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ABSTRACT 
 

The master equation has been used to examine properties of transport in stochastic media.  It has 
been shown previously that not only may the Levermore-Pomraning (LP) model be derived from 
the master equation for a description of ensemble-averaged transport quantities, but also that 
equations describing higher-order moments may be obtained.  We examine in greater detail the 
equations governing the second moments of the angular fluxes, from which variances may be 
computed.  We introduce a simple closure for these equations, as well as several models for 
estimating the variances of derived transport quantities.  We revisit previous benchmarks for 
transport in stochastic media in order to examine the error of these new variance models.  We find, 
not surprisingly, that the errors in these variance estimates are at least as large as the corresponding 
estimates of the average, and sometimes much larger.  We also identify patterns in these variance 
estimates that may help guide the construction of more accurate models. 
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1. INTRODUCTION 
 
Various transport problems of practical interest involve background media consisting of a 
mixture of two or more well-characterized materials whose spatial distribution is known only in 
a statistical sense.  Examples of such problems include the transport of solar radiation through 
cloudy atmosphere and the neutron distribution in pebble bed reactors.  Given knowledge of the 
statistical distribution of the materials in relevant physical realizations, the problem of transport 
through such stochastic media consists of determining the statistical distribution of angular 
fluxes and derived quantities such as dose in these realizations.  For example, one may wish to 
determine the mean, variance, and maximum reactivity of a pebble bed reactor in order to ensure 
criticality safety during operation regardless of the physical arrangement of the pebbles. 
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In principle one could generate physical realizations from a statistical description of the 
stochastic media, perform transport calculations on each realization, and then examine the 
ensemble results.  Such an approach suffers from two problems.  First, all but the simplest of 
realizations may be too complex to directly model.  Second, the number of realizations required 
for good statistics may be computationally prohibitive.  Therefore it is desirable to construct 
other methods that can yield the same information at less cost. 
 
One such method that has been applied with varying success is the Levermore-Pomraning (LP) 
approach, sometimes referred to as the “standard model” [1-2].  This approach uses a single 
realization with material properties derived from the physical materials involved as well as the 
statistical distribution of the materials.  In the special case of Markovian media with no scattering 
the LP model is exact.  In addition to shortcomings related to inexact treatment of material 
boundaries, the LP model yields only ensemble-averaged quantities; higher statistical measures 
are not addressed. 
 
A more comprehensive approach to the problem of transport through stochastic media makes use 
of a master equation.  It has been shown that not only may the LP model be derived by means of 
this approach, but also equations describing higher-order quantities can be obtained [3].  The 
purpose of this paper is to examine this approach more closely, in particular in order to obtain 
variance estimates of transport quantities. 
 
The rest of the paper is organized as follows.  In Section 2 we first give an overview of previous 
work that forms the basis of our current work, then we present models for estimating the 
variance of transport results.  In Section 3 we report numerical results using these new models 
along with analysis of their errors.  In Section 4 we present conclusions and suggestions for 
future work. 
 

2. THEORY 
 
In this section we first review some previous analysis of the master equation approach to 
transport in stochastic media.  We then introduce a simple closure for the equation governing the 
second-order moment of the angular fluxes, from which one can compute variances.  We also 
introduce several models for estimating the variances of some derived transport quantities. 

2.1.  Previous Work 

 
In Ref. [3] the master equation describing transport in stochastic media was derived from first 
principles, including the effects of scattering.  One intermediate result, prior to the introduction 
of any approximations or closures, is 
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where ݌௜ ൌ ,Ԧሻݎ௜ሺ݌ ݅ ൌ 1,2, …, is the probability that the point ݎԦ lies in material i, ௜ܲ ൌ ௜ܲሺ߰ሻ is 
the conditional probability density for the angular flux given that the point ݎԦ lies in material i, 
തܲ௜ ൌ തܲ௜ሺ߰ሻ is the conditional probability density for the angular flux given that the point ݎԦ lies 
on an interface exiting a region of material i, ଶܲ௜ሺ߰, ߰′ሻ is the conditional joint probability 
density for the angular flux given that the point ݎԦ lies in material i, and ߣ௜ is the mean chord 
length for material i.  Equation (1) exactly describes transport in stochastic media, but the terms 
തܲ௜ and ଶܲ௜ render it stochastically unclosed. 
 
In order to close Equation (1) we introduce the LP-closure of the material interface terms: 
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The approximation made in Equation 2 is that the statistical distribution of angular fluxes at 
material interfaces is identical to that of fluxes in the interior of material regions.  Substitution of 
Equation (2) into Equation (1) yields the LP-closed master equation: 
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We define the conditionally averaged angular flux moments of order n:  
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The first angular flux moment of Equation (3) is 
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where ߰௜ ≡ ௜߰
ሺଵሻ.  This is the familiar LP or “standard” model for ensemble-averaged angular 

fluxes.  Note that the ଶܲ௜ from Equation (3) are not present in Equation (5), so no further closures 
are necessary to determine ensemble-averaged fluxes. 
 
Higher moments of Equation (3) are given by 
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Unlike Equation (5) the higher moment equations still include ଶܲ௜ and thus require an additional 
closure.  This is the subject of the next subsection. 

2.2. Variance Models 

 
2.2.1. Variance of angular fluxes 
 
We propose the following partial correlation neglect model as a closure for Eq. (6):  
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In other words, the value of the flux in a given direction and of a given energy is perfectly 
correlated with itself, but is uncorrelated with fluxes at other energies or directions.  Substitution 
of Equation (7) into Equation (6) for ݊ ൌ 2 yields 
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Simplification leads to 
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We restrict our attention to monoenergetic transport with isotropic scattering.  After 
simplification Equation (9) becomes 
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The variance of any particular angular flux may then be calculated in the usual manner:  
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2.2.2 Variance of derived quantities 
 
In practical applications we are rarely interested in the statistics of individual angular fluxes.  
Rather we are often concerned with derived quantities such as dose or leakage.  Mean quantities 
may be calculated in the same manner as for non-stochastic transport.  Variance estimates, 
however, will require that we create models for combining the individual variances given by 
Equation (11), since we do not know how these individual variances are correlated.  We restrict 
our attention to creating variance models for the quantities of interest reported in Ref. [4], 
namely reflection and transmission of monoenergetic particles in one-dimensional slab geometry.  
These quantities are computed from fluxes in different materials and directions, but at a single 
spatial location and energy.  For example, reflection of particles incident from the left of the 
region of interest is given by 
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where ݓ௞ are the weights and ߤ௞ the direction cosines of an angular quadrature.  A similar 
equation holds for transmission. 
 
We propose the following models for the variance of leakage from a surface in one-dimensional 
slab geometry, where the flux variances are evaluated at the relevant boundary:  
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3. NUMERICAL RESULTS 
 
In order to test our new variance models we reexamine the stochastic media transport problems 
first reported in [4].  These problems consist of nine different combinations of binary media and 
mixing statistics.  The problems are monoenergetic in one-dimensional slab geometry.  Two 
different angular quadratures are used; the “rod” problems are equivalent to using a two-point 
Gauss-Lobatto quadrature, and the “planar” problems use an S16 Gauss-Legendre quadrature.  
The problems are driven by an isotropic flux on the left boundary, scaled so that the incident 
current is unity.  All scattering is isotropic.  The reflected and transmitted currents are the 
transport quantities examined. 
 
Although both the ensemble-averages and deviations from benchmark calculations were reported 
in [4], we have separately regenerated the results as reported in [5]; the two sets of benchmarks 
are consistent with each other.  We generate our results with the Sceptre deterministic code [6] 
using its discretization of the first-order form of the linear monoenergetic Boltzmann equation, 
controlling for iterative, spatial, and statistical error. 
 
Both the LP model and our variance models were also implemented as separate modules of the 
Sceptre code base.  Results from these models were generated for all of the test cases and their 
errors were computed by comparison with our benchmark results, which were solved to within 
1% statistical error. 
 
In this article we do not report the individual results for each stochastic problem.  Rather we have 
generated condensed results by applying various metrics to the results of all nine cases 
simultaneously.  To do this we first take the ratio of each transport quantity computed by our 
stochastic models and the benchmark results; a ratio of unity implies exact agreement of our 
models with the benchmark results.  We then apply each of the following metrics to these ratios:  
 

min: minሺ݋݅ݐܽݎ௜ሻ , ݅ ൌ 1. .9 (14a)
 

max: maxሺ݋݅ݐܽݎ௜ሻ , ݅ ൌ 1. .9 (14b)
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Variance estimates in stochastic media transport 

 

 
 

Our results are reported for various slab thicknesses in Tables I-II for the rod problems and 
Tables III-IV for the planar problems.  These results consist of both the LP-averages (previously 
reported) and the deviations as calculated by the models of Section 2.2. 
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Table I. Condensed statistical results for reflection, rod problem 

 
Δݔ metric 〈ܴ〉 Σሺܴሻ-zero Σሺܴሻ-full Σሺܴሻ-average Σሺܴሻ-hybrid

0.1 

min 0.985 0.112 0.159 0.159 0.079 
max 1.014 0.526 0.647 0.694 0.484 

average 0.995 0.220 0.285 0.301 0.185 
norm 1.009 4.540 3.511 3.327 5.407 

1 

min 0.893 0.275 0.383 0.389 0.194 
max 0.996 0.999 1.124 1.128 0.940 

average 0.938 0.492 0.606 0.616 0.419 
norm 1.066 2.034 1.738 1.712 2.389 

10 

min 0.670 0.272 0.355 0.385 0.193 
max 0.902 9.085 10.115 10.115 8.569 

average 0.774 0.838 1.005 1.021 0.716 
norm 1.291 2.170 2.037 2.006 2.472 

 
 
 
 

Table II. Condensed statistical results for transmission, rod problem 
 

Δݔ metric 〈ܶ〉 Σሺܶሻ-zero Σሺܶሻ-full Σሺܶሻ-average Σሺܶሻ-hybrid

0.1 

min 0.999 0.108 0.152 0.152 0.076 
max 1.003 0.555 0.662 0.695 0.515 

average 1.001 0.223 0.286 0.300 0.188 
norm 1.001 4.489 3.492 3.336 5.330 

1 

min 0.997 0.342 0.473 0.484 0.242 
max 1.027 1.009 1.140 1.143 0.949 

average 1.008 0.581 0.708 0.719 0.496 
norm 1.009 1.724 1.488 1.466 2.017 

10 

min 0.955 0.711 0.860 1.006 0.503 
max 1.455 3.549 3.924 3.924 3.349 

average 1.168 1.310 1.522 1.560 1.124 
norm 1.190 1.446 1.574 1.560 1.562 
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Table III. Condensed statistical results for reflection, planar problem 

 
Δݔ metric 〈ܴ〉 Σሺܴሻ-zero Σሺܴሻ-full Σሺܴሻ-average Σሺܴሻ-hybrid

0.1 

min 0.965 0.041 0.150 0.250 0.125 
max 1.015 0.201 0.647 1.023 0.829 

average 0.986 0.082 0.274 0.456 0.291 
norm 1.018 12.198 3.646 2.213 3.442 

1 

min 0.839 0.096 0.337 0.557 0.315 
max 0.987 0.377 1.116 1.593 1.306 

average 0.910 0.178 0.564 0.882 0.603 
norm 1.099 5.610 1.851 1.424 1.861 

10 

min 0.655 0.099 0.323 0.625 0.312 
max 0.881 9.820 27.786 39.684 33.285 

average 0.751 0.353 1.092 1.679 1.179 
norm 1.332 4.709 2.217 2.038 2.116 

 
 

Table IV. Condensed statistical results for transmission, planar problem 
 

Δݔ metric 〈ܶ〉 Σሺܶሻ-zero Σሺܶሻ-full Σሺܶሻ-average Σሺܶሻ-hybrid

0.1 

min 1.001 0.039 0.160 0.248 0.124 
max 1.004 0.220 0.672 1.021 0.789 

average 1.002 0.086 0.293 0.453 0.288 
norm 1.002 11.577 3.418 2.227 3.474 

1 

min 0.996 0.133 0.473 0.688 0.344 
max 1.051 0.406 1.159 1.656 1.373 

average 1.015 0.232 0.720 1.042 0.723 
norm 1.016 4.305 1.481 1.329 1.679 

10 

min 0.927 0.288 0.870 1.485 0.742 
max 1.767 2.530 6.497 10.265 8.755 

average 1.195 0.643 1.827 2.782 2.009 
norm 1.240 2.169 1.885 2.782 2.179 

 
 
There are several conclusions we draw from these results.  First, the errors in the 
deviations/variances are generally at least as large as the errors in the mean.  This is not 
surprising, since the mean fluxes are used in the calculation of the variances.  A related 
observation is that the models for both the mean and the variances tend to underestimate the 
results for thin problems and overestimate for thick problems; the results for the mean are 
driving the results for the variances.  Secondly, the relative errors in the deviation are at times 
much larger than the corresponding errors in the mean.  This also is not surprising, since the 
calculation of the variances involves two more closures or approximations than the calculation of 
the mean.  Finally, the average correlation model for the variance (Equation (13c)) typically is 
the most accurate for reflection regardless of problem thickness, whereas for transmission the 
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best variance model seems to transition from the average correlation model to the full correlation 
model (Equation (13b)) to the zero correlation model (Equation (13a)) as the problem size 
increases. 
 

4. CONCLUSIONS  
 
We have extended previous work on transport in stochastic media by proposing a closure model 
for the equation governing the second moment of the angular fluxes, as derived from a master 
equation for such problems.  We furthermore have proposed several models for determining the 
variances of some particular integral transport quantities.  The accuracy of these models has been 
evaluated against numerous benchmark problems.  To our knowledge this is the first work to 
obtain higher-order results associated with the LP model for transport in stochastic media.  The 
errors in the variances we have computed are generally worse than those for the mean; whether 
such errors are acceptable or not will depend on the nature of the problem and the desired 
accuracy. 
 
There are several opportunities for improvements and future work.  The first is improving the LP 
closure of Equation (2); improved models should increase the accuracy of both the mean and the 
variances.  The second area of work is to obtain improved closures for the second-moment 
equation, particularly for energy-dependent problems and anisotropic scattering, which we have 
not examined.  Finally, the variance estimates of Equations (13) are applicable only for certain 
transport quantities.  New models for variances will need to be created for transport results that 
involve integrals over space and/or energy. 
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