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Goal L
Gentle introduction to some problems in spectral graph
theory

= Developing a computational spectral graph theory capability
= Also within the greater context of large-scale linear algebra for graphs
= Challenge: Can we leverage existing algorithms and software
for the large-scale sparse eigenvalue problem to spectral
graph theory?

= We can go substantially beyond power and inverse iteration

= Challenge: If so, how can such a computational capability be
exploited to learn about data?
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= Spectral graph theory:

= A myriad of graph Laplacians
= Some problems of interest

= Some algorithms

= Anasazi package of eigensolvers
= Anasazi interoperability model (integration into a user’s program)

= Some numerical experiments
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Notation

= Simple, connected, undirected, g
graph containing NN vertices

(V.€)

= These assumptions on the graph are
not necessary, merely convenient

= Directed graphs possible A

AT = RNXN

= Adjacency matrix; an edge between
vertices 1,7 if and only if

: : NxN
corresponding element of Aisone; |[D e R
zero otherwise

= Diagonal degree matrix; row 1
contains the degree of vertex ¢




Graph Laplacians ) i,

= Combinatorial

L=D-A
= Normalized

| =D YLD Y2 =| —DY2AD Y2
= Signless

K=D+A

= Signless normalized

Ve

K _ D—l/ZKD—1/2 _ I + D—l/ZAD—1/2




The spectral problem ) .

= Combinatorial

L. = XA, 4, =0<A4 << A4

| |1 _
= Normalized

I:)A(i = )A(ii.
= Signless

= Signless normalized

Kyi — S\/i ‘I/\i
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Combinatorial & normalized Laplacians
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Combinatorial and normalized

graph Laplacians are both D—1/2 |:D1/2 — | — D—lA
generators for a continuous-
time Markov chain _ D—lL

The combinatorial and
normalized graph Laplacians

are “congruent” D1/2 I:D1/2 — |

¥, signless Laplacian is the
generator for a “lazy chain”
(add a self-loop to each vertex)
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Look up the random walk relationship with the signless Laplacian; define a lazy chain!
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Combinatorial & normalized Laplacians
L _ Dl/2|:D1/2

= Spectral structure the same (up to a simple scaling of the

eigenvalues) if and only if the graph is regular (every vertex
has the same degree)

= Skewed distribution degree graphs are far from regular and
so the combinatorial and normalized graph Laplacians are
distinct spectrally
= The degree of the graph vertices obeys a power law (an example to
come)

= Regular, or nearly so, graphs are ubiquitous when solving
PDEs numerically
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A consequence of congruence is that the Linear systems are related via a diagonal scaling; the chains have the same behavior


h

Skewed degree distribution graphs

= Skewed distribution degree graphs are far from regular and
so the combinatorial and normalized graph Laplacians are
distinct spectrally

= The degree of the graph vertices obeys a power law

= Not much research into the effect of the degree distribution

upon spectral approximation and impact upon numerical
algorithms

= Maximum principles and decay rates for extremal eigenpairs of scale-
free adjacency and modularity matrices, submitted, G. Sanders, V. E.
Henson, T. Jones, J. L. Trask
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Differential and integral operators

= Discretization of self-adjoint elliptic PDEs lead to
(weighted or non-simple) nearly regular graphs
= Boundary conditions typically prevent the graph from being regular
= What is the continuum operator associated with a
dense limit of graphs (setting aside what this
means)?

= Limits of Markov chains, and dense graph limits lead
to an integral operator instead of a differential
operator
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Algebraic eigenvalue

= All four spectral problems are

examples of symmetric eigenvalue
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problems—this is about the only
good news!

= All four graph Laplacians are

symmetric positive semi-definite
= Combinatorial, normalized: constant
vector is associated with a zero

eigenvalue; the connected
component of the graph

= Signless variants: the vector of plus,
minus ones is associated with the
bipartition of a graph and then has a
zero eigenvalue

problem
[, 0
=l g —1y |2
s
Lc=0
KQc=0
=

G 1s bipartite

11
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= Spectral graph theory:

= A myriad of graph Laplacians
= Some problems of interest
= Some algorithms

= Anasazi package of eigensolvers
= Anasazi interoperability model (integration into a user’s program)

= Some numerical experiments
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What are the eigenvectors used for 2@ .

= Graph partitioning: useful for community detection

= Determine the algebraic connectivity
= Determine the algebraic bipartivity

= Deterministic approach for Markov chains

= Asymptotic (stationary) distribution
= Approximate various expected values

= Model reduction

= A spectral, or eigen, basis for expressing quantities of interest on the
graph (e.g., expected values), Fouss, Pirotte, Renders, Saerens
IEEETKDE 2007.

13
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Better understand the relationship between an eigenvector and the stationary distribution


Algebraic connectivity

Combinatorial and normalized graph

Laplacians:
— X oLX,

= The smallest positive eigenvalue — ﬂ’h
represents the “algebraic connectivity” )(1.)(1
of a graph ~

= The corresponding eigenvector gives the )’ilo )21 A
partition of the graph into two subgraphs ~ ~ ﬂl,
with a small number of edges X * X

= This spectral partition solves the relaxed
version of a combinatorial optimization
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problem
min q.(D_A)qzil, min q-(D—A)qZ
qe{o’l}NxN CI°DCI qe{o’l}NxN q.q
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Bipartite and near bipartite graphs

= Bipartite graph: partition the
graph into two subgraphs with no
internal edges

= Near bipartite graph: small
number of internal edges

= More likely is that there are
numerous near bipartite
communities
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Algebraic bipartivity

Signless graph Laplacians
PR B Yo KYo

= Zero when the graph is bipartite; = Vs,
vector p consisting of 1 or -1 gives the yo ¢ yo
bipartition AL

K R
= Near bipartite then defined to be the yo yo =V,
llest positive val \/ o \/

smallest positive value yo'yo

= Relax the optimization problem and
use the eigenvector; smallest
eigenvalue is the “algebraic bipartivity”

«D+A ~ _
min Pe( L >Vv,, Mmin
pe{_l’l}NxN :)‘Dp pe{_l’l}NxN p. p
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Expected values on graphs ) ..

= Hitting time: probability T =inf{n20: X, Evj}
of reaching a vertex from P.(T, <o0)

a vertex
= Mean hitting time:
expected value of the ET, = Z nR(T; =n)
time to reach a vertex N<co
from a vertex
= Commute time: the mean EiTj + EJ.Ti

hitting time to and from a
vertex




Model reduction ) i,

= Expected values on graphs
= Hitting time: probability of reaching a vertex from a vertex

= Mean hitting time: expected value of the time to reach a vertex from a
vertex

= Commute time: the mean hitting time to and from a vertex

= The above problems can be posed as linear systems involving
the normalized graph Laplacian

= |f many expected values are desired (i.e., numerous vertices)
then using a sub-basis of eigenvectors to approximate may be
expedient

= Sub-basis: “small” number of eigenvectors

18
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= Spectral graph theory:

= A myriad of graph Laplacians
= Some problems of interest
= Some algorithms

= Anasazi package of eigensolvers
= Anasazi interoperability model (integration into a user’s program)

= Some numerical experiments




Eigenvalue algorithms

= Brief overview
= Power & Lanczos iterations, restarting, preconditioned iteration

= Constraints on computation
= Only matrix vector products with the Laplacian L is available

= Fixed storage requirements
= Cannot solve linear systems Lu=>b

= Preconditioner M for the Laplacian available where M~ L and
linear systems Mv=b

= Focus on compute the smallest eigenvalues and
eigenvectors of the Laplacian of interest
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Power iteration ) .

: 1 : A

u? =(L+—cc' —ol)u®”, o>
N
ceu
= Lu® + c—oul’
(i) (i)
u‘’eLu

(i) (i) _

u’ —x, 0 RGP0 > A,

Rayleigarquotient

= “The power method is no longer a serious technique for computing
eigenvectors”, B. N. Parlett, The symmetric eigenvalue problem

= But the start for serious techniques

21
-~ ...
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Lanczos iteration ) =,

Span{u®, Lu®,..., L" 1

= Use the sequence of iterates for the above Krylov space
and then estimate the smallest eigenvector

= The Lanczos iteration is a three-term recurrence for
computing an orthogonal representation of the Krylov
space

= Maintaining a numerically orthogonal set of vectors is non-
trivial (but can be done)

= An alternative is to restart the iteration; this also enables
storage requirements to be fixed in advance

= A preconditioner M cannot be used (except within an
inner iteration)

22




Restart the Lanczos iteration ) .

Span{u®, Lu®,-.-, L"u@} - Span {u®, Lu®@, -, L"u@}, m>

— Span{u®@, Lu® -, L™} — Span {u®, Lu®, .., L@}

= Restarting is an accordion like process
= Leads to the class of implicit restart methods

= Enables storage requirements to be fixed in advance
= User prescribes m

= Use of a preconditioner M not possible (except within an
inner iteration)




Preconditioned iteration ) =,

U(i+1) — (L-l—WCCT —O'I)U(i), (o2 >—N_1

wi =wh — M (L +%ccT -0V 1)wt

w® o Lyw®
\ WORWO ,
Rayleigﬁrquotient

w® 5 x, @9 =

> A

= Preconditioned iteration is a minor variation on power iteration
=  Preconditioner N=I and selecting o appropriately leads to
equivalence with the power iteration

= Preconditioner N=L leads to inverse iteration (or the power
iteration on the inverse of L ).

24




Eigenvalue algorithms ) .

= The basic ideas presented |lead to sophisticated
algorithms exploiting subspace projection
= Block-Krylov Schur and implicit restarted Arnoldi methods

= Gradient based algorithms such as Davidson, IRTR, LOBPCG,
tracemin

= Newton-based approaches (Jacobi-Davidson)

= |mportant extensions to all the algorithms are:
" |ncorporating a preconditioner

= |ncorporating blocking so that the Laplacian is applied to a
collection of vectors so to improve the floating point
performance; the details are platform specific

= Efficient but a stable scheme for maintaining numerical
orthogonality of the vectors used to represent the subspace

25
-~ ...
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= Spectral graph theory:

= A myriad of graph Laplacians
= Some problems of interest

= Some algorithms

= Anasazi package of eigensolvers
= Anasazi interoperability model (integration into a user’s program)

= Some numerical experiments
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= Collection of algorithms for the large-scale solution of the algebraic
eigenvalue problems AX = XA or AX = BXA where A is a large sparse
matrix

= Think of computing 1-100 eigenvectors for a matrix of order 100,000+; the
limit depends upon computational resources; 1.75 trillion achieved

= Developers: Baker, Hetmaniuk, Lehoucg, Thornquist

= Block-based eigensolvers:
= Improve reliability for clustered eigenvalues
= Achieve better data locality for linear algebra operations

= Four algorithms that go beyond the power iteration

= LOBPCG Locally Optimal Block Preconditioned Conjugate Gradient
(Knyasev, 2002; Hetmaniuk & Lehoucgqg, 2006)

= Block Krylov-Schur (block extension of Stewart, 2000)
= Block Davidson (Arbenz, Hetmaniuk, Lehoucq, Tuminaro, 2005)
= |RTR Implicit Riemannian Trust Region (Absil, Baker, Gallivan, 2006)



Efficient matrix-vector products ) i
are important for skewed degree

graphs
B |

= A.Yoo, A. H. Baker, R. Pearce,
and V. E. Henson A scalable
eigensolver for large scale-free

graphs using 2D graph I B

partitioning SC'11 1D row-wise matrix
distribution; 6 processes

|

2D matrix
distribution; 6 processes

= Erik G. Boman, Karen D. Devine,
and Sivasankaran Rajamanickam
Scalable Matrix Computations
on Large Scale-Free Graphs
Using 2D Graph Partitioning

28




Anasazi interoperability model

= Templated C++; user
provides implementations
of sparse matrix vector
products and other large-
scale linear algebra
operations
= Leverage user’s data

structures and software
investment

= Memory system neutral
(distributed/shared
memory)

= Assume Fortran
BLAS/LAPACK libraries
available for dense
matrix calculations
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Method Name

Description

Apply(A,X,Y)

Applies the operator A to the multivector X, placing the

result in the multivector Y

Method Name

Description

Clone (X,numvecs)
CloneCopy(X,index)

CloneView(X,index)

Creates a new multivector from X with numuvecs vectors

Creates a new multivector with a copy of the contents of a
subset of the multivector X (deep copy)

Creates a new multivector that shares the selected contents
of a subset of the multivector X (shallow copy)

GetVecLength(X) Returns the vector length of the multivector X
GetNumberVecs (X) Returns the number of vectors in the multivector X
MvTimesMatAddMv (alpha,X, Applies a dense matrix D to multivector X and

D,beta,Y)

MvAddMv (alpha,X,beta,Y)
MvTransMv(alpha,X,Y,D)
MvDot (X,Y,d)
MvScale(X,d)
MvNorm(X,d)

accumulates the result into multivector Y':

Y <« aXD+ Y
Performs multivector AXPBY: Y « «X + Y
Computes the dense matrix D < o X#Y
Computes the corresponding dot products: d [i] < %; y;
Scales the ith column of a multivector X by d [i]
Computes the 2-norm of each vector of X: d[i] < ||xi|2

SetBlock(X,Y,index)
MvInit(X,alpha)
MvRandom (X)

Copies the vectors in X to a subset of vectors in Y
Replaces each entry in the multivector X with a scalar «
Replaces the entries in the multivector X by random scalars

MvPrint (X)

Print the multivector X

Multivector is a collection, or block, of vectors
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= Spectral graph theory:

= A myriad of graph Laplacians

= Some problems of interest

= Some algorithms

= Anasazi package of eigensolvers

= Anasazi interoperability model (integration into a user’s program)

= Some numerical experiments




Our Anasazi Testing Platform ) ..

C++ driver program for testing/evaluating various eigensolvers, parameters,
inputs, parallel distributions, scalability

Enables use of all Anasazi eigensolvers: BKS, BD, LOBPCG, IRTR
Uses Trilinos’ IFPACK preconditioners: Jacobi, SGS, IC, ILU, KLU, Support graph
(MST)
Finds smallest or largest eigenvalues and corresponding eigenvectors.
Constructs matrices from Matrix-Market input:

= Combinatorial Laplacians Normalized Laplacian

= Signless, normalized Laplacian » Adjacency Matrix
Creates 1D and 2D matrix distributions.

= Built on Trilinos’ Epetra matrix/vector classes.

= Current effort to adopt Epetra64 to solve problems with > 2 billion edges or vertices
Runs in parallel (distributed memory with MPI) or serial.

= Similar program available for shared memory (e.g., XMT, UV) using MEGRAPHS.
Options set through command-line arguments:

anasazi.exe --file=big.mtx --use2D --matrix=Laplacian
--normalize --nev=25 --t0l=0.001 --method=LOBPCG

MATLAB driver also available

31
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Test graph: Enron data set

‘ LaogeLavy plot ofverex degres for Envon data (67K vericas, connectad graph)
10? | | IIII| | | 1 IIII| | T T T - 67Kvertices
0} " 1.6K is the max
5 o degree
el _—
310 e = 507K edges
¢l -
il0F
>k
it
e
D: e
mﬂ ! |||||||1 ! |||||||2 ! |||||||3
10 10 e 10 10
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Termination depends upon residuals® .

= Combinatorial

|Lx = %4,
= Normalized
I:),2i - )’zii.
= Signless :
|Ky; = ymil,

= Signless normalized

Kyi o yi "/\i
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Solver=LOBPCG, blocksize =5, residual tolerance 1le-5, approximate 5 smallest eigenpairs

Precond Iterations Matvecs Setup Iteration  Total

itioner time time time

None 6896 34505 564.8 564.8
Jacobi 466 2335 0.0 46.9 46.9
IC(0) 476 2385 0.2 43.7 43.9
KLU 12 65 23.2 2.6 25.8
SGS 155 780 0.0 21.4 21.4
MST(1) 125 630 1.9 13.2 15.1
MST(2) 53 270 3.3 6.2 9.5

34
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Results: Normalized Laplacian

Solver=LOBPCG, blocksize =5, residual tolerance 1e-5, approximate 5 smallest
eigenpairs

Precond Iterations Matvecs Setup Iterate Total

itioner time time time

KLU 11 70 22.9 2.5 25.4
1C(0) 270 1355 0.2 22.8 23.0
None 250 1255 0 20.0 20.0
MST(2) 42 215 7.9 6.2 14.1
MST(1) 102 515 2.0 10.7 12.7
SGS 87 440 0.0 11.8 11.8

35
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Comparison of Eigensolvers

blocksize = 5 except for BKS that used a blocksize=1, residual tolerance le-5,
compute the smallest five eigenpairs

Method  Laplacian Precond Iterations  Matvecs Total time

itioner
BD Combintor  Jacobi >50000 -~ --
BKS Combintor >50000 -- --
LOBPCG Combintor Jacobi 466 2335 46.7
IRTR Combintor  Jacobi 14 492 27.1
BD Normalized 4397 43980 200.6
BKS Normalized 865 865 22.6
LOBPCG Normalized 250 1255 20.4
IRTR Normalized 12 380 13.6
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Comparison of Eigensolvers

blocksize = 5 except for BKS that used a blocksize=1, residual tolerance le-5,

approximate the smallest five eigenpairs

0

Laplacian  Precond Iterations Matvecs Total

itioner time
BKS Signless >10000 -- -~
BD Signless Jacobi >10000 -- --
LOBPCG Signless Jacobi 457 2330 42.9
IRTR Signless Jacobi 16 777 40.9
BD N Signless 5001 50035 246.1
BKS N Signless 1935 1935 29.5
IRTR N Signless 14 785 27.9
LOBPCG N Signless 282 1455 23.5

Sandia
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Laboratories
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Enron graph: Eigenvalues

The 5 smallest eigenvalues of the Laplacians.

5.2e-3 1.4e-3
5.2e-3 1.4e-3 5.3e-3 2.6e-3
5.3e-3 2.6e-3 5.8e-3 2.9e-3
5.8e-3 2.9e-3 8.8e-3 4.4e-3
8.1e-3 4.0e-3 1.0e-2 5.2e-3

(mkin Dk)ﬂ,I s/f,, < (mE\x Dk)ﬂ,,

o)

A <A <16342
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Mind the relative gap! ) e

= The combinatorial (min Dk)ﬂ’i S/i, < (max Dk)ﬂ"l
Laplacian eigenvalues are K k
more disparate in size y) gi. <1634,

= This affects the

convergence rate of the ~ ~
solvers .. — /. .. — A
;I'J+1 ;LJ < ZJ+1 ZJ
= Relative gap, roughly, ~ =~ ~
determines the ﬂ“N — Z’J /IN — ﬂ/
convergence rate N ~ J N JJ
= Normalized Laplacians are Aj 9ap A; gap

better behaved; the
convergence rate is never

slower
39



