault, Crystal Geyser, Utah 

 Observations along the surface exposure of the Grand Wash fault indicate alteration 
zones of 10-50 m width with spacing on the order of 100 m 

 Locations of conduits controlled by fault-segment intersections and/or topography  

 Sandstone permeability reduced by 3 to 4 orders of magnitude in alteration zones by 
carbonate cementation 

Far from  fault Near fault 



Natural CO2 alteration and shale seal capacity 

0

10

20

30

40

50

60

70

80

0

1000

2000

3000

4000

5000

6000

0 25 50 75 100 125 150

C
al

ci
te

 w
t%

 

H
g-

ai
r 

C
ap

ill
ar

y 
En

tr
y 

P
re

ss
u

re
  (

p
si

a)
 

Distance from Fault 

Mancos Shale Transect 
Pc vs. distance from fault (CO2 alteration intensity)  
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Sample CG 5-28-13#1  

Mancos Shale 

25 mm 

SEM images of unaltered shale (< 10 wt% carbonate) 



Sample CG 5-23-

12#6  

(CO2-altered 
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Pyrite 
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SEM images of CO2-altered shale (~60 wt% carbonate) 



Conceptual Model of Cementation Patterns 

Peter Mozley (NMT), Unpublished 
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Disseminated Pore filling Poikilotopic Circumgranular 



Reactive Transport Modeling Framework 

 Pore scale reactive transport model can 
provide a tool to develop functional 
forms of reaction rates for CaCO3 
precipitation and dissolution as a 
function of system parameters based on 
fundamental principles without model 
assumptions 

 Pore-scale modeling results will be able 
to develop the  response functional forms 
of permeability, porosity, and surface 
area changes as a function of pore 
structures, volume, Pe, Da number, 
mineral types, and influent solution 
chemistry 

 Response surface results can be used as 
input for continuum scale reactive 
transport modeling 

Flow rate, Mineral 

type 

 

Chemistry (e.g., 

pH & CO3 conc) 

System parameters 

T=700 min 

T=500 min 

Pe=3.47 

Da=0.028 

Not far from equilibrium (log Q = ~0.7) 
T=2500 min 

Pe=0.47 

Da=1.1 

T=8 min T=24 min 

Far from equilibrium (log Q = ~3.7) 

from Yoon et al. (2012) 
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Pore Scale Model Framework 



[Ca2+]T= 

[CO3
2-] T  

=20mM 

Pe(uL/D) = 0.08, 0.8, 8 

Da(kL/(Ksp
0.5D)) =  0.002, 0.02, 0.1 

Speciation: Ca2+, H+, CO3
2- HCO3

- , H2CO3 

No speciation: Ca2+, CO3
2- 

(Ksp, calcite = 3.3*10-9 M2) 

Grain with reactive surface 

 Pe & Da numbers  

 Chemical speciation 

 Pore structures 

fracture network with varying apertures and patterns 

[Ca2+]T=[CO3
2-] T=20mM 

Length scale ~ 20cm 

Functional Relationships based on Pore Scale Simulations 

Yoon et al. (in prep) 
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Permeability-Porosity Relationships 
High Pe; Low Da 

Low Pe;  

Medium Da 

Medium Pe; Medium Da 

Carbonate speciation 



Direction of precipitation and pore clogging 

Medium Pe & High Da 

Flow 

 Simulation results under two different Pe and Da regimes show fast 
precipitation from the top – this example show multiple possible pathways for 
field observations 

Flow 

High Pe & Low Da 



T=70 days 

T=175 days 

T=245 days 

T=350 days 

[Ca2+]T=[CO3
2-] T=20mM 

High Pe & High Da 
CaCO3 volumetric content 

 Precipitation  occurs near the main fault and clogging of fracture networks 
moves away from the main fault conduit as observed in the outcrop 



 Fault-controlled CO2 leakage conduits are sites of preferred carbonate 

pore and fracture cementation 

 Carbonate cementations significantly increases caprock sealing 

capacity 

 Vigorously tested pore-scale model was used to develop a 

permeability and porosity (k-) relationship for continuum-scale model 

 Pore scale model was able to qualitatively capture pore clogging 

patterns  in a simple fracture network model mimicking the Little 

Grand Wash fault 

 An adaptive strategy to couple pore- and continuum scale will be 

tested against cement precipitation patterns observed in the Little 

Grand Wash fault 

 Algorithms developed in this work will be implemented into a 

continuum scale reactive transport model 

Summary 



Questions? 
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T=525 days 

T=700 days 

T=875 days 

T=1400 days 

[Ca2+]T=[CO3
2-] T=20mM 

High Pe & Medium Da 
CaCO3 volumetric content 



Simple chemistry & mineralogy 

pCO2 = ~100 kPa [Ca2+]=7~192 mM 

--- Equilibrium 

Fluid conc. 

Supersaturation 
point 

Gratier et al., Geology, 2012 

Normal Fault 

Bleaching 

paths 
Fluid  

paths 

 Spring water: Low temperature and Mg concentrations; high concentrations 
of dissolved CO2 (pCO2 = ~ 100 kPa) 

 Aragonite precipitation indicates large, sudden increase of supersaturation 
with respect to CaCO3 in solution -> high CO2 degassing rate 

 Both calcite and aragonite are present 



 Simplified, two-dimensional response surface 

 Permeability reduction due to CaCO3 precipitation is a function of 
cumulative pore volume (Q) of groundwater and fluid pressure (P) 

 Fluid pressure is taken as a gross proxy for chemical conditions in which 
higher CaCO3 solubility is associated with higher fluid pressure (greater 
depth) 

Q 
Pressure 

Log k 

Continuum  Scale Reactive Transport Modeling 

Adapted from Mehmani et al. (2012) 



 Unconditional geostatistical simulation 

 Initial simulated steady-state flow 
pattern is qualitatively similar to the 
spacing of seeps along the Grand Wash 
fault (~100’s of m between locations of 
groundwater discharge) D

e
p

th
 

Crystal Geyser Site: Grand Wash Fault Modeling 

Time = 1000 years 

 Transient flow simulation includes explicit 
updating of permeability (k) at each time 
step using the response surface (FEHM) 

 k is reduced by several orders of magnitude 
by calcite precipitation, primarily in the 
shallower high-flow channels 

 Evolution of the flow field results in more 
dispersed groundwater discharge at the 
surface 

Time = 0 

Discharge at the surface 

Permeability reduction factor 

k 



 Vigorously tested pore-scale model can be used to develop a 

response function (or dimension reduction model) for 

continuum-scale permeability and porosity (k-) 

relationships 

 k- and surface area- relationships will be developed over a 

range of solution chemistry, chemical reaction, and pore 

structure configurations in addition to Pe and Da numbers 

Functional relationships based on Pore Scale 
Simulations 

Changes in porosity due to precipitation ~tortuosity and permeability by 

phenomenological power law relations 
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Permeability-Porosity Relationships 



Field Observations 

CaCO3 CaCO3 


