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Project Goals ‘

« Identify a set of chemical reactions in response to CO, injection, using Frio test
site as a case study.

« Construct a reactive flow model of the processes taking place in response to
CO, injection, and evaluate how choice of modeling parameters (particularly,
rate constants for the key reactions and mineral surface areas) affect the model
prediction, and what is the model’s uncertainty.

« Identify critical processes for up-scaling and construct a continuum scale
binary phase reactive flow model, using Frio test site as a case study.

Frio Brine Pilot Field Site ‘

Figure from presentation by T. Meckel (2008) Water chemisl;rjg
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* Setting: salt dome flank, Frio sandstone, 5,000 ft deep;
* 1600 tons at 3 kg/s, 10 day injection ~1545 m deep well in 2004;
* ~40 water samples collected for 4 days using 1530m deep monitoring well.

Geochemical Modeling

CO, injection CO, injection creates two new distinct
e geochemical interfaces:
+ d capro 1. Supercritical CO, - mineral interface:
1 r;";:' brine H,0 activity is decreasing
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« Estimated CO, solubility at

*Assumed maximum 90 wt. % of
333.15 K, 150 bar, 1.65 M NaCl = H,0 is removed due to “drying” by
0,

Geochemists Work Bench (GWB)

Updated thermodynamic database: Modified EQ3/6 v. 8.0

Pitzer activity correction method.

20 elements: O, Al, B, Br, C, Ca, Cd, Cl, F, Fe, H, K, Li, Mg, Mn, N, Na, P, S, Si.

Updated carbonate solubility: dolomite (Holland and Powell, 1998); magnesite (Holland and
Powell, 1998), hydromagnesite (Robie and Hemingway, 1995), dawsonite (Benezeth et al.
2007), siderite (Benezeth et al. 2009), added ankerite (Holland and Powell, 1998), AG and AH
values for HCO; species from (Robie and Hemingway, 1995).
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GWSB Path of Reaction Modeling Results

« Oversaturated minerals are allowed to precipitate before reaction path calculation - initial brine
is slightly oversaturated with respect to dolomite, ankerite, magnesite, and dawsonite.

Input: Aqueous species + Calcite; Single reactant 0.8143 moles of CO,(g)
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*Prediction: pH decreases to 4.7, predicted dissolution of calcite, dolomite, dawsonite, and

magnesite.
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/ Input: Aqueous species + Calcite+Hematite; Single reactant 0.8143 moles of CO,(g) \
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Prediction: pH decreases to 4.2, predicted release of Ca?* and Fe?*
@2*] is limited by Fe* solubility/redox reactions.
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/ Input: Aqueous species + Calcite; [HCO,7 is fixed at 0.3 M; 900 g of H,O is removed \
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Prediction: pH decreases to 4.6, nahcolite, dolomite, magnesite, quartz, ankerite, and
vawsom'te precipitate.
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GWB Reactive Flow Modeling Results

* 1-D Reactive Flow Model;

Mineral  Specific surface Kinetic rate constant
area cm?/g mol/cm? sec
* 1mblock, 34 % porosity; Calcite 9.8 5012107
Quartz 9.8 1.023 - 10
« Initial brine composition of Kaolinite 151.6 6.918 - 107
Frio reservoir; K-feldspar 9.8 3.89 - 10
Albite 9.8 1.445-10™
+ Temperature 59 °C; Valuesadapted rom Xa et . 2010, values for alite e aseumed saual 1 olgocae
1.E+00 -
¢ Time 500 years;
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Conclusions

¢ Injection of CO, in a geologic formation creates two distinct geochemical
interfaces: (1) mineral surfaces/CO,-saturated brine, and (2) mineral
surfaces/supercritical CO,. The predominant trends in carbonate mineral
precipitation and dissolution are opposite at these interfaces, mineral
dissolution is predicted as a result of pH decrease with increasing dissolved
CO, in brine. Due to dehydration of the reservoir by supercritical CO,,
mineral precipitation is predicted.

* Reactive flow models suggest that as CO, is dispersed, carbonate
precipitation is predicted for time scale of >100 years. The uncertainty of
these models arises from uncertain reactive surface areas of the minerals, as
well as kinetics parameters.
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