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ABSTRACT

The master equation has been used to examine properties of transport in stochastic media. It has
been shown previously that not only may the Levermore-Pomraning (LP) model be derived from
the master equation for a description of ensemble-averaged transport quantities, but also that
equations describing higher-order moments may be obtained. We examine in greater detail the
equations governing the second moments of the angular fluxes, from which variances may be
computed. We introduce a simple closure for these equations, as well as several models for
estimating the variances of derived transport quantities. We revisit previous benchmarks for
transport in stochastic media in order to examine the error of these new variance models. We find,
not surprisingly, that the errors in these variance estimates are at least as large as the corresponding
estimates of the average, and sometimes much larger. We also identify patterns in these variance
estimates that may help guide the construction of more accurate models.
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1. INTRODUCTION

Various transport problems of practical interest involve background media consisting of a
mixture of two or more well-characterized materials whose spatial distribution is known only in
a statistical sense. Examples of such problems include the transport of solar radiation through
cloudy atmosphere and the neutron distribution in pebble bed reactors. Given knowledge of the
statistical distribution of the materials in relevant physical realizations, the problem of transport
through such stochastic media consists of determining the statistical distribution of angular
fluxes and derived quantities such as dose in these realizations. For example, one may wish to
determine the mean, variance, and maximum reactivity of a pebble bed reactor in order to ensure
criticality safety during operation regardless of the physical arrangement of the pebbles.
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In principle one could generate physical realizations from a statistical description of the
stochastic media, perform transport calculations on each realization, and then examine the
ensemble results. Such an approach suffers from two problems. First, all but the simplest of
realizations may be too complex to directly model. Second, the number of realizations required
for good statistics may be computationally prohibitive. Therefore it is desirable to construct
other methods that can yield the same information at less cost.

One such method that has been applied with varying success is the Levermore-Pomraning (LP)
approach, sometimes referred to as the “standard model” [1-2]. This approach uses a single
realization with material properties derived from the physical materials involved as well as the
statistical distribution of the materials. In the special case of Markovian media with no scattering
the LP model is exact. In addition to shortcomings related to inexact treatment of material
boundaries, the LP model yields only ensemble-averaged quantities; higher statistical measures
are not addressed.

A more comprehensive approach to the problem of transport through stochastic media makes use
of a master equation. It has been shown that not only may the LP model be derived by means of
this approach, but also equations describing higher-order quantities can be obtained [3]. The
purpose of this paper is to examine this approach more closely, in particular in order to obtain
variance estimates of transport quantities.

The rest of the paper is organized as follows. In Section 2 we first give an overview of previous
work that forms the basis of our current work, then we present models for estimating the
variance of transport results. In Section 3 we report numerical results using these new models
along with analysis of their errors. In Section 4 we present conclusions and suggestions for
future work.

2. THEORY

In this section we first review some previous analysis of the master equation approach to
transport in stochastic media. We then introduce a simple closure for the equation governing the
second-order moment of the angular fluxes, from which one can compute variances. We also
introduce several models for estimating the variances of some derived transport quantities.

2.1. Previous Work

In Ref. [3] the master equation describing transport in stochastic media was derived from first
principles, including the effects of scattering. One intermediate result, prior to the introduction
of any approximations or closures, is
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where p; = p;(¥),i = 1,2, ..., is the probability that the point # lies in material i, P, = P;() is
the conditional probability density for the angular flux given that the point 7 lies in material i,
P; = P;(x) is the conditional probability density for the angular flux given that the point 7 lies
on an interface exiting a region of material i, P,; (1, ") is the conditional joint probability
density for the angular flux given that the point # lies in material i, and 4; is the mean chord
length for material i. Equation (1) exactly describes transport in stochastic media, but the terms
P; and P,; render it stochastically unclosed.

In order to close Equation (1) we introduce the LP-closure of the material interface terms:
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The approximation made in Equation 2 is that the statistical distribution of angular fluxes at
material interfaces is identical to that of fluxes in the interior of material regions. Substitution of
Equation (2) into Equation (1) yields the LP-closed master equation:
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We define the conditionally averaged angular flux moments of order n:
W = [ apyre, @
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The first angular flux moment of Equation (3) is
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where ¢; = wi(l). This is the familiar LP or “standard” model for ensemble-averaged angular
fluxes. Note that the P,; from Equation (3) are not present in Equation (5), so no further closures
are necessary to determine ensemble-averaged fluxes.

Higher moments of Equation (3) are given by
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Unlike Equation (5) the higher moment equations still include P,; and thus require an additional
closure. This is the subject of the next subsection.

2.2. Variance Models

2.2.1. Variance of angular fluxes

We propose the following partial correlation neglect model as a closure for Eq. (6):
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In other words, the value of the flux in a given direction and of a given energy is perfectly
correlated with itself, but is uncorrelated with fluxes at other energies or directions. Substitution

of Equation (7) into Equation (6) for n = 2 yields
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Simplification leads to
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We restrict our attention to monoenergetic transport with isotropic scattering. After
simplification Equation (9) becomes
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The variance of any particular angular flux may then be calculated in the usual manner:
$2(h) = Y7 — 7 (11)

2.2.2 Variance of derived quantities

In practical applications we are rarely interested in the statistics of individual angular fluxes.
Rather we are often concerned with derived quantities such as dose or leakage. Mean quantities
may be calculated in the same manner as for non-stochastic transport. Variance estimates,
however, will require that we create models for combining the individual variances given by
Equation (11), since we do not know how these individual variances are correlated. We restrict
our attention to creating variance models for the quantities of interest reported in Ref. [4],
namely reflection and transmission of monoenergetic particles in one-dimensional slab geometry.
These quantities are computed from fluxes in different materials and directions, but at a single
spatial location and energy. For example, reflection of particles incident from the left of the
region of interest is given by

R =poRo + p1R1 = Do Z WickieYr,o(xX,) + by Z Wik, (x) (12)
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where wy, are the weights and y,, the direction cosines of an angular quadrature. A similar
equation holds for transmission.

We propose the following models for the variance of leakage from a surface in one-dimensional
slab geometry, where the flux variances are evaluated at the relevant boundary:

zero $2(L) = Z w2 u2 (péZz(wk,o) + szz(lpm)) (13a)

correlation Q>0
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hybrid $2(L) = Z wiette (P332 (Yeo) + 0322 (1)) (13d)

correlation Ton0

3. NUMERICAL RESULTS

In order to test our new variance models we reexamine the stochastic media transport problems
first reported in [4]. These problems consist of nine different combinations of binary media and
mixing statistics. The problems are monoenergetic in one-dimensional slab geometry. Two
different angular quadratures are used; the “rod” problems are equivalent to using a two-point
Gauss-Lobatto quadrature, and the “planar” problems use an S;s Gauss-Legendre quadrature.
The problems are driven by an isotropic flux on the left boundary, scaled so that the incident
current is unity. All scattering is isotropic. The reflected and transmitted currents are the
transport quantities examined.

Although both the ensemble-averages and deviations from benchmark calculations were reported
in [4], we have separately regenerated the results as reported in [5]; the two sets of benchmarks
are consistent with each other. We generate our results with the Sceptre deterministic code [6]
using its discretization of the first-order form of the linear monoenergetic Boltzmann equation,
controlling for iterative, spatial, and statistical error.

Both the LP model and our variance models were also implemented as separate modules of the
Sceptre code base. Results from these models were generated for all of the test cases and their
errors were computed by comparison with our benchmark results, which were solved to within
1% statistical error.

In this article we do not report the individual results for each stochastic problem. Rather we have
generated condensed results by applying various metrics to the results of all nine cases
simultaneously. To do this we first take the ratio of each transport quantity computed by our
stochastic models and the benchmark results; a ratio of unity implies exact agreement of our
models with the benchmark results. We then apply each of the following metrics to these ratios:

min: min(ratio;),i =1..9 (14a)
max: max(ratio;),i = 1..9 (14b)
1 9
average: exp [52 ln(ratioi)] (14c)
i=1
1 9
norm: exp [§Z|ln(ratioi)|] (14d)
i=1
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Our results are reported for various slab thicknesses in Tables I-11 for the rod problems and
Tables I11-1V for the planar problems. These results consist of both the LP-averages (previously
reported) and the deviations as calculated by the models of Section 2.2.
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Table 1. Condensed statistical results for reflection, rod problem

Ax metric (R) X(R)-zero X(R)-full | X(R)-average | Z(R)-hybrid
min 0.985 0.112 0.159 0.159 0.079
01 max 1.014 0.526 0.647 0.694 0.484
' average | 0.995 0.220 0.285 0.301 0.185
norm 1.009 4.540 3.511 3.327 5.407
min 0.893 0.275 0.383 0.389 0.194
1 max 0.996 0.999 1.124 1.128 0.940
average | 0.938 0.492 0.606 0.616 0.419
norm 1.066 2.034 1.738 1.712 2.389
min 0.670 0.272 0.355 0.385 0.193
10 max 0.902 9.085 10.115 10.115 8.569
average | 0.774 0.838 1.005 1.021 0.716
norm 1.291 2.170 2.037 2.006 2.472

Table I1. Condensed statistical results for transmission, rod problem

Ax metric (T) X(T)-zero X(T)-full | 2(T)-average | X(T)-hybrid
min 0.999 0.108 0.152 0.152 0.076
01 max 1.003 0.555 0.662 0.695 0.515
' average | 1.001 0.223 0.286 0.300 0.188
norm 1.001 4.489 3.492 3.336 5.330
min 0.997 0.342 0.473 0.484 0.242
1 max 1.027 1.009 1.140 1.143 0.949
average | 1.008 0.581 0.708 0.719 0.496
norm 1.009 1.724 1.488 1.466 2.017
min 0.955 0.711 0.860 1.006 0.503
10 max 1.455 3.549 3.924 3.924 3.349
average | 1.168 1.310 1.522 1.560 1.124
norm 1.190 1.446 1.574 1.560 1.562
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Table I11. Condensed statistical results for reflection, planar problem

Ax metric (R) Y(R)-zero X(R)-full | Z(R)-average | (R)-hybrid
min 0.965 0.041 0.150 0.250 0.125
01 max 1.015 0.201 0.647 1.023 0.829
' average | 0.986 0.082 0.274 0.456 0.291
norm 1.018 12.198 3.646 2.213 3.442
min 0.839 0.096 0.337 0.557 0.315
1 max 0.987 0.377 1.116 1.593 1.306
average | 0.910 0.178 0.564 0.882 0.603
norm 1.099 5.610 1.851 1.424 1.861
min 0.655 0.099 0.323 0.625 0.312
10 max 0.881 9.820 27.786 39.684 33.285
average | 0.751 0.353 1.092 1.679 1.179
norm 1.332 4.709 2.217 2.038 2.116

Table 1V. Condensed statistical results for transmission, planar problem

Ax metric (T) X(T)-zero X(T)-full | 2(T)-average | Z(T)-hybrid
min 1.001 0.039 0.160 0.248 0.124
01 max 1.004 0.220 0.672 1.021 0.789
' average | 1.002 0.086 0.293 0.453 0.288
norm 1.002 11.577 3.418 2.227 3.474
min 0.996 0.133 0.473 0.688 0.344
1 max 1.051 0.406 1.159 1.656 1.373
average | 1.015 0.232 0.720 1.042 0.723
norm 1.016 4.305 1.481 1.329 1.679
min 0.927 0.288 0.870 1.485 0.742
10 max 1.767 2.530 6.497 10.265 8.755
average | 1.195 0.643 1.827 2.782 2.009
norm 1.240 2.169 1.885 2.782 2.179

There are several conclusions we draw from these results. First, the errors in the

deviations/variances are generally at least as large as the errors in the mean. This is not
surprising, since the mean fluxes are used in the calculation of the variances. A related

observation is that the models for both the mean and the variances tend to underestimate the
results for thin problems and overestimate for thick problems; the results for the mean are
driving the results for the variances. Secondly, the relative errors in the deviation are at times
much larger than the corresponding errors in the mean. This also is not surprising, since the
calculation of the variances involves two more closures or approximations than the calculation of
the mean. Finally, the average correlation model for the variance (Equation (13c)) typically is
the most accurate for reflection regardless of problem thickness, whereas for transmission the
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best variance model seems to transition from the average correlation model to the full correlation
model (Equation (13b)) to the zero correlation model (Equation (13a)) as the problem size
increases.

4. CONCLUSIONS

We have extended previous work on transport in stochastic media by proposing a closure model
for the equation governing the second moment of the angular fluxes, as derived from a master
equation for such problems. We furthermore have proposed several models for determining the
variances of some particular integral transport quantities. The accuracy of these models has been
evaluated against numerous benchmark problems. To our knowledge this is the first work to
obtain higher-order results associated with the LP model for transport in stochastic media. The
errors in the variances we have computed are generally worse than those for the mean; whether
such errors are acceptable or not will depend on the nature of the problem and the desired
accuracy.

There are several opportunities for improvements and future work. The first is improving the LP
closure of Equation (2); improved models should increase the accuracy of both the mean and the
variances. The second area of work is to obtain improved closures for the second-moment
equation, particularly for energy-dependent problems and anisotropic scattering, which we have
not examined. Finally, the variance estimates of Equations (13) are applicable only for certain
transport quantities. New models for variances will need to be created for transport results that
involve integrals over space and/or energy.
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