
A Distributed OpenCL Framework
using Redundant Computation and Data Replication

Junghyun Kim Gangwon Jo Jaehoon Jung Jungwon Kim Jaejin Lee
Center for Manycore Programming

Department of Computer Science and Engineering
Seoul National University, Seoul 08826, Korea

{junghyun, gangwon, jaehoon, jungwon}@aces.snu.ac.kr, jaejin@snu.ac.kr
http://aces.snu.ac.kr

Abstract
Applications written solely in OpenCL or CUDA cannot
execute on a cluster as a whole. Most previous approaches
that extend these programming models to clusters are based
on a common idea: designating a centralized host node and
coordinating the other nodes with the host for computation.
However, the centralized host node is a serious performance
bottleneck when the number of nodes is large. In this paper,
we propose a scalable and distributed OpenCL framework
called SnuCL-D for large-scale clusters. SnuCL-D’s remote
device virtualization provides an OpenCL application with an
illusion that all compute devices in a cluster are confined in
a single node. To reduce the amount of control-message and
data communication between nodes, SnuCL-D replicates the
OpenCL host program execution and data in each node. We
also propose a new OpenCL host API function and a queueing
optimization technique that significantly reduce the overhead
incurred by the previous centralized approaches. To show
the effectiveness of SnuCL-D, we evaluate SnuCL-D with
a microbenchmark and eleven benchmark applications on a
large-scale CPU cluster and a medium-scale GPU cluster.

Categories and Subject Descriptors D.3.4 [PROGRAM-
MING LANGUAGES]: Processors—Optimization, Runtime
environments

Keywords OpenCL, clusters, heterogeneous computing,
programming models, runtime systems, redundant computa-
tion, data replication

1. Introduction
A heterogeneous system is a system that contains different
types of processors, such as general-purpose CPUs, GPUs,
FPGAs, DSPs, and accelerators of other types. One of the
most popular accelerators is a graphics processing unit (GPU),
and several programming models have been proposed to use it
efficiently. Among others, CUDA[36] and OpenCL[22] have
been used widely. Unlike CUDA, OpenCL provides a com-
mon abstraction layer, the OpenCL platform model, across
different processor architectures including general-purpose
CPUs. Its specification is maintained by Khronos group, and
many hardware vendors, such as Altera, AMD, Apple, ARM,
IBM, Imagination, Intel, MediaTek, NVIDIA, Qualcomm,
Samsung, TI, and Xilinx, provide OpenCL platforms for their
hardware.

Compute
device	0 …

Host
processor

Host	
memory

Compute
device	1

Compute
device	M

…CU CU CU

Global
memory

Constant
memory

Device	memory

PE PE PE PE
PE PE PE PE
PE PE PE PE
PE PE PE PE

Local
memory

Figure 1. OpenCL platform model.

OpenCL platform model. Figure 1 shows the OpenCL
platform model. It consists of a single host processor and
one or more compute devices (i.e., accelerators). The host
processor has the host memory, and each compute device has
its own device memory. The device memory is not visible
to other compute devices and consists of global memory
and read-only constant memory. An OpenCL application
consists of a host program written in C and a set of kernels

OpenCL	application

KernelsHost	program

...

Vendor-specific
OpenCL platform

Host	node

Dev	0

Dev	1

Dev	2

Dev	3

Vendor-specific
OpenCL platform

Node	1

Dev	0

Dev	1

Dev	2

Dev	3

Vendor-specific
OpenCL platform

Node	N

Kernels...
Centralized	OpenCL framework

Host	program Kernels

OpenCL platform

Dev	0

...

Dev	1
Dev	2

Dev	4N-1

Dev	3
Dev	4
Dev	5
Dev	6

OpenCL	application

Kernels

...

Dev	0

Dev	1

Dev	2

Dev	3

Vendor-specific
OpenCL platform

Node	1

Dev	0

Dev	1

Dev	2

Dev	3

Vendor-specific
OpenCL platform

Node	N

...

SnuCL-D

Runtime Runtime Runtime Runtime Runtime

Host
program KernelsHost

program

Figure 2. Comparison between previous OpenCL frameworks for clusters and SnuCL-D.

written in OpenCL C. OpenCL C is based on C99 with some
extensions and restrictions. The host processor executes the
host program, and compute devices execute kernels. Kernels
are built online or offline. At least one command-queue is
created and attached to a compute device by the host program.
The host program submits a command to the compute device
through the command-queue using an OpenCL host API
function prefixed by clEnqueue.

OpenCL commands. There are three different types of
OpenCL commands: kernel execution, device memory access,
and synchronization. While a compute device executes a
kernel-execution command, the OpenCL runtime executes
a synchronization command to maintain correct execution
order between commands. Since there is no shared address
space between the host and a device or between a device and
another device, a device-memory-access command exchanges
data between them through OpenCL memory objects. The
runtime and a device cooperate each other to execute a device-
memory-access command. Based on the command-queue
type, the enqueued commands are issued to the compute
device in order or out of order by the runtime.

Absence of cluster abstraction. Since both OpenCL and
CUDA have no cluster abstraction, each of them works only
under a single operating system (OS) instance. Applications
written solely in CUDA or OpenCL cannot run on a cluster as
a whole. To develop OpenCL or CUDA applications for the
cluster, a communication library such as MPI[33] must be
used to support communication between OpenCL platform
instances in different nodes. As a result, programmers are
forced to use a mix of two different programming models
(e.g., MPI + OpenCL or MPI + CUDA). However, it is cum-
bersome and error-prone for programmers to switch between
the two different programming models in different phases of
an application. Moreover, they need to distribute the applica-
tion workload hierarchically in two levels: across nodes and

inside a node. Thus, even if heterogeneous computing under
a single OS instance has been widely spread, more research
is needed for a cluster running multiple OS instances, one in
each node.

1.1 Problems of Previous Approaches

A number of studies address the issue of cluster abstraction
for OpenCL[3, 6, 14, 21, 23, 25, 47, 49], and their proposals
are based on a common idea: a centralized host node. Their
differences come from the design and implementation. The
left-hand side of Figure 2 illustrates the common idea of
the previous approaches. They all have a centralized host
node that executes the OpenCL host program. Other nodes
are compute nodes and perform kernel computations on
their compute devices. Each node including the host runs
a vendor-specific OpenCL platform. The runtime takes care
of communication between different OpenCL platforms. As
a result, the centralized framework provides a single OpenCL
platform image to the application. This design is natural and
intuitive because the OpenCL platform model itself has a
centralized host.

Types of overheads. There are three different types of over-
heads along the execution path of an OpenCL command
in the centralized approach: command queueing, command
scheduling, and command delivery. The command-queueing
overhead occurs when the host enqueues a command using
an OpenCL API function prefixed by clEnqueue. Actual
insertion is done by the runtime in the API function. When
the runtime sends a command to its target device through
the interconnection network, the command-delivery over-
head occurs. The command-scheduling overhead includes all
overheads that occur between the point after the runtime en-
queues a command and the point before the runtime sends the
command to the target device. It includes the overhead of de-
termining the execution order of commands and maintaining
consistency for OpenCL memory objects.

Type Source
Command
queueing

When enqueueing a command to a command-
queue.

Command
scheduling

Between the point after enqueueing a command
and the point before sending the command to the
target device.

Command
delivery

When delivering a command to the target compute
device.

Host-data
transfer

When transferring data between the host and a
compute device.

Table 1. Overhead Types in the Centralized Approach.

To execute a kernel on a compute device, it may be necessary
to transfer data accessed by the kernel from the host to the
device, or vice versa. Host-data-transfer overhead occurs
in the centralized approach when the runtime transfers data
between the host and a device through the interconnection
network. We summarize the four different overhead types in
Table 1.

Even though the target device has enough computing power
to execute many commands, the host node may not be able
to deliver enough commands and data to it because of the
overheads described above. This problem becomes more
serious as the number of nodes increases.

However, most of the previous approaches do not address
the scalability issue of their solutions. They evaluate their
OpenCL frameworks only for a small-scale cluster. An ex-
ception is SnuCL[23, 24]. It is an open-source centralized
OpenCL framework for clusters and uses a large-scale cluster
with 256 nodes for evaluation. SnuCL does not scale well
with more than 64 nodes for some applications. The single
host node becomes a significant performance bottleneck for
the large-scale cluster because it schedules and delivers com-
mands and data to a large number of compute nodes.

1.2 Proposed Techniques

In this paper, we propose a distributed OpenCL framework
called SnuCL-D to solve the scalability problem of the pre-
vious centralized approaches. It overcomes the performance
bottleneck incurred by the four types of overheads.

Exploiting redundant computation and data replication.
Instead of making the host node to execute the OpenCL host
program, SnuCL-D executes the same host program in every
node redundantly as shown in Figure 2. This also makes the
data produced by the host program to be replicated in every
node. As a result, the OpenCL application uses the compute
devices as if they were confined in a single node. However, no
code modification is necessary to run an OpenCL application
under SnuCL-D. In addition, SnuCL-D does not need a host
node. Thus, it requires one less node than the centralized
approach.

When the execution of the host program is not deterministic,
replicating the host program in each node introduces non-

determinacy in interactions with the OS (e.g., file I/O) as well
as command scheduling in multithreaded host programs. We
implement a limited form of determinacy for common file
I/O operations and function calls (e.g., srand) in SnuCL-
D. However, we do not address subtler sources of non-
determinacy including multithreaded host programs because
deterministic execution is a well-known problem[10, 11, 32,
38].

Remote device virtualization. The remote device virtualiza-
tion (RDV) technique proposed in SnuCL-D enables a node
to see not only its own compute devices, called actual de-
vices, but also those in other nodes, called virtual devices.
A command enqueued to a command-queue attached to an
actual device is called an actual command. Otherwise, the
command is called a virtual command. Actual commands are
executed normally, but virtual commands are discarded by
the runtime and not actually executed. This eliminates the
inter-node command-delivery overhead and also significantly
reduces the command-scheduling overhead. While the host
node in the centralized approach delivers all the commands
to their target nodes, each node in SnuCL-D knows exactly
which commands are for its actual devices, and it just locally
executes the commands for its actual devices.

The host data replication makes SnuCL-D outperforms the
centralized approach because SnuCL-D does not have the
host-data-send overhead (i.e., the overhead occurred when
the host sends data to a compute device) that is unavoidable
in the centralized approach. On the other hand, SnuCL-D
has more severe host-data-receive overhead (i.e., the over-
head occurred when a compute device sends data to the host)
for device-memory-read commands than the centralized ap-
proach. However, device-memory-read commands occur less
frequently than other types of commands. We discuss this in
detail in Section 3.1.

New OpenCL API function and queueing optimization.
A memory object in OpenCL is not bound to a specific com-
pute device. That is, its location is not fixed to a specific
device, and it moves around different devices. When a mem-
ory object is passed to a kernel by the host and the kernel
executes on a device, the object resides on the device. This
requires a sophisticated memory consistency management
mechanism for memory objects, resulting in increasing the
command-scheduling overhead. We propose a new OpenCL
API function that makes a memory object to be bound to a
specific device. It further reduces the command-scheduling
overhead by alleviating the consistency management over-
head for the memory object. We also propose a queueing
optimization technique. Queueing optimization together with
the new API function significantly reduces the queueing over-
head that is unavoidable in the centralized approach.

Note that both of the centralized approach and SnuCL-D
cannot execute an OpenCL application that requires more
memory space than is available in the main memory of

each node. This implies that SnuCL-D will not work well
when the primary motivation for using a cluster is exploiting
more memory space across the entire cluster rather than
exploiting more computing power (e.g., more GPUs running
in parallel). While the memory footprint of each device
memory remains the same, SnuCL-D sacrifices the main
memory footprint for performance. However, exploiting
redundant computation and data replication is sometimes
a preferable common practice in large-scale computing to
improve performance even though it requires more memory
footprint[2, 20, 26, 41, 42, 48].

The implementation of SnuCL-D is based on SnuCL[23, 24].
We show the effectiveness of SnuCL-D by comparing it
with SnuCL and MPI-Fortran. We run eleven benchmark
applications on a large-scale CPU cluster with 512 nodes
(4096 CPU cores in total) and a medium-scale GPU cluster
with 36 nodes (144 GPU devices in total).

The rest of the paper is organized as follows. The next section
describes programming models of OpenCL and SnuCL-D.
Section 3 explains the design and implementation of SnuCL-
D. Section 4 evaluates SnuCL-D. Section 5 describes related
work. Finally, Section 6 concludes the paper.

2. Programming Models
In this section, we describe programming models of OpenCL
and SnuCL-D.

2.1 OpenCL Programming Model

We have introduced the OpenCL platform model in the
previous section. We start with the OpenCL execution model.

Execution model. An execution instance of a kernel is
called a work-item. An index space (up to three dimensional)
specifies the total number and shape of work-items that
execute a kernel. A point in the space corresponds to a work-
item, and the Cartesian coordinates of the point is the unique
global ID of the work-item. One or more work-items are
grouped in a work-group. Each work-group also has a unique
ID, and each work-item in a work-group has a unique local
ID. The host program specifies the total number of work-
items and the work-group size for a kernel before it submits
the kernel command.

As shown in Figure 1, each compute device contains one
or more compute units (CUs). Each CU contains one or
more processing elements (PEs) and local memory that is
not visible to other CUs. A PE is a processor and has its
own private memory (e.g., registers). The OpenCL runtime
distributes work-groups to CUs. Work-items in a work-group
execute concurrently on PEs in an SPMD (Single Program,
Multiple Data)[15] manner.

Memory regions and objects. There are four distinct mem-
ory regions in a compute device (Figure 1): __global,
__constant, __local and __private. These regions are

accessible to kernels. While the host program accesses the
compute device memory via device-memory-access com-
mands, a kernel may not access the host memory.

OpenCL has three different types of memory objects: buffers,
images, and pipes. For simplicity and without loss of gener-
ality, we consider only buffer objects in this paper. A buffer
object is similar to a byte array in C and contains any type
of data. To read, write, or copy a buffer, a device-memory-
access command is submitted to a command-queue by the
host program.

Synchronization mechanisms. A work-group barrier is
used to synchronize work-items in the same work-group.
There is no synchronization mechanism available between
work-groups. Synchronization between commands in the
same command-queue can be specified by a command-queue
barrier. To synchronize commands in different command-
queues, events are used. An API function prefixed by
clEnqueue returns an event object associated with the com-
mand enqueued. The event object can be queried to track
the execution status of the command. For example, when
the command is enqueued, the state of the event becomes
CL_QUEUED, and when the command has completed, it be-
comes CL_COMPLETE. In addition, the API function takes an
event wait list as an argument. The enqueued command can-
not be scheduled for execution until all commands associated
with the events in the wait list have completed.

Memory consistency model. Since a memory object in
OpenCL is not bound to a specific compute device, a new
copy of a memory object may be created when a different
device accesses the same memory object. For example, if two
different kernel-execution commands KA and KB executing
on different devices modify the same memory object M ,
a different copy of M resides in each compute device. To
guarantee memory consistency, the runtime needs to take
some action for the two different copies of M .

OpenCL defines a relaxed memory consistency model in
which memory is only guaranteed to be consistent after each
synchronization point. There are several types of synchro-
nization points defined in OpenCL[22]. For example, a work-
group barrier is a synchronization point for work-items in
the same work-group. The point when a kernel is issued to a
device for execution is another example of a synchronization
point.

2.2 Sample OpenCL Application

Figure 3 shows an OpenCL application adding two vectors (C
= A + B) using multiple GPUs. For simplicity, we assume
that both the number of available GPUs in the system (ndevs)
and the size of the vectors (N) are a power of two. We also
assume N is much bigger than ndevs.

Kernel code. The kernel source code (vec_add) is embedded
in the host program as a string (line 1 - line 11). The kernel
binary is built online in the application. OpenCL C built-in

1 const char *kernel_source =
2 "__kernel void vec_add(__global float *A, \n" \
3 " __global float *B, \n" \
4 " __global float *C, \n" \
5 " const unsigned int n) \n" \
6 "{ \n" \
7 " int id = get_global_id(0); \n" \
8 " \n" \
9 " if (id < n) // Bound check \n" \

10 " C[id] = A[id] + B[id]; \n" \
11 "} \n";
12

13 int main() {
14 float *h_A, *h_B, *h_C;
15 ... // Initialize h_A, h_B, and h_C
16

17 cl_platform platform;
18 clGetPlatformIDs(1, &platform, NULL);
19

20 int ndevs;
21 cl_device_id devs[MAX_NDEVS];
22 clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU,
23 MAX_NDEVS, devs, &ndevs);
24

25 cl_context ctxt = clCreateContext(0, ndevs, devs, ...);
26

27 cl_command_queue cmdqs[MAX_NDEVS];
28 for(int i = 0; i < ndevs; i++)
29 cmdqs[i] = clCreateCommandQueue(ctxt, devs[i], ...);
30

31 cl_kernel kls[MAX_NDEVS];
32 ... // Compile and build ndevs kernel objects
33

34 unsigned int n = N/ndevs; // Vector size per device
35 unsigned int size = n*sizeof(float);
36

37 cl_mem d_A[MAX_NDEVS], d_B[MAX_NDEVS], d_C[MAX_NDEVS];
38 for(int i = 0; i < ndevs; i++) {
39 d_A[i] = clCreateBuffer(ctxt, ..., size, ...);
40 d_B[i] = clCreateBuffer(ctxt, ..., size, ...);
41 d_C[i] = clCreateBuffer(ctxt, ..., size, ...);
42 }
43

44 for(int i = 0; i < ndevs; i++) {
45 clEnqueueWriteBuffer(cmdqs[i], d_A[i], ...,
46 size, h_A + i*n, ...);
47 clEnqueueWriteBuffer(cmdqs[i], d_B[i], ...,
48 size, h_B + i*n, ...);
49 }
50

51 ... // Define the index space (gws and lws)
52

53 for(int i = 0; i < ndevs; i++) {
54 clSetKernelArg(kls[i], 0, sizeof(cl_mem), &d_A[i]);
55 clSetKernelArg(kls[i], 1, sizeof(cl_mem), &d_B[i]);
56 clSetKernelArg(kls[i], 2, sizeof(cl_mem), &d_C[i]);
57 clSetKernelArg(kls[i], 3, sizeof(unsigned int), &n);
58 clEnqueueNDRangeKernel(cmdqs[i], kls[i], ...,
59 gws, lws, ...);
60 }
61

62 for(int i = 0; i < ndevs; i++)
63 clFinish(cmdqs[i]);
64

65 for(int i = 0; i < ndevs; i++)
66 clEnqueueReadBuffer(cmdqs[i], d_C[i], ...,
67 size, h_C + i*n, ...);
68 ...
69 }

Figure 3. An OpenCL application for multiple GPUs.

function get_global_id(0) returns the global ID of the
work-item that executes the kernel. The index space is one
dimensional. The first three kernel arguments are pointers to
OpenCL buffers in the device global memory.

Host program. At the beginning, the host program (main)
allocates memory spaces for arrays h_A, h_B, and h_C in the
host main memory. Then, they are initialized (lines 14 - 15).

After obtaining an available OpenCL platform in the system
at line 18, the host obtains the list of available GPUs in the
platform (lines 22 - 23). Array devs and variable ndevs con-
tain the list and the number of available GPUs, respectively.
We assume MAX_NDEVS ≥ ndevs.

The host creates an OpenCL context at line 25. The OpenCL
runtime uses the context to manage compute devices and
OpenCL objects, such as command-queues, memory objects,
and kernel objects. Then, the host creates a command-queue
for each GPU in the context at line 29. At line 32, the host
builds the embedded kernel source code for the GPUs and
creates ndevs kernel objects.

To transfer the contents of h_A and h_B to GPUs, the host
creates two buffer objects d_A[i] and d_B[i] for each
GPU i (lines 39 - 40). The size of d_A[i] and d_B[i] is
n*sizeof(float). In addition, the host creates a buffer
d_C[i] for each GPU i to transfer the result from the GPU
to the host (line 41). Note that locations of the buffers are not
known yet at this point because clCreateBuffer does not
have any argument from which the target GPU can be inferred.
The host copies the contents of h_A and h_B to buffers
d_A[i] and d_B[i], respectively, at lines 45 - 48. At this
point, the OpenCL runtime allocates memory spaces in GPU
i to d_A[i] and d_B[i]. Using the argument cmdqs[i] in
clEnqueueWriteBuffer as a clue, the runtime finds that the
target device is GPU i. After allocating the memory spaces,
the runtime copies the contents.

After setting up kernel arguments, the host enqueues a
kernel command using the non-blocking API function
clEnqueueNDRangeKernel for each GPU at lines 54 - 59.
The work-group size and the total number of work-items for
the kernel are given by lws and gws, respectively. Since the
kernel index space is one dimensional, both lws and gws are
a one-dimensional integer array. Then, the runtime sched-
ules each kernel command to its target GPU, and the GPU
executes the kernel command.

The synchronization host API function clFinish at line
63 blocks until the kernel command in cmdqs[i] has com-
pleted. After completion, a device-memory-read command
clEnqueueReadBuffer reads the contents of d_C[i] from
the device memory and puts them to h_C (lines 66 - 67).

Finally, the host releases OpenCL objects and frees dynami-
cally allocated host memory spaces.

2.3 SnuCL-D Programming Model

SnuCL-D has the same programming model as that of
OpenCL. No code modification is necessary. The OpenCL
application in Figure 3 runs well under SnuCL-D without
any modification. Since SnuCL-D is an OpenCL program-
ming model, it supports any heterogeneous compute devices
installed in the OpenCL platform. For example, an OpenCL
application, in which a set of CPU compute devices and a set
of GPU compute devices collaborate each other, also works
well under SnuCL-D without any code modification.

SnuCL-D is a distributed framework in the sense that the
host program and data are replicated and the host program
executes in every node in the cluster. Each node in the cluster
also runs an instance of the SnuCL-D runtime. Since each
node executes the same OpenCL host program, the program-
ming model of SnuCL-D looks like an SPMD programming
model[15]. It is true at the host side. However, the host-side
SPMD programming model is not exposed to the programmer,
and each compute device may execute different kernel code.
Thus, the entire programming model of SnuCL-D is not an
SPMD programming model. In the programmer’s perspective,
it is just an OpenCL programming model.

SnuCL-D also provides collective communication extensions
proposed by SnuCL[23]. The extensions are implemented in
SnuCL-D’s distributed framework.

3. Design and Implementation of SnuCL-D
In this section, we describe the design and implementation of
SnuCL-D and how it overcomes the performance bottleneck
incurred in the previous centralized approaches.

As shown in Figure 2, SnuCL-D is laid between the cluster
and an OpenCL application. Each node in the cluster executes
a copy of the host program and a SnuCL-D runtime instance.
Both are threads and belong to an MPI process running in
the node. The SnuCL-D runtime instances work together to
provide the single OpenCL platform image to the OpenCL
application. SnuCL-D uses pairs of coupled asynchronous
MPI send and receive calls to implement communication
between different SnuCL-D runtime instances.

Each node may have multiple vendor-specific OpenCL plat-
forms for different accelerators. The SnuCL-D runtime in-
stance controls the OpenCL platforms using the OpenCL
installable client driver (ICD)[22].

3.1 Observations

Commonly used commands in OpenCL host programs
include kernel-execution, device-memory-write (e.g.,
clEnqueueWriteBuffer), device-memory-read (e.g.,
clEnqueueReadBuffer), and device-memory-copy (e.g.,
clEnqueueCopyBuffer) commands.

A device-memory-read command copies the contents of a
buffer from a device to the host memory. To run the host

Host
thread

Command
scheduler

thread

Issuer
thread

Per-device
command-queues

...

Command-
queueing
overhead

Command-
scheduling
overhead

Command-
delivery

overhead

...

Device
(actual)...

Device
(virtual)...

Per-device
ready-queues

...

Vendor-
specific
OpenCL
platform

Host-data-transfer overhead

Device
(actual)

Device
(virtual)

...

...

...

...
...

Figure 4. The organization of the SnuCL-D runtime.

program correctly in SnuCL-D, the host memory in each node
must be kept up-to-date after executing a device-memory-
read command. After a device-memory-read command is
executed on the target actual device in a node Na, the
SnuCL-D runtime instance in Na propagates the data to other
nodes. When the corresponding virtual device-memory-read
command is scheduled by a runtime instance in another node
Nb, Nb receives the contents from Na who owns the actual
device. This makes the host memory in each node be kept
up-to-date after each device-memory-read command. Since
the data read is broadcast to all other nodes from the actual
device, exploiting redundant computation and data replication
is not beneficial to device-memory-read commands. They
introduce inter-node communication that does not occur in
the centralized approach in which only the main memory in
the host node needs to be updated.

However, exploiting redundant computation and data repli-
cation in SnuCL-D is do beneficial to kernel-execution,
device-memory-write, and device-memory-copy commands.
For kernel-execution and device-memory-write commands,
SnuCL-D does not need any inter-node command and data
communication because of RDV while the host node in the
centralized approach needs to send both a command mes-
sage and data to the target node. For device-memory-copy
commands, SnuCL-D directly performs data communication
between the source device and the destination device. How-
ever, the centralized approach needs one more step: the host
node sends control messages to the source and destination
devices. Then, these devices communicate with each other to
transfer the data.

The design of SnuCL-D is based on an observation that
device-memory-read commands are executed much less of-

ten than other commonly-used commands. We show this in
Section 4.3. Consequently, the degree of performance degra-
dation by device-memory-read commands is much less than
that of improvement by other types of commands.

3.2 Organization of the SnuCL-D Runtime

Figure 4 shows the organization of the SnuCL-D runtime in
each node. It also shows the four types of overheads described
in Section 1.1. The runtime basically consists of a sched-
uler thread, an issuer thread, and per-device ready-queues.
A command-queue or ready-queue is implemented with
a non-blocking lock-free single-producer/single-consumer
queue[31, 50] to boost performance. The runtime also main-
tains a list of event objects that are associated with commands.
When an event object is associated with an actual command,
it is called an actual event. Otherwise, it is called a virtual
event. Similarly, when a command-queue is attached to an ac-
tual device, it is called an actual command-queue. Otherwise,
it is called a virtual command-queue.

RDV implementation. To implement RDV, the runtime in-
stance in each node exchanges its own actual device informa-
tion with those in other nodes when the host program invokes
an OpenCL API function for the first time. A unique device
ID is assigned to each device across the cluster. Then, each
runtime instance creates virtual devices in its node. Every run-
time instance knows which device actually resides in which
node.

Command scheduler thread. The role of the command
scheduler is enforcing a consistent execution order on ac-
tual commands across different nodes. It honors the order
enforced by synchronizations in the host program. It also
manages memory consistency. The memory consistency man-
agement mechanism is described in detail in Section 3.3. The
command scheduler continuously visits all the command-
queues in a round-robin manner. It schedules commands in a
command-queue one by one from the head to the tail.

Scheduling actual commands. For an actual command-
queue, the scheduler checks synchronization dependences
for each command. If all events (without regards to they are
actual or virtual) in the event wait list of an actual command
have been set to CL_COMPLETE, the command has no syn-
chronization dependence. If so, the scheduler dequeues the
command and sends it to the corresponding ready-queue.
Otherwise, the scheduler moves on either to the next com-
mand in the same queue or to the next queue depending on
the command-queue type (i.e., in order or out of order). To
determine the execution order of actual commands, the com-
mand scheduler directly executes synchronization commands,
such as command-queue barriers, without sending them to
ready-queues.

Scheduling virtual commands. When the command-queue
is virtual, the scheduler checks for each command C if all
actual events, say e0, e1, · · · , en, in its event wait list have

been set to CL_COMPLETE. If so, the scheduler notifies the
owner runtime of the actual command that corresponds to C
about the completion of e0, e1, · · · , en. After receiving the
completion message, the owner runtime sets to CL_COMPLETE
its virtual events that correspond to e0, e1, · · · , en. Then, C is
dequeued and discarded. Otherwise, the scheduler moves on
either to the next command in the same queue or to the next
queue depending on the command-queue type. An exception
is a virtual device-memory-read command. The scheduler
sends it to the corresponding ready-queue.

Issuer thread. The issuer in the SnuCL-D runtime contin-
uously visits all the ready-queues in a round-robin manner.
When there is a command in a ready-queue, the issuer de-
queues it and processes it one by one. If a dequeued com-
mand is a virtual device-memory-read command, the issuer
receives the data from the node that executes the correspond-
ing actual command. Then, the issuer updates the host main
memory. If the dequeued command is an actual command,
after obtaining the memory object accessed by the command,
the issuer invokes an OpenCL API function provided by the
vendor-specific OpenCL platform to execute the command
or executes it directly. The details of obtaining the memory
objects are described in Section 3.3. After completion of the
actual command, the issuer sets the associated actual event to
CL_COMPLETE.

3.3 Consistency Management

Since there is no shared address space between different
compute devices, and an OpenCL memory object is not
bound to a specific compute device, two compute devices
may have different copies of the same memory object after
executing a command that accesses the memory object. Thus,
the runtime needs to guarantee memory consistency between
the multiple copies of the same memory object. There are two
different sources of inconsistency: simultaneous accesses and
sequential accesses to the same memory object by multiple
commands.

Simultaneous accesses by multiple commands. When the
same set of locations in the memory object is updated by
multiple commands simultaneously, we may choose any
copy as the latest update for the memory object at the next
synchronization point. This conforms to the OpenCL memory
consistency model. However, if they update different sets of
locations in the same memory object, the problem becomes
similar to false sharing in the page-level software shared
virtual memory (SVM) system[5].

To solve this problem, we may use a multiple-writers pro-
tocol that was used in traditional software SVM systems[5].
However, this incurs a significant overhead because of twins
(copies of the original) and computations for diffs (differences
between the twin and a modified memory object). Instead,
SnuCL-D serializes conflicting commands. A conflict occurs

between two unordered commands if they access the same
memory object, and at least one writes to it[30].

When a command C is enqueued by a host API function
prefixed by clEnqueue, the runtime checks in the API
function if there is a conflict between C and any command Ce

that has been enqueued already. If so, the runtime inserts the
event object for Ce in the event wait list of C. Consequently,
the order enforced by the serialization is the enqueueing order
of commands by the host program.

Sequential accesses by multiple commands. Even though
we serialize two conflicting accesses to the same memory
object, we still have the inconsistency problem caused by
sequential accesses to the same memory object by multiple
devices. This is because there may exist multiple different
copies of the same memory object. To solve this problem,
SnuCL-D maintains a latest device list for each memory
object. It contains compute devices that have the latest copy
of the memory object.

OpenCL Nearest Operation
command device
Actual Actual Do nothing (the node that executes the OpenCL

command already has the latest copy).
Virtual Receive the contents from the node who owns the

nearest device.
Virtual Actual Send the contents to the node who executes the

corresponding actual command.
Virtual Do nothing.

Table 2. Consistency Management Command.

When the command scheduler schedules an actual command
C, the scheduler inserts a special management command
in the corresponding ready-queue for each memory object
accessed by C. These management commands are followed
by C. The management command brings the most up-to-
date copy of the memory object by looking for the nearest
device from the latest device list of the memory object. When
C is virtual, the scheduler inserts a management command
in the corresponding ready-queue for each memory object
Mi accessed by C if the nearest device of Mi is actual.
Table 2 describes the operation of a management command
depending on its type and the latest device.

After scheduling an actual or virtual command, the scheduler
updates the latest device list of each memory object accessed
by the command. If the command writes to the memory ob-
ject, the updated list contains only the target device of the
command. SnuCL-D uses a distance-based tie-breaking algo-
rithm that considers both inter-node and intra-node memory
hierarchy when there are more than one device in the latest
device list. For example, the distance between two devices
may be defined by interconnection network latency + PCIe
latency.

Since SnuCL-D pairs an MPI send call with an MPI receive
call to implement the consistency management command, we

may have a mismatched send or receive call if the command
scheduler in each node do not see the same latest device
list for each memory object. To prevent this, SnuCL-D also
treats two unordered commands reading the same memory
object as conflicting commands. Thus, they are ordered by
the enqueueing order of commands in the conflict detection
phase explained above.

Guaranteeing consistency. When we treat the host and
compute devices as threads and each OpenCL memory object
as a shared variable between them, serializing conflicting
commands is analogous to enforcing sequential consistency
for shared-memory parallel programs[28].

Let P be a set of directed edges that represent the program or-
der of shared-variable operations in a multithreaded program,
and let C be a set of bidirectional edges that represent the
conflict relation on the shared-variable operations. A critical
cycle is a cycle in P ∪ C and represents the existence of an
inconsistent execution order of shared-variable operations.
Breaking such a cycle by either enforcing program edges or
orienting conflict edges in the cycle guarantees sequential
consistency[29, 30, 44, 46].

Serializing commands accessing the same memory object in
SnuCL-D is a way of orienting conflict edges. It guarantees
sequential consistency on the accesses of OpenCL memory
objects. Sequential consistency satisfies the OpenCL’s relaxed
memory consistency model.

SnuCL also adopts serializing conflicting commands and
maintaining the latest device list to manage consistency.
However, the distributed version of SnuCL-D significantly
reduces the frequency of inter-node communication. To move
data in SnuCL, the host node should deliver a control message
to each of the source and destination nodes. Then, the source
sends the data to the destination. However, the source and
destination nodes in SnuCL-D directly communicate with
each other to transfer the data without any control message.

3.4 Non-determinacy in Command Scheduling

If there is no synchronization enforced between commands
in the host program, the host program execution instance in
each node may not follow the same command execution order.
As a result, the outcome of an OpenCL application may be
different from what the programmer expects.

Single-threaded host programs. When the host program is
single threaded, solving the non-determinacy problem is rela-
tively easy compared to multithreaded host programs. In addi-
tion, single-threaded host programs are much more common
than multithreaded host programs in reality. SnuCL-D en-
forces the enqueueing order specified by the host program on
device-memory-access commands. It also guarantees having
the same latest device list for the same memory object across
the nodes in SnuCL-D. This is another major difference be-
tween SnuCL and SnuCL-D in consistency management.

Multithreaded host programs. All OpenCL API functions
but clSetKernelArg are thread-safe[22], and OpenCL al-
lows multithreaded host programs. However, unlike single-
threaded host programs, the enqueueing order of commands
is not deterministic in a multithreaded host program.

A solution to this problem is deterministic multithreading[10,
11, 32, 38]. It enables a multithreaded programs to execute
deterministically. This implies that communications between
threads in a multithreaded program occur in the same order
from a run to another run. Thus, we can guarantee the
same enqueueing order of commands for all multithreaded
host program instances in the cluster using deterministic
multithreading.

3.5 Non-determinacy in the Result of a Function Call

To solve the non-determinacy in the result of a function call,
global synchronization between host program instances is
required. SnuCL-D exploits wrapper functions and a root
node. A function that causes a non-deterministic result across
host program instances is implemented as a wrapper. Only a
designated root node (e.g., a node whose MPI rank is zero)
performs the original function. Other nodes receive the result
from the root node in the wrapper if necessary. Synchroniza-
tion between them are implemented in the wrapper.

For example, if there is a srand call to install a seed value
to generate random numbers in the host program, SnuCL-
D implements a wrapper for srand. Each host program
instance invokes this wrapper. The root node executes the
original srand and propagates its result to other nodes in the
wrapper. This makes every node have the same seed value.
Another example is handling file I/Os. File I/O operations also
require synchronization between the host program instances.
Only the root node performs a file-write operation. Other
nodes do nothing. Before performing a file-read operation,
other nodes perform synchronization with the root node.
This synchronization guarantees correctness when the host
program writes to a file and then reads from it.

OpenCL Host API calls clWaitForEvents(num_evs,
ev_wait_list) and clFinish(cmd_q) also need global
synchronization between host program instances. The call
clFinish(cmd_q) makes the host program block and wait
until all commands previously enqueued to cmd_q have com-
pleted. A node who has the actual device to which cmd_q is
attached broadcasts a completion message to other nodes
in SnuCL-D. The call clWaitForEvents(num_events,
event_wait_list) makes the host program wait until all
commands associated to the events in event_wait_list
have completed. Thus, a node who owns each actual event in
event_wait_list broadcasts the completion to other nodes
in SnuCL-D.

3.6 New API Function: clAttachBufferToDevice

To reduce the consistency management overhead in command
scheduling, we propose a new OpenCL host API function:

void clAttachBufferToDevice(cl_mem m, cl_device_id d);

If this function is called, the SnuCL-D runtime assumes that
compute device d always has the latest copy of memory object
m. The runtime does not need to maintain the latest device
list for m and to search the list to find the latest copy. This
API function is useful when a memory object is accessed by
only one device in an OpenCL application. In many OpenCL
applications, a memory object is accessed by only one device.

At the point of the API function call, the runtime copies the
contents of m to d from a device listed in m’s latest device
list. Then, it removes the latest device list of m. From then on,
there will be no latest device list management for m. If there
is no such device, the runtime write zeros to m on d.

If a command C enqueued for another device e (6=d) updates
m, the command scheduler inserts a special command in the
ready-queue for the device e to obtain the contents from
d before it schedules C in the ready-queue. Then, another
special command that sends the updated contents to d follows
C in the ready-queue. Thus, even if a programmer attaches
a memory object to a wrong device (e.g., it is not the only
device that updates m), the SnuCL-D runtime still guarantees
correctness with some performance degradation.

1 ...
2 int main() {
3 ...
4 for(int i = 0; i < ndevs; i++) {
5 d_A[i] = clCreateBuffer(ctxt, ..., size, ...);
6 clAttachBufferToDevice(d_A[i], devs[i]);
7 d_B[i] = clCreateBuffer(ctxt, ..., size, ...);
8 clAttachBufferToDevice(d_B[i], devs[i]);
9 d_C[i] = clCreateBuffer(ctxt, ..., size, ...);

10 clAttachBufferToDevice(d_C[i], devs[i]);
11 }
12 ...
13 }

Figure 5. The OpenCL application in Figure 3 is modified
to use clAttachBufferToDevice.

For example, since each buffer d_A[i] is accessed by only
one device devs[i] in the OpenCL application in Figure 3,
we can add the new API function call for d_A[i] in the
code. The same thing is true for d_B[i] and d_C[i]. The
modification is shown in Figure 5. Lines 39 - 41 in Figure 3
have been changed to lines 5 - 10 in Figure 5.

3.7 Queueing Optimization

A virtual command sometimes does not even need to be
enqueued by the runtime if a memory object accessed
by the command is attached to a compute device by
clAttachBufferToDevice. When the command scheduler
schedules a virtual command, it does not deliver the com-
mand to the issuer in general. However, before discarding it,
the scheduler still needs to process the command to obtain
the information that is used to schedule other commands (e.g.,

the latest device list and event synchronization). If a virtual
command does not contribute to obtaining such information,
it can be dropped without inserting it into a command-queue.
Note that conflict detection occurs in each clEnqueue· · ·
call, not by the command scheduler.

Conditions under which a virtual command does not need to
be enqueued are as follows:

• It does not have any event in its event wait list.
• Each memory object accessed by it is attached to a virtual

device.

If a virtual command meets these conditions, it is discarded
by the runtime in its clEnqueue· · · call. However, a device-
memory-read command (e.g., clEnqueueReadBuffer) al-
ways needs to be enqueued to a command-queue.

The queueing optimization significantly reduces the queueing
overhead in SnuCL-D.

4. Evaluation
In this section, we evaluate SnuCL-D using a large-scale
CPU cluster and a medium-scale GPU cluster. In addition,
we compare SnuCL-D with SnuCL and MPI-Fortran.

4.1 Methodology

The implementation of SnuCL-D is based on SnuCL[23, 24]
and OpenCL 1.2[22]. SnuCL is an open-source OpenCL
framework for clusters and the only centralized framework
that has been evaluated with a large-scale cluster. We compare
SnuCL-D with SnuCL using a microbenchmark. Then, we
show the effectiveness of the proposed techniques. We also
compare SnuCL-D with MPI-Fortran.

Systems used. We use two different clusters: a large-scale
512-node CPU cluster and a medium-scale 36-node GPU
cluster. Their configurations are summarized in Table 3. No
dedicated CPU core to the SnuCL or SnuCL-D runtime exists

Large-scale Medium-scale
CPU cluster GPU cluster

Number of nodes 512 36
CPUs 2×Intel 2.93Ghz 2×Intel 2.0Ghz

per node quad-core Xeon x5570 octa-core Xeon E5-2650
4×AMD

GPUs N/A Radeon HD 7970
per node (2GB global memory

per GPU)
Memory 24GB per node 128GB per node

Operating Red Hat Enterprise Red Hat Enterprise
system Linux 5.3 Linux 6.3

Interconnect Mellanox Infiniband QDR
OpenCL AMD APP SDK v2.9 AMD APP SDK v2.8

MPI Open MPI 1.6.3 Open MPI 1.6.4
C compiler GCC 4.4.6

Fortran compiler GNU Fortran 3.4.6 N/A

Table 3. System Configurations.

Problem size
Large-scale Medium-scale

Application Source CPU cluster GPU cluster
blackscholes PARSEC 64M options 128M options

BinomialOption AMD SDK 1M samples 1M samples
CP Parboil 16K×16K 16K×16K

N-body NVIDIA 2.5M bodies 10M bodies
MatrixMul NVIDIA 16K×16K 10752×10752

EP NPB class E class E
FT NPB class D class C
CG NPB class E class C
MG NPB class E class C
SP NPB class E class D
BT NPB class E class D

Table 4. Applications Used.

in the CPU cluster. The runtime runs concurrently with the
application on CPU cores.

Applications used. We use benchmark applications from
different benchmark suites: the SNU NPB suite[43],
PARSEC[12], NVIDIA SDK[35], AMD[4], and Parboil[45].
Table 4 lists their sources and problem sizes. The host pro-
grams in all the OpenCL applications are single-threaded.

The SNU NPB suite[43] is an OpenCL implementation
of the NAS Parallel Benchmarks (NPB) suite[34]. It pro-
vides OpenCL implementations of NPB applications for
multiple OpenCL compute devices. Some of them contain
OpenCL collective communication extension API calls, such
as clEnqueueAlltoAllBuffer, proposed by SnuCL.

Since original NPB applications are written in Fortran using
MPI, some of them require the number of MPI processes
be a square number (i.e., the square of an integer). Thus,
the corresponding SNU NPB applications require also the
number of OpenCL compute devices be a square number.
The AMD APP SDK v2.9 on the CPU cluster configures all
the CPU cores in a node as a single CPU compute device. To
make the number of devices a square number, we divide a
CPU device into two sub-devices using a standard OpenCL
API function clCreateSubDevices. Thus, we use 32 (256
cores, 64 devices), 128 (1024 cores, 256 devices), and 512
(4096 cores, 1024 devices) nodes of the CPU cluster.

Blackscholes is a multithreaded C application. We manu-
ally translate it to an OpenCL application for multiple devices.
Since BinomialOption, CP, N-body, and MatrixMul are
OpenCL applications originally for a single compute device,
we modify them to work for multiple compute devices by
distributing their workload across the compute devices.

We also modify each OpenCL application to make a differ-
ent version that uses the clAttachBufferToDevice API
function described in Section 3.6.

4.2 Evaluation with a Microbenchmark

To show the effectiveness of our decentralized approach over
the centralized approach (e.g., SnuCL), we run an OpenCL

microbenchmark on the large-scale CPU cluster. Assume that
the cluster has N nodes, and each node has a device Di. There
are N 16-byte buffers (B0 −BN−1) in the microbenchmark,
and it copies the contents of Bi to other buffers Bj (i 6= j)
on each device Di using clEnqueueCopyBuffer in each
iteration. Thus, the total number of device-memory-copy
commands in each iteration is N ∗ (N −1). The total number
of iterations is 100.

Unlike the centralized approach, there is no need to de-
liver control messages to the source and destination nodes
in SnuCL-D when executing the device-memory-copy com-
mand. They know each other already because they are running
the same host program.

0.3

6.1
36.1

346.0

24569.1

0.3

3.2
10.2

41.1

315.2

0

1

10

100

1,000

10,000

8 (64) 32 (256) 64 (512) 128 (1024) 512 (4096)

E
x
e

c
u

ti
o

n
 t
im

e

(s
e

c
o

n
d

s
)

SnuCL SnuCL-D

Figure 6. Comparison between the centralized approach
(SnuCL) and the decentralized approach (SnuCL-D) using a
microbenchmark.

Figure 6 shows the evaluation result. The x-axis shows the
number of nodes, and the number in parentheses represents
the number of CPU cores. The y-axis in logarithmic scale
shows the execution time in seconds. When the number of
nodes is small, the performance of SnuCL-D (the decentral-
ized approach) is similar to that of SnuCL (the centralized
approach). However, for more than 32 nodes (256 cores),
SnuCL-D outperforms SnuCL significantly. SnuCL-D is 78
times faster than SnuCL for 512 nodes with 4096 CPU cores.

The total number of The total number of
clAttachBufferToDevice OpenCL

calls inserted memory objects
blackscholes 7 7

BinomialOption 2 2
CP 2 2

N-body 2 2
MatrixMul 3 3

EP 6 6
FT 17 17
CG 25 25
MG 20 20
SP 37 37
BT 46 46

Table 5. Number of clAttachBufferToDevice Calls.

4.3 Application Characteristics

clAttachBufferToDevice calls. Table 5 shows how many
clAttachBufferToDevice calls are inserted in each appli-
cation. It shows that each memory object is accessed by only
one compute device for all applications. Thus, this type of
memory object accesses is very common in reality.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Write Copy Read Kernel

0%

20%

40%

60%

80%

100%

N
o

rm
a

liz
e

d
 n

u
m

b
e

r
o

f
c
o

m
m

a
n

d
s

Write Copy Read Kernel

Figure 7. Distribution of frequently used OpenCL com-
mands executed in each application for 512 nodes.

Distribution of commands executed. Figure 7 shows the
distribution of frequently used OpenCL commands executed
in each application on 512 nodes. They include device-
memory-write (Write), device-memory-copy (Copy), device-
memory-read (Read), and kernel-execution (Kernel) com-
mands. On average, kernel commands are the most frequently
executed commands (60.6%), and device-memory-read com-
mands takes 13.2%.

We see that kernel execution, device-memory-copy, and
device-memory-write commands (86.8% on average) are ex-
ecuted more frequently than device-memory-read commands
(13.2% on average). As a result, the degree of performance
degradation by the device-memory-read commands is much
less than the degree of performance improvement by other
commands.

4.4 Large-scale CPU Cluster

Figure 8 shows performance comparison between MPI-
Fortran, SnuCL, and SnuCL-D on the large-scale CPU cluster.
The x-axis shows the number of nodes, and the number in
parentheses represents the number of CPU cores. The y-axis
shows the speedup over 256 MPI-Fortran processes running
on 32 nodes (i.e., 256 CPU cores). E-class NPB applications
do not run on less than 32 nodes because of the total mem-
ory size. Thus, we run them on 32, 128, and 512 nodes. An
exception is FT. We use the D-class input for FT because
the E-class input requires more memory space than others.
Since blackscholes, BinomialOption, CP, N-body, and
MatrixMul do not have an MPI-Fortran version, we obtain
their speedup over SnuCL on 32 nodes.

The bars labeled MPI-Fortran and SnuCL show the perfor-
mance of MPI-Fortran and SnuCL, respectively. The bar
labeled SnuCL-D (decentralization only) shows the speedup
of SnuCL-D only with the decentralization technique. The
clAttachBufferToDevice API function and the queueing
optimization technique described in Section 3.7 are not used.
The bar labeled SnuCL-D (decentralization + clAttach-
BufferToDevice) shows the speedup of SnuCL-D with the
decentralization technique and clAttachBufferToDevice
calls in each application. Finally, SnuCL-D represents the
speedup of SnuCL-D with all the proposed techniques. It in-
cludes the queueing optimization technique in addition to the

0

5

10

15

20
3

2
 (

2
5

6
)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (
2

5
6

)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (
2

5
6

)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (
2

5
6

)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (
2

5
6

)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (

2
5

6
)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (

2
5

6
)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (

2
5

6
)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (

2
5

6
)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (

2
5

6
)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

3
2

 (

2
5

6
)

1
2

8
 (

1
0

2
4

)

5
1

2
 (

4
0

9
6

)

blackscholes BinomialOption CP N-body MatrixMul EP.E FT.D CG.E MG.E SP.E BT.E

Sp
ee

d
u

p

MPI-Fortran SnuCL SnuCL-D (decentralization only) SnuCL-D (decentralization + clAttachBufferToDevice) SnuCL-D

Figure 8. Comparison between MPI-Fortran, SnuCL, and SnuCL-D on the large-scale CPU cluster (speedup over 256 MPI-
Fortran processes on 32 nodes with 256 CPU cores).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32 128 512 32 128 512 32 128 512 32 128 512 32 128 512 32 128 512 32 128 512 32 128 512 32 128 512 32 128 512 32 128 512

blackscholes Binomial-
Option

CP N-body MatrixMul EP.E FT.D CG.E MG.E SP.E BT.E

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

 Write Copy Read Kernel Kernel+Memory Overlap Idle

Figure 9. Execution time breakdown of each application on the large-scale CPU cluster. For each cluster configuration, there are
four bars that correspond to SnuCL, SnuCL-D (decentralization only), SnuCL-D (decentralization + clAttachBufferToDevice),
and SnuCL-D from left to right in turn. The bars are normalized to SnuCL.

decentralization technique and clAttachBufferToDevice
calls.

Figure 9 shows the execution time breakdown for different
OpenCL commands on the large-scale CPU cluster. We mea-
sure the accumulated execution time of each type of com-
mands executed on the device with its ID equal to 0 for
32-, 128-, and 512-node configurations. We insert instru-
mentation code around clEnqueue· · · API calls, and the
execution time includes the command-queueing, command-
scheduling, command-delivery, and host-data-transfer over-
heads. The commands include device-memory-write (Write),
device-memory-copy (Copy), device-memory-read (Read),
and kernel-execution (Kernel) commands. Kernel+Memory
Overlap is the case where a kernel command and device-
memory (write/copy/read) commands are executed simulta-
neously on the device. Idle is the idle time of the device. For
each cluster configuration, there are four bars that correspond

to SnuCL, SnuCL-D (decentralization only), SnuCL-D (de-
centralization + clAttachBufferToDevice), and SnuCL-D
from left to right in turn. The bars are normalized to SnuCL.

Comparison with SnuCL. The execution time of
blackscholes, BinomialOption, and CP is dominated by
the execution time of their kernels (Figure 9). The perfor-
mance gap in Figure 8 between SnuCL and SnuCL-D is due
to the command delivery overhead. Since the host node al-
ways delivers commands to compute devices in SnuCL, the
delivery overhead increases as the number of nodes increases.
Thus, SnuCL-D scales better than SnuCL.

For N-body, SnuCL with 512 nodes is noticeably slow com-
pared with SnuCL-D. The gap for MatrixMul is dramatic
for 128 and 512 nodes. For these applications, the portion
of the execution time taken by write commands in SnuCL
becomes bigger as the number of nodes increases. For a write
command, both control messages and data should be deliv-

of nodes Device black- Binomial- CP N-body Matrix- EP.E FT.D CG.E MG.E SP.E BT.E
(# of cores) scholes Option Mul

32 All 6,848 6,528 2,688 256 256 320 17,728 2,353,153 2,001,680 4,623,168 1,625,856
(256) V 6,634 6,324 2,604 248 248 310 17,174 2,279,616 1,939,408 4,478,694 1,575,048

VQO 0 0 0 0 0 0 0 5,252 18,918 48,108 24,108
128 All 27,392 26,112 10,752 1,024 1,024 1,280 70,912 9,412,609 7,519,568 36,977,920 12,672,000

(1024) V 27,178 25,908 10,668 1,016 1,016 1,270 70,358 9,339,072 7,462,396 36,689,030 12,573,000
VQO 0 0 0 0 0 0 0 5,252 17,082 96,204 48,204

512 All 109,568 104,448 43,008 4,096 4,096 5,120 283,648 37,650,433 28,381,808 295,793,664 100,036,608
(4096) V 109,354 104,244 42,924 4,088 4,088 5,110 283,094 37,576,896 28,329,685 295,215,942 99,841,224

VQO 0 0 0 0 0 0 0 5,252 15,348 192,396 96,396

Table 6. Number of Commands Enqueued.

ered to the device in SnuCL. Since array Pos in N-body and
matrix B in MatrixMul (it computes C = A×B) need to be
transferred to every node from the host node, the host-data-
transfer overhead increases as the number of nodes increases
in SnuCL. On the other hand, every node in SnuCL-D al-
ready has the data. As a result, the performance gap between
SnuCL and SnuCL-D becomes bigger as the number of nodes
increases.

EP is an embarrassingly parallel application, and it spends
a large portion of its execution time on kernel computa-
tion. The reason for the performance gap between SnuCL
and SnuCL-D is similar to the case of blackscholes,
BinomialOption, and CP.

For FT, the execution time of device-memory-copy com-
mands becomes dominant as the number of nodes increases.
Since clEnqueueAlltoAllBuffer commands in FT make
the host deliver a point-to-point communication message to
each compute node in SnuCL, the command delivery over-
head becomes much more severe as the number of nodes
increases. This is the reason why the performance gap be-
tween SnuCL and SnuCL-D becomes bigger as the number
of nodes increases.

Table 6 shows the total number of commands enqueued in
each node (All). V stands for the number of virtual com-
mands executed, and VQO stands for the number of virtual
commands executed after queueing optimization.

As shown in Table 6, blackscholes, BinomialOption,
CP, N-body, MatrixMul, EP, and FT execute a relatively
small number of commands. This implies that the command
queueing, scheduling, and delivery overheads described in
Section 1.1 are not significant for these applications. Thus,
SnuCL-D (decentralization + clAttachBufferToDevice) and
SnuCL-D do not improve performance that much compared
with SnuCL-D (decentralization only). However, all the
decentralized versions of SnuCL-D are faster than SnuCL.
The larger the number of nodes, the bigger the performance
gap.

CG, MG, SP, and BT execute a relatively large number of com-
mands (Table 6). In addition, for these applications, Idle in
SnuCL in Figure 9 becomes dominant as the number of nodes
increases. This implies that the four types of overheads are

significant. They become more significant as the number of
nodes increases in SnuCL. On the other hand, the overheads
are less significant in SnuCL-D. As a result, SnuCL-D scales
much better than SnuCL.

clAttachBufferToDevice and queueing optimization.
SnuCL-D (decentralization + clAttachBufferToDevice)
and SnuCL-D do improve performance significantly for CG,
MG, SP, and BT compared with SnuCL-D (decentralization
only). Using clAttachBufferToDevice calls (SnuCL-D
(decentralization + clAttachBufferToDevice)) outperforms
SnuCL-D (decentralization only) because the scheduling
overhead is significantly reduced.

Queueing optimization makes SnuCL-D outperform SnuCL-
D (decentralization + clAttachBufferToDevice) for CG, MG,
SP, and BT. It reduces the queueing overhead and further
reduces the scheduling overhead. We see that the performance
improvement becomes more significant as the number of
nodes increases.

Table 6 shows the total number of virtual commands executed
after queueing optimization (VQO). We see that it is much
smaller than that of the case without queueing optimization
in each application. Note that the number of commands that
do not need to be enqueued increases as the number of nodes
increases because the number of virtual devices increases in
each node.

Speedup of SnuCL-D over SnuCL. Table 7 summarizes the
speedup of SnuCL-D over SnuCL. Basically, the larger the
number of nodes, the bigger the performance gap between
SnuCL-D and SnuCL. For CG, MG, SP, and BT, the gap is
much bigger because they execute a large number of com-
mands. This implies that the command-queueing, command-
scheduling, command-delivery, and host-data-transfer over-
heads are relatively large in these applications. Consequently,
inserting clAttachBufferToDevice and applying queue-
ing optimization are more effective for them. For 512 nodes,
SnuCL-D is more than 20 times faster than SnuCL. Espe-
cially, SnuCL-D is 45.31 times faster than SnuCL for SP.

Comparison with MPI-Fortran. As shown in Figure 8, the
performance of SnuCL-D is comparable to that of MPI-
Fortran up to 128 nodes for FT. However, MPI-Fortran per-
forms significantly worse than SnuCL-D for 512 nodes for FT.

of nodes (# of cores) blackscholes BinomialOption CP N-body MatrixMul EP.E FT.D CG.E MG.E SP.E BT.E
32 (256) 1.23 1.12 1.05 1.20 1.33 1.29 1.24 1.32 1.93 1.34 2.00

128 (1024) 1.23 1.18 1.06 1.20 2.84 1.36 3.74 2.90 10.68 3.81 2.10
512 (4096) 1.32 1.20 1.27 1.68 14.87 1.43 9.03 24.15 28.93 45.31 32.85

Table 7. Speedup of SnuCL-D over SnuCL on the Large-scale CPU Cluster.

Since there are 4096 MPI-Fortran processes for 512 nodes,
which is bigger than the number of elements in the z-axis,
MPI-Fortran performs one more level of MPI_Alltoall
communication than SnuCL-D.

For CG, MG, SP, and BT, SnuCL-D performs slightly better
than MPI-Fortran up to 128 nodes. These applications exe-
cute a large number of clEnqueueCopyBuffer. Since the
number of MPI-Fortran processes is four times larger than the
number of OpenCL devices in SnuCL-D, the amount of com-
munication in MPI-Fortran is bigger than that in SnuCL-D.
This is the reason why SnuCL-D outperforms MPI-Fortran
up to 128 nodes. For 512 nodes, MPI-Fortran performs better
than SnuCL-D because the amount of work in the OpenCL
kernel for 512 nodes is much smaller than that in the kernel
for 32 or 128 nodes. In other words, the execution time of a
kernel is not big enough to amortize the inherent overhead
of the vendor-specific OpenCL runtime used in SnuCL-D.
On closer inspection, we find that all kernels in CG, MG, SP,
and BT have an execution time less than 100 milli-seconds
for 512 nodes. Since the largest input class allowed for the
NPB applications is class E, we cannot increase the input size
further to increase the amount of work. We expect that the
performance of SnuCL-D for 512 nodes is comparable to that
of MPI-Fortran for an input size bigger than class E.

Weak scalability. Strong scalability is useful to estimate the
runtime overhead on each processor because the overhead
takes more portion as the number of processors increases
when the input size of an application is fixed. To see weak
scalability, the input size per processor needs to be fixed
while the number of processors varies. It is useful to estimate
the communication overhead between processors. As the
number of processors increases, the communication overhead
becomes dominant in the execution time. So far, we have
seen the strong scalability of SnuCL-D and SnuCL.

Since it is almost impossible to modify the input sets of the
NPB applications to make the amount of work proportional

-10%

10%

30%

50%

70%

90%

110%

130%

1
 (

8
)

2
 (

1
6

)
8

 (
6

4
)

3
2

 (
2

5
6

)
1

2
8

 (
1

0
2

4
)

5
1

2
 (

4
0

9
6

)

1
 (

8
)

2
 (

1
6

)
8

 (
6

4
)

3
2

 (
2

5
6

)
1

2
8

 (
1

0
2

4
)

5
1

2
 (

4
0

9
6

)

1
 (

8
)

2
 (

1
6

)
8

 (
6

4
)

3
2

 (
2

5
6

)
1

2
8

 (
1

0
2

4
)

5
1

2
 (

4
0

9
6

)

1
 (

8
)

2
 (

1
6

)
8

 (
6

4
)

3
2

 (
2

5
6

)
1

2
8

 (
1

0
2

4
)

5
1

2
 (

4
0

9
6

)

1
 (

8
)

2
 (

1
6

)
8

 (
6

4
)

3
2

 (
2

5
6

)
1

2
8

 (
1

0
2

4
)

5
1

2
 (

4
0

9
6

)

blackscholes BinomialOption CP N-body MatrixMul

Pa
ra

lle
l e

ff
ic

ie
n

cy

SnuCL SnuCL-D

Figure 10. Weak scalability of non-NPB applications.

to the number of processors, we show only the experimental
results of the non-NPB applications in Figure 10 to see their
weak scalability. The x-axis shows the number of nodes
for each application. The y-axis shows parallel efficiency
E over one node for each of SnuCL and SnuCL-D. When
S is the speedup on N nodes over one node, E is given by
E = S/N × 100%. If an application is completely weakly
scalable, E is 100%.

For blackscholes and CP, SnuCL-D is comparable to
SnuCL because kernel executions dominate their execu-
tion time. For BinomialOption, N-body, and MatrixMul,
SnuCL-D scales better than SnuCL. As the number of nodes
grows, the efficiency gap between SnuCL and SnuCL-D
grows larger. This implies that the communication overhead
(the host-data-transfer overhead for N-body and MatrixMul)
of SnuCL is more severe than that of SnuCL-D.

Since the time complexity of MatrixMul is O(N3), the
amount of computation grows faster than that of data (O(N2)).
That is, the amount of computation is not linearly proportional
to the input data size in MatrixMul. Consequently, making
the input data size be linearly proportional to the number of
devices does not keep the per-device amount of work constant.
For example, assume N = 1536 when we use just one device.
To keep the per-device amount of work constant, say for 16
devices, N must be 3

√
15363 ∗ 16 = 3870. This implies that

the per-device data size becomes smaller when we increase
the number of devices to see weak scalability. The effect of
caches on the smaller data explains the superlinear speedup
of SnuCL-D at 32 and 128 nodes. However, at 512 nodes, the
communication overhead becomes bigger than the benefit of
the smaller data size resulting in decreased efficiency.

4.5 Medium-scale GPU Cluster

Figure 11 shows the performance comparison of SnuCL
and SnuCL-D on the medium-scale GPU cluster. The x-axis
shows the number of nodes and the y-axis shows the speedup
of SnuCL-D. Numbers in the parentheses represent numbers
of GPU devices. Because of the memory requirement of each
application, the speedup is obtained over SnuCL with 8 GPU
devices on 2 nodes for all application except SP and BT. Note
that SP and BT require the number of devices be a square
number. The speedups of SP and BT are obtained over SnuCL
with 16 GPU devices and 36 GPU devices, respectively.

The performance differences between SnuCL and SnuCL-
D in blackscholes, BinomialOption, CP, N-body,
MatrixMul, and EP are similar to those appeared in the ex-
periment on the large-scale CPU cluster.

0

2

4

6

8

10

12

14

16
2

 (
8

)

4
 (

1
6

)

8
 (

3
2

)

1
6

 (
6

4
)

3
2

 (
1

2
8

)

2
 (

8
)

4
 (

1
6

)

8
 (

3
2

)

1
6

 (
6

4
)

3
2

 (
1

2
8

)

2
 (

8
)

4
 (

1
6

)

8
 (

3
2

)

1
6

 (
6

4
)

3
2

 (
1

2
8

)

2
 (

8
)

4
 (

1
6

)

8
 (

3
2

)

1
6

 (
6

4
)

3
2

 (
1

2
8

)

2
 (

8
)

4
 (

1
6

)

8
 (

3
2

)

1
6

 (
6

4
)

3
2

 (
1

2
8

)

2
 (

8
)

4
 (

1
6

)

8
 (

3
2

)

1
6

 (
6

4
)

3
2

 (
1

2
8

)

2
 (

8
)

4
 (

1
6

)

8
 (

3
2

)

1
6

 (
6

4
)

3
2

 (
1

2
8

)

2
 (

8
)

4
 (

1
6

)

8
 (

3
2

)

1
6

 (
6

4
)

3
2

 (
1

2
8

)

2
 (

8
)

4
 (

1
6

)

8
 (

3
2

)

1
6

 (
6

4
)

3
2

 (
1

2
8

)

4
 (

1
6

)

9
 (

3
6

)

1
6

 (
6

4
)

3
6

 (
1

4
4

)

9
 (

3
6

)

1
6

 (
6

4
)

3
6

 (
1

4
4

)

blackscholes BinomialOption CP N-body MatrixMul EP.E FT.C CG.C MG.C SP.D BT.D

Sp
ee

d
u

p
SnuCL SnuCL-D (decentralization only) SnuCL-D (decentralization + clAttachBufferToDevice) SnuCL-D

Figure 11. Comparison between SnuCL and SnuCL-D on the medium-scale GPU cluster.

Note that the host-data-transfer overhead of a GPU device
is bigger than that of a CPU device in SnuCL (the host→ a
compute node→ a GPU). Thus, the performance gap between
SnuCL and SnuCL-D is observed even with a relatively small
number of nodes compared to the large-scale CPU cluster.

Unlike the experimental result on the large-scale CPU cluster,
SnuCL-D does not scale well for FT, CG, MG, and SP. The rea-
son is the relatively small input size. The total amount of work
in each kernel is too small to amortize the vendor-specific
OpenCL runtime overhead. In addition, the computing power
of a GPU is much bigger than that of a CPU. Since the total
amount of device memory in a GPU is limited, we cannot
increase the input size further.

SnuCL-D performs better than SnuCL especially for a large
number of nodes. Since CG, MG, SP, and BT execute a large
number of commands, the command-queueing and command-
scheduling overheads in SnuCL are more significant than
those of SnuCL-D.

5. Related Work
There have been many studies performed to enable OpenCL
applications to run on a cluster as whole[3, 6, 14, 21,
23, 25, 47, 49]. In dOpenCL[21], the client executes the
OpenCL host program while servers provide accesses to
their devices over the network. clOpenCL[3] provides
wrapper functions for OpenCL host API functions, which
call vendor-specific OpenCL host API functions. It uses
Open-MX as a communication library. Hybrid OpenCL[6]
is based on the FOXC OpenCL runtime and includes a
network layer to support communication between nodes.
There are several open-source projects: SocketCL[14],
CLara[25], DistributedCL[47], CLuMPI[49], and SnuCL[23].
SnuCL proposes also collective communication extensions
to OpenCL to boost performance.

rCUDA[16, 39, 40] proposes a CUDA framework that
shares GPUs in a cluster to save energy consumption. DS-
CUDA[37] is a GPU virtualization tool to use GPUs located
in different nodes. DS-CUDA also supports redundant com-
putations to increase reliability.

The aforementioned approaches all have a centralized host
node that coordinates computations performed by other nodes
in the cluster. Thus, the host node may become a performance
bottleneck. All the previous approaches but SnuCL evaluate
their frameworks with a small-scale cluster.

Some studies propose different interfaces to exploit accelera-
tors in a cluster. libWater[18] proposes an SQL-like program-
ming model to simplify the management of a large number
of OpenCL devices available in a cluster. MGP[9] provides
an OpenMP-like API layer that exploits the MOSIX virtual
OpenCL layer to execute programs on a heterogeneous cluster.
Charm++[1] is an object-based message-passing program-
ming model. It is also extended to support heterogeneous
clusters and to provide load balancing[27].

StarPU[7] is a task programming library for heterogeneous
architectures. StarPU-MPI[8] extends StarPU with MPI. It
exploits the task-based programming paradigm of StarPU for
GPU clusters. OmpSs[17] is another task-based programming
model based on OpenMP. It is also extended with MPI to
exploit GPU clusters[13]. APC+[19] is yet another task-based
programming model for GPU clusters with load-balancing
support via work stealing.

StarPU and OmpSs are different from the OpenCL program-
ming model in expressing the execution order of tasks. They
ask programmers to specify tasks and data accessed by each
task. Based on the information provided by the programmer,
the runtime builds a task dependence graph and execute each
task by checking its data dependences in the task dependence
graph. On the other hand, the execution order between com-
mands in OpenCL are enforced by event synchronizations

that are explicitly specified by the programmer if necessary.
The OpenCL runtime does not build a data dependence graph
between commands.

The redundant host computation used in SnuCL-D introduce
non-determinacy in command scheduling across different
nodes. SnuCL-D implements a solution to single-threaded
OpenCL host programs. Deterministic multithreading[10, 11,
32, 38] is a solution to multithreaded OpenCL host programs
to remove such non-determinacy.

Kendo[38] is a software-only deterministic multithreading
technique for data-race-free programs. Grace[11] is a deter-
ministic multithreading runtime system for fork-join based
C/C++ programs. Both approaches have a limitation that ar-
bitrary multithreaded programs cannot be executed determin-
istically. CoreDet[10] is a combination of a fully automatic
compiler and a runtime system for deterministic execution of
arbitrary C/C++ multithreaded programs. DTHREADS[32]
is a deterministic replacement of the pthreads library for
arbitrary C/C++ programs.

6. Conclusions
In this paper, we propose a scalable and distributed OpenCL
framework called SnuCL-D for large-scale clusters. SnuCL-
D overcomes the performance bottleneck incurred by four
different types of overheads in previous centralized ap-
proaches, namely command-queueing, command-scheduling,
command-delivery, and host-data-transfer overheads.

The experimental results show that SnuCL-D scales much
better than SnuCL for applications that execute a large
number of commands. SnuCL-D is more than 20 times faster
than SnuCL on 512 nodes for these applications. They also
indicates that SnuCL-D and MPI-Fortran are comparable in
performance for most of the applications up to 128 nodes. For
512 nodes, MPI-Fortran outperforms SnuCL-D because the
amount of work in an OpenCL kernel is too small to amortize
the inherent overhead of the vendor-specific OpenCL runtime.
We expect that SnuCL-D and MPI-Fortran are comparable
in performance for more than 128 nodes with much bigger
input sizes.

SnuCL-D efficiently and transparently extends the OpenCL
programming model to clusters. Neither modifying the origi-
nal code nor using any communication library is necessary to
use SnuCL-D. An OpenCL application written for multiple
devices can be executed efficiently on a large-scale cluster as
a whole. The source code of SnuCL-D is publicly available
at the URL http://aces.snu.ac.kr.

Acknowledgments
We would like to thank the anonymous reviewers for their
valuable comments and suggestions. We would also like
to thank Prof. Adrian Sampson for shepherding the pa-
per and providing many helpful feedbacks. This work was

supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIP)
(No. 2013R1A3A2003664). ICT at Seoul National Uni-
versity provided research facilities for this study. When
this work was done, Junghyun Kim was a Ph.D. student at
Seoul National University. He is currently with Samsung
Electronics Co., Ltd., Korea. His current email address is
jh0822.kim@samsung.com. A part of this work has been
done when Jungwon Kim was a Ph.D. student at Seoul Na-
tional University. He is currently with Future Technologies
Group at Oak Ridge National Laboratory, USA. His current
email address is kimj@ornl.gov.

References
[1] Charm++. Website. http://charm.cs.uiuc.edu/.

[2] G. Aloisio and S. Fiore. Towards Exascale Distributed Data Manage-
ment. International Journal of High Performance Computing Applica-
tions, 23(4):398–400, 2009.

[3] A. Alves, J. Rufino, A. Pina, and L. P. Santos. clOpenCL - Supporting
Distributed Heterogeneous Computing in HPC Cluster. In Euro-Par
2012: Parallel Processing Workshops, Revised Selected Papers, pages
112–122. Springer-Verlag, Berlin, Heidelberg, 2013.

[4] AMD. AMD APP SDK. Website, January 2014. http:
//developer.amd.com/tools-and-sdks/opencl-zone/
amd-accelerated-parallel-processing-app-sdk/.

[5] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel. TreadMarks: Shared Memory Computing
on Networks of Workstations. Computer, 29:18–28, February 1996.

[6] R. Aoki, S. Oikawa, R. Tsuchiyama, and T. Nakamura. Hybrid OpenCL:
Connecting Different OpenCL Implementations over Network. In
Proceedings of the 10th IEEE International Conference on Computer
and Information Technology, pages 2729–2735, Washington, DC, USA,
2010. IEEE Computer Society.

[7] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: a
Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures. Concurrency and Computation: Practice and Experience,
23(2):187–198, 2011.

[8] C. Augonnet, O. Aumage, N. Furmento, S. Thibault, and R. Namyst.
StarPU-MPI: Task Programming over Clusters of Machines Enhanced
with Accelerators. Research Report RR-8538, May 2014.

[9] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh. A Package for OpenCL
based Heterogeneous Computing on Clusters with Many GPU Devices.
In Proceedings of 2010 IEEE International Conference on Cluster
Computing Workshops and Posters, pages 1–7, September 2010.

[10] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: A Compiler and Runtime System for Deterministic Multithreaded
Execution. In Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XV, pages 53–64, 2010.

[11] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe Multithreaded
Programming for C/C++. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’09, pages 81–96. ACM, 2009.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’08, pages 72–81. ACM, 2008.

[13] J. Bueno, J. Planas, A. Duran, R. Badia, X. Martorell, E. Ayguade, and
J. Labarta. Productive Programming of GPU Clusters with OmpSs.
In Proceedings of the 26th IEEE International Parallel Distributed
Processing Symposium, IPDPS ’12, pages 557–568, May 2012.

[14] Casten. SocketCL. Website. http://sourceforge.net/
projects/socketcl.

http://aces.snu.ac.kr
http://charm.cs.uiuc.edu/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://sourceforge.net/projects/socketcl
http://sourceforge.net/projects/socketcl

[15] F. Darema, D. A. George, N. V. A., and G. F. Pfister. A Single-program-
multiple-data Computational Model for EPEX/FORTRAN. Parallel
Computing, 7(1):11–24, April 1988.

[16] J. Duato, A. Pena, F. Silla, R. Mayo, and E. Quintana-Ortì. rCUDA:
Reducing the number of GPU-based accelerators in high performance
clusters. In Proceedigns of International Conference on High Perfor-
mance Computing and Simulation, HPCS ’10, pages 224–231, June
2010.

[17] A. Duran, E. Ayguade, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas. OmpSs: A Proposal for Programming Heteroge-
neous Multi-core Architectures. Parallel Processing Letters, 21(02):
173–193, 2011.

[18] I. Grasso, S. Pellegrini, B. Cosenza, and T. Fahringer. LibWater:
Heterogeneous Distributed Computing Made Easy. In Proceedings of
the 27th ACM International Conference on Supercomputing, ICS ’13,
pages 161–172, 2013.

[19] T. D. Hartley, E. Saule, and Ümit V. Çatalyürek. Improving Perfor-
mance of Adaptive Component-based Dataflow Middleware. Parallel
Computing, 38(6–7):289–309, 2012.

[20] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance
Code Generation for Stencil Computations on GPU Architectures. In
Proceedings of the 26th ACM International Conference on Supercom-
puting, ICS ’12, pages 311–320, 2012.

[21] P. Kegel, M. Steuwer, and S. Gorlatch. dOpenCL: Towards a Uniform
Programming Approach for Distributed Heterogeneous Multi-/Many-
Core Systems. In Proceedings of the 26th IEEE International Parallel
and Distributed Processing Symposium Workshops PhD Forum, pages
174–186, May 2012.

[22] Khronos Group. OpenCL 1.2 Specification. Khronos Group, November
2012. http://www.khronos.org/registry/cl/sdk/1.2/docs/
man/xhtml/.

[23] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: An OpenCL
Framework for Heterogeneous CPU/GPU Clusters. In Proceedings of
the 26th ACM International Conference on Supercomputing, ICS ’12,
pages 341–352, 2012.

[24] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. OpenCL as a
Programming Model for GPU Clusters. In Languages and Compilers
for Parallel Computing: 24th International Workshop, LCPC 2011,
Fort Collins, CO, USA, September 8-10, 2011. Revised Selected Papers,
LNCS 7146, pages 233–248. Springer-Verlag, Berlin, Heidelberg,
2013.

[25] B. König. CLara - OpenCL Across the Net. Website. http:
//sourceforge.net/projects/clara.

[26] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan. Effective Automatic Parallelization
of Stencil Computations. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’07, pages 235–244, 2007.

[27] D. M. Kunzman and L. V. Kalé. Programming Heterogeneous Clus-
ters with Accelerators Using Object-Based Programming. Scientific
Programming, 19(1):47–62, 2011.

[28] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Comput., 28(9):690–
691, September 1979.

[29] J. Lee and D. A. Padua. Hiding Relaxed Memory Consistency with
Compilers. In Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques, PACT ’00, pages
111–122, October 2000.

[30] J. Lee, D. A. Padua, and S. P. Midkiff. Basic Compiler Algorithms for
Parallel Programs. In Proceedings of the Seventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
PPoPP ’99, pages 1–12, 1999.

[31] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim, and S. Han. FaCSim:
A Fast and Cycle-Accurate Architecture Simulator for Embedded
Systems. In Proceedings of the ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems,
LCTES ’08, pages 89–99, June 2008.

[32] T. Liu, C. Curtsinger, and E. D. Berger. DTHREADS: Efficient
Deterministic Multithreading. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11, 2011.

[33] MPI Forum. MPI: A Message Passing Interface Standard. Version 3.
Website, 2012. http://www.mpi-forum.org.

[34] NASA Advanced Supercomputing Division. NAS Parallel Benchmarks
version 3.3. Website. http://www.nas.nasa.gov/Resources/
Software/npb.html.

[35] NVIDIA. NVIDIA CUDA Toolkit 4.0. Website. http://developer.
nvidia.com/cuda-toolkit-40.

[36] NVIDIA. CUDA Zone. Website, January 2014. http://www.nvidia.
com/object/cuda_home_new.html.

[37] M. Oikawa, A. Kawai, K. Nomura, K. Yasuoka, K. Yoshikawa, and
T. Narumi. DS-CUDA: A Middleware to Use Many GPUs in the
Cloud Environment. In Proceedings of 2012 SC Companion: High
Performance Computing, Networking, Storage and Analysis, pages
1207–1214, Nov 2012.

[38] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient
Deterministic Multithreading in Software. In Proceedings of the 14th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIV, pages 97–108, 2009.

[39] A. J. Peña, C. Reaño, F. Silla, R. Mayo, E. S. Quintana-Ortí, and
J. Duato. A Complete and Efficient CUDA-sharing Solution for HPC
Clusters. Parallel Computing, 40(10):574–588, 2014. ISSN 0167-8191.

[40] C. Reaño, A. Peña, F. Silla, J. Duato, R. Mayo, and E. Quintana-Ortí.
CU2rCU: Towards the Complete rCUDA Remote GPU Virtualization
and Sharing Solution. In Proceedings of the 19th International
Conference on High Performance Computing, HiPC ’12, pages 1–10,
December 2012.

[41] D. A. Reed and J. Dongarra. Exascale Computing and Big Data.
Communications of the ACM, 58(7):56–68, July 2015.

[42] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-Z. Ueng, S. S.
Baghsorkhi, and W.-M. W. Hwu. Program Optimization Carving for
GPU Computing. Journal of Parallel and Distributed Computing, 68
(10):1389–1401, 2008.

[43] S. Seo, G. Jo, and J. Lee. Performance Characterization of the NAS
Parallel Benchmarks in OpenCL. In Proceedings of 2011 IEEE
International Symposium on Workload Characterization, IISWC ’11,
pages 137–148, 2011.

[44] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel
Programs That Share Memory. ACM Trans. Program. Lang. Syst., 10
(2):282–312, April 1988.

[45] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, and W.-M. W. Liu, Geng Danieland Hwu. Parboil: A Re-
vised Benchmark Suite for Scientific and Commercial Throughput Com-
puting. Technical report, University of Illinois at Urbana-Champaign,
March 2012. http://impact.crhc.illinois.edu/Parboil/parboil.aspx.

[46] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. Padua.
Compiler Techniques for High Performance Sequentially Consistent
Java Programs. In Proceedings of the Tenth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’05, pages
2–13, 2005.

[47] A. Tupinamba. DistributedCL. Website. https://github.com/
andrelrt/distributedcl.

[48] O. Wolfson, S. Jajodia, and Y. Huang. An Adaptive Data Replication
Algorithm. ACM Transactions on Database Systems, 22(2):255–314,
June 1997.

[49] A. Woodland. CLuMPI (OpenCL under MPI). Website. http:
//sourceforge.net/projects/clumpi.

[50] J. Zhang, J. Lee, and P. K. McKinley. Optimizing the Java Pipe I/O
Stream Library for Performance. In Languages and Compilers for
Parallel Computing: 15th Workshop, LCPC 2002, College Park, MD,
USA, July 2002, Revised Papers, LNCS 2481, pages 233–248. Springer-
Verlag, Berlin, Heidelberg, 2005.

http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
http://sourceforge.net/projects/clara
http://sourceforge.net/projects/clara
http://www.mpi-forum.org
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
http://developer.nvidia.com/cuda-toolkit-40
http://developer.nvidia.com/cuda-toolkit-40
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://github.com/andrelrt/distributedcl
https://github.com/andrelrt/distributedcl
http://sourceforge.net/projects/clumpi
http://sourceforge.net/projects/clumpi

	Introduction
	Problems of Previous Approaches
	Proposed Techniques

	Programming Models
	OpenCL Programming Model
	Sample OpenCL Application
	SnuCL-D Programming Model

	Design and Implementation of SnuCL-D
	Observations
	Organization of the SnuCL-D Runtime
	Consistency Management
	Non-determinacy in Command Scheduling
	Non-determinacy in the Result of a Function Call
	New API Function: clAttachBufferToDevice
	Queueing Optimization

	Evaluation
	Methodology
	Evaluation with a Microbenchmark
	Application Characteristics
	Large-scale CPU Cluster
	Medium-scale GPU Cluster

	Related Work
	Conclusions

