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Goal 
 Gentle introduction to some problems in spectral graph 

theory 
 Developing a computational spectral graph theory capability 

 Also within the greater context of large-scale linear algebra for graphs 

 Challenge: Can we leverage existing algorithms and software 
for the large-scale sparse eigenvalue problem to spectral 
graph theory? 
 We can go substantially beyond power and inverse iteration 

 Challenge: If so, how can such a computational capability be 
exploited to learn about data? 
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Outline 
 Spectral graph theory: 

 A myriad of graph Laplacians 
 Some problems of interest 
 Some algorithms 

 Anasazi package of eigensolvers 
 Anasazi interoperability model (integration into a user’s program) 

 Some numerical experiments 
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Notation 
 Simple, connected, undirected, 

graph containing N vertices 
 These assumptions on the graph are 

not necessary, merely convenient  
 Directed graphs possible 

 Adjacency matrix; an edge between 
vertices i,j if and only if 
corresponding element of A is one; 
zero otherwise 

 Diagonal degree matrix; row i 
contains the degree of vertex i 
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Graph Laplacians 

 Combinatorial 
 

 Normalized 
 

 Signless 
 

 Signless normalized 
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The spectral problem 
 Combinatorial 

 
 Normalized 

 
 Signless 

 
 Signless normalized 
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Combinatorial & normalized Laplacians 
 Combinatorial and normalized 

graph Laplacians are both 
generators for a continuous-
time Markov chain 

 The combinatorial and 
normalized graph Laplacians 
are “congruent” 

 ½ signless Laplacian is the 
generator for a “lazy chain” 
(add a self-loop to each vertex) 
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Combinatorial & normalized Laplacians 

 Spectral structure the same (up to a simple scaling of the 
eigenvalues) if and only if the graph is regular (every vertex 
has the same degree) 

 Skewed distribution degree graphs are far from regular and 
so the combinatorial and normalized graph Laplacians are 
distinct spectrally 
 The degree of the graph vertices obeys a power law (an example to 

come) 

 Regular, or nearly so, graphs are ubiquitous when solving 
PDEs numerically  
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Skewed degree distribution graphs 
 Skewed distribution degree graphs are far from regular and 

so the combinatorial and normalized graph Laplacians are 
distinct spectrally 
 The degree of the graph vertices obeys a power law  

 Not much research into the effect of the degree distribution 
upon spectral approximation and impact  upon numerical 
algorithms 
 Maximum principles and decay rates for extremal eigenpairs of scale-

free adjacency and modularity matrices, submitted, G. Sanders, V. E. 
Henson, T. Jones, J. L. Trask 
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Differential and integral operators 
 Discretization of self-adjoint elliptic PDEs lead to 

(weighted or non-simple) nearly regular graphs 
 Boundary conditions typically prevent the graph from being regular 

 What is the continuum operator associated with a 
dense limit of graphs (setting aside what this 
means)? 

 Limits of Markov chains, and dense graph limits lead 
to an integral operator instead of a differential 
operator 
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Algebraic eigenvalue problem 
 All four spectral problems are 

examples of symmetric eigenvalue 
problems─this is about the only 
good news! 

 All four graph Laplacians are 
symmetric positive semi-definite 
 Combinatorial, normalized:  constant 

vector is associated with a zero 
eigenvalue; the connected 
component of the graph 

 Signless variants: the vector of plus, 
minus ones is associated with the 
bipartition of a graph and then has a 
zero eigenvalue 
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Outline 
 Spectral graph theory: 

 A myriad of graph Laplacians 
 Some problems of interest 
 Some algorithms 

 Anasazi package of eigensolvers 
 Anasazi interoperability model (integration into a user’s program) 

 Some numerical experiments 
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What are the eigenvectors used for? 

 Graph partitioning: useful for community detection 
 Determine the algebraic connectivity 
 Determine the algebraic bipartivity 

 

 Deterministic approach for Markov chains 
 Asymptotic (stationary) distribution 
 Approximate various expected values 
 

 Model reduction 
 A spectral, or eigen, basis for expressing quantities of interest on the 

graph (e.g., expected values), Fouss, Pirotte, Renders, Saerens 
IEEETKDE 2007. 
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Algebraic connectivity 
Combinatorial and normalized graph 
Laplacians: 

 The smallest positive eigenvalue 
represents the “algebraic connectivity” 
of a graph 

 The corresponding eigenvector gives the 
partition of the graph into two subgraphs 
with a small number of edges 

 This spectral partition solves the relaxed 
version of a combinatorial optimization 
problem 
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Bipartite and near bipartite graphs 

 Bipartite graph: partition the 
graph into two subgraphs with no 
internal edges 

 Near bipartite graph: small 
number of internal edges 

 More likely is that there are 
numerous near bipartite 
communities 

 

 



Algebraic bipartivity 
Signless graph Laplacians 

 Zero when the graph is bipartite; 
vector p consisting of 1 or -1 gives the 
bipartition 

 Near bipartite then defined to be the 
smallest positive value 

 Relax the optimization problem and 
use the eigenvector; smallest 
eigenvalue is the “algebraic bipartivity” 
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Expected values on graphs 

 Hitting time: probability 
of reaching a vertex from 
a vertex 

 Mean hitting time: 
expected value of the 
time to reach a vertex 
from a vertex 

 Commute time: the mean 
hitting time to and from a 
vertex 
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Model reduction 

 Expected values on graphs 
 Hitting time: probability of reaching a vertex from a vertex 
 Mean hitting time: expected value of the time to reach a vertex from a 

vertex 
 Commute time: the mean hitting time to and from a vertex 

 The above problems can be posed as linear systems involving 
the normalized graph Laplacian 

 If many expected values are desired (i.e., numerous vertices) 
then using a sub-basis of eigenvectors to approximate may be 
expedient 
 Sub-basis: “small” number of eigenvectors 
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Outline 
 Spectral graph theory: 

 A myriad of graph Laplacians 
 Some problems of interest 
 Some algorithms 

 Anasazi package of eigensolvers 
 Anasazi interoperability model (integration into a user’s program) 

 Some numerical experiments 
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Eigenvalue algorithms 
 Brief overview 

 Power & Lanczos iterations, restarting, preconditioned iteration 

 Constraints on computation 
 Only matrix vector products with the Laplacian L is available 
 Fixed storage requirements 
 Cannot solve linear systems Lu=b 
 Preconditioner M for the Laplacian available where M» L and 

linear systems Mu=b 

 Focus on compute the smallest eigenvalues and 
eigenvectors of the Laplacian of interest 
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Power iteration 
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 “The power method is no longer a serious technique for computing 
eigenvectors”, B. N. Parlett, The symmetric eigenvalue problem 

 But the start for serious techniques 



Lanczos iteration 
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 Use the sequence of iterates for the above Krylov space 
and then estimate the smallest eigenvector 

 The Lanczos iteration is a three-term recurrence for 
computing an orthogonal representation of the Krylov 
space 
 Maintaining  a numerically orthogonal set of vectors is non-

trivial (but can be done) 
 An alternative is to restart the iteration; this also enables 

storage requirements to be fixed in advance 

 A preconditioner M cannot be used (except within an 
inner iteration) 



Restart the Lanczos iteration 
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 Restarting is an accordion like process 
 Leads to the class of implicit restart methods 

 Enables storage requirements to be fixed in advance 
 User prescribes m 

 Use of a preconditioner M not possible (except within an 
inner iteration) 

 



Preconditioned iteration 
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 Preconditioned iteration is a minor variation on power iteration 
 Preconditioner N=I and selecting s appropriately leads to 

equivalence with the power iteration 
 Preconditioner N=L leads to inverse iteration (or the power 

iteration on the inverse of L). 
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Eigenvalue algorithms 

 The basic ideas presented lead to sophisticated 
algorithms exploiting subspace projection 
 Block-Krylov Schur and implicit restarted Arnoldi methods 
 Gradient based algorithms such as Davidson, IRTR, LOBPCG, 

tracemin 
 Newton-based approaches (Jacobi-Davidson) 

 Important extensions to all the algorithms are:  
 Incorporating a preconditioner 
 Incorporating blocking so that the Laplacian is applied to a 

collection of vectors so to improve the floating point 
performance; the details are platform specific 

 Efficient but a stable scheme for maintaining numerical 
orthogonality of the vectors used to represent the subspace 
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Outline 
 Spectral graph theory: 

 A myriad of graph Laplacians 
 Some problems of interest 
 Some algorithms 

 Anasazi package of eigensolvers 
 Anasazi interoperability model (integration into a user’s program) 

 Some numerical experiments 
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 Collection of algorithms for the large-scale solution of the algebraic 
eigenvalue problems AX = XΛ or AX = BXΛ where A is a large sparse 
matrix  
 Think of computing 1-100 eigenvectors for a matrix of order 100,000+; the 

limit depends upon computational resources; 1.75 trillion achieved 
 Developers: Baker, Hetmaniuk, Lehoucq, Thornquist  
 

 Block-based eigensolvers:  
 Improve reliability for clustered eigenvalues 
 Achieve better data locality for linear algebra operations 
 

 Four algorithms that go beyond the power iteration 
 LOBPCG Locally Optimal Block Preconditioned Conjugate Gradient 

(Knyasev, 2002; Hetmaniuk & Lehoucq, 2006) 
 Block Krylov-Schur  (block extension of Stewart, 2000) 
 Block Davidson (Arbenz, Hetmaniuk, Lehoucq, Tuminaro, 2005) 
 IRTR Implicit Riemannian Trust Region (Absil, Baker, Gallivan, 2006) 
 



Efficient matrix-vector products  
are important for skewed degree 
graphs 

 A. Yoo, A. H. Baker, R. Pearce, 
and V. E. Henson A scalable 
eigensolver for large scale-free 
graphs using 2D graph 
partitioning  SC '11 

 Erik G. Boman, Karen D. Devine, 
and Sivasankaran Rajamanickam 
Scalable Matrix Computations 
on Large Scale-Free Graphs 
Using 2D Graph Partitioning 

1D row-wise matrix  
distribution; 6 processes 

2D matrix  
distribution; 6 processes 
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Anasazi interoperability model 
 Templated C++; user 

provides implementations 
of sparse matrix vector 
products and other large-
scale linear algebra 
operations 
 Leverage user’s data 

structures and software 
investment 

 Memory system neutral 
(distributed/shared 
memory) 

 Assume Fortran 
BLAS/LAPACK libraries 
available for dense 
matrix calculations 

Multivector  is a collection, or block, of vectors 



Outline 
 Spectral graph theory: 

 A myriad of graph Laplacians 
 Some problems of interest 
 Some algorithms 

 Anasazi package of eigensolvers 
 Anasazi interoperability model (integration into a user’s program) 

 Some numerical experiments 
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Our Anasazi Testing Platform 
 C++ driver program for testing/evaluating various eigensolvers, parameters, 

inputs, parallel distributions, scalability 
 Enables use of all Anasazi eigensolvers:  BKS, BD, LOBPCG, IRTR 
 Uses Trilinos’ IFPACK preconditioners:  Jacobi, SGS, IC, ILU, KLU, Support graph 

(MST) 
 Finds smallest or largest eigenvalues and corresponding eigenvectors. 
 Constructs matrices from Matrix-Market input:   

 Combinatorial Laplacian   Normalized Laplacian  
 Signless, normalized Laplacian      Adjacency Matrix 

 Creates 1D and 2D matrix distributions. 
 Built on Trilinos’ Epetra matrix/vector classes.   
 Current effort to adopt Epetra64 to solve problems with > 2 billion edges or vertices 

 Runs in parallel (distributed memory with MPI) or serial. 
 Similar program available for shared memory (e.g., XMT, UV) using MEGRAPHS. 

 Options set through command-line arguments: 
anasazi.exe --file=big.mtx --use2D --matrix=Laplacian  
--normalize --nev=25 --tol=0.001 --method=LOBPCG 

MATLAB driver also available 
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Test graph: Enron data set 
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 67K vertices 

 1.6K is the max 
degree 

 507K edges 

 



Termination depends upon residuals 
 Combinatorial 

 
 Normalized 

 
 Signless 

 
 Signless normalized 
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Solver=LOBPCG,  blocksize = 5,  residual tolerance  1e-5, approximate 5 smallest eigenpairs 

Precond
itioner 

Iterations Matvecs Setup 
time 

Iteration 
time 

Total 
time 

None 6896 34505 564.8 564.8 

Jacobi 466 2335 0.0 46.9 46.9 

IC(0) 476 2385 0.2 43.7 43.9 

KLU  12 65 23.2 2.6 25.8 

SGS 155 780 0.0 21.4 21.4 

MST(1) 125 630 1.9 13.2 15.1 

MST(2)  53 270 3.3 6.2   9.5 

Combinatorial Laplacian 
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Solver=LOBPCG,  blocksize = 5, residual tolerance 1e-5, approximate 5 smallest 
eigenpairs 

Precond
itioner 

Iterations Matvecs Setup 
time 

Iterate 
time 

Total 
time 

KLU   11 70 22.9 2.5 25.4 

IC(0) 270 1355 0.2 22.8 23.0 

None 250 1255 0 20.0 20.0 

MST(2)   42 215 7.9 6.2 14.1 

MST(1) 102 515 2.0 10.7 12.7 

SGS   87 440 0.0 11.8 11.8 

Results: Normalized Laplacian 
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blocksize = 5 except for BKS that used a blocksize=1,  residual tolerance 1e-5 , 
compute the smallest five eigenpairs 

Method Laplacian Precond
itioner 

Iterations Matvecs Total time 

BD Combintor Jacobi >50000 -- -- 
BKS Combintor >50000 -- -- 

LOBPCG Combintor Jacobi 466 2335 46.7 

IRTR Combintor Jacobi 14 492 27.1 

BD Normalized 4397 43980 200.6 

BKS Normalized 865 865 22.6 

LOBPCG Normalized 250 1255 20.4 
IRTR Normalized 12 380 13.6 

Comparison of Eigensolvers 
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blocksize = 5 except for BKS that used a blocksize=1, residual tolerance 1e-5, 
approximate the smallest five eigenpairs  

Comparison of Eigensolvers 

Method Laplacian Precond
itioner 

Iterations Matvecs Total 
time 

BKS Signless >10000 -- -- 
BD Signless Jacobi >10000 -- -- 
LOBPCG Signless Jacobi 457 2330 42.9 
IRTR Signless Jacobi 16 777 40.9 

BD N Signless 5001 50035 246.1 

BKS N Signless 1935 1935 29.5 

IRTR N Signless 14 785 27.9 

LOBPCG N Signless 282 1455 23.5 
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Enron graph: Eigenvalues 

Combinatorial Normalized Signless N Signless 

0 0 5.2e-3 1.4e-3 

5.2e-3 1.4e-3 5.3e-3 2.6e-3 

5.3e-3 2.6e-3 5.8e-3 2.9e-3 

5.8e-3 2.9e-3 8.8e-3 4.4e-3 

8.1e-3 4.0e-3 1.0e-2 5.2e-3 
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The 5 smallest eigenvalues of the Laplacians. 
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Mind the relative gap! 

39 

( ) ( )min maxˆ

ˆ 1634

i ik kk

i i

k i

i

D Dλ λ λ

λ λ λ

≤ ≤

≤ ≤

 The combinatorial  
Laplacian eigenvalues are 
more disparate in size 

 This affects the 
convergence rate of the 
solvers 
 Relative gap, roughly, 

determines the 
convergence rate 

 Normalized Laplacians are 
better behaved; the 
convergence rate is never 
slower 
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