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55 1. Introduction needed [1,2]. Globally, liquid fuel production in 2008 was 86 mil-
lion barrels per day and is predicted to reach 112 million barrels
56 Economically viable and ecologically sustainable renewable per day by 2035 [3]. Biofuel production is predicted to triple over
57 energy sources that meet human energy consumption rates are this period, yet its contribution to the liquid fuel inventory is pro-
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jected to be minor if limited to existing methods of biofuel produc-
tion (1.8% in 2008 and 4.2% by 2035) [3]. Biofuel production
technologies that rely on well understood biological and chemical
principles and support strategies that can be rapidly deployed have
the potential to impact biofuel markets in the near-term when the
environmental benefits are most critically needed [2].

Biodiesel is currently the only commercially available diesel
oxygenate made from renewable carbon sources. While there are
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many advantages to biodiesel, it also has several drawbacks includ-
ing plant and animal based biodiesel production is limited by envi-
ronmental sustainability issues, algae based biodiesel production is
limited by production cost, high cloud point temperatures and
increased nitrogen oxides (NOx) emissions result in technical lim-
itations of biodiesel [4]. Other potential diesel oxygenates under
investigation include alcohols, ethers, acetone, and emulsions with
water [5-7]. However, practical concerns such as corrosion and
low flash point will likely limit the commercial viability of low
molecular weight oxygenates [8].

The purposes of the effort reported here were to introduce ethyl
3-ethoxybutyrate (EEB) as a novel, renewable diesel oxygenate and
to show a potential pathway of EEB production. This and another
article are the first reports of using EEB as a fuel [9]. Prior studies
of EEB were limited to its synthesis and stereochemistry [10-13];
however, methyl 3-hydroxybutyrate, which originates from the
same precursor (poly-3-hydroxybutyrate (PHB)) as EEB, was inves-
tigated as a biofuel additive [ 14,15]. EEB can be produced from PHB
under acidic conditions after esterification with ethanol via
ethoxylation of ethyl 3-hydroxybutyrate [16] or synthesized under
caustic conditions via addition of ethanol to ethyl crotonate
(produced during esterification of PHB via dehydration of
3-hydroxybutyrate) [10].

PHB and the related poly-3-hydroxyalkanoate (PHA) are pro-
duced from short chain fatty acids (SCFA) which enables many
inedible organic wastes to be used as feedstocks [17-21]. PHB
and PHA are produced naturally by many taxa of bacteria grown
under carbon replete conditions, when cellular replication is lim-
ited by a nutrient or a redox imbalance [22]. A variety of waste
organic feedstocks can be used in their production, and
industrial-scale operations are currently in place where EEB can
be produced. For instance, industries that are favorable for devel-
opment of PHB and PHA accumulation unit operations include
wastewater treatment plants, food processors, and paper mills
[22].

2. Materials and methods
2.1. Fuel characteristics of EEB

Synthesis and purification of EEB used during this study were
described elsewhere [9]. Cetane (CN) and flash point were deter-
mined with ASTM certified analyses by a contract testing company
(Midwest Laboratories, Inc., Omaha, NE).

2.2. Engine tests with EEB

The research engine, its setup, and calculations used to deter-
mine heat release were previously described [23-25]. Briefly, EEB
blended with ultra low sulfur diesel (ULSD) at different volumetric
ratios (5%, 10%, 20%, 30%, and 50% EEB v/v) was tested in a 517 cc
Hatz single-cylinder research diesel internal combustion engine.
Speed was held constant while fuel delivered to the engine was
varied in a low-high-low sweep to produce IMEP values that
spanned the engine’s operating range. Once the engine reached
steady state at each load point, data were recorded and averaged
over 250 cycles. Data were acquired as low-speed (time-based)
data and high-speed (crank-angle based) data using Indicom soft-
ware in conjunction with multiple F-FEM-AIN fast front end mod-
ules, a microlFEM piezo amplifier, and an Indimodul signal
acquisition and processing unit (AVL LIST GmbH). Blend specific
calorific data for engine analysis was based on the chemical com-
position of EEB, and the calorific value for 100% EEB was estimated
to be equal to soy biodiesel (37.5 MJ/kg). Emissions were collected
using a CLD NOx analyzer (California Analytical Instruments),

flame ionization hydrocarbon analyzer, non-dispersive infrared
three-gas analyzer, and opacity smoke meter (AVL LIST GmbH).

Data were normalized to fuel flow rate and indexed to 100%
ULSD tests run proximal to the blend test to compare the different
EEB-ULSD blends. Statistical analysis to compare EEB blended fuels
with 100% ULSD was with the pairw.anova function of asbio pack-
age (0.4-11) in R (3.0.1) using the Tukey method and 95% confi-
dence intervals. Low and high loads were functionally defined as
the first and third tertiles for each blend (low load conditions,
speed = 1800 rpm, fuel flow rate =0.09 - 0.19 g/s, and high load
conditions, speed = 1800 rpm, fuel flow rate = 0.23-0.31 g/s). Data
in tertiles of low and high loads were engine test specific (low load
data for all blends (n = 4); high load data for 5% EEB (n = 5), 10% EEB
(n=3),20% EEB (n = 3), and 30% EEB (n = 4)). ULSD low load (n = 4)
and high load (n = 3) data were collected on the same day as data
collected for 5%, 10%, 20% EEB-ULSD blends. Data collected for the
30% EEB-ULSD blend were collected 5 d prior to ULSD low load
(n=3) and high load (n = 4) data.

2.3. Technoeconomic model of EEB production

Technoeconomic modeling was performed to understand the
cost efficiency of producing EEB from wastewater sludge and key
cost drivers. The modeling was done with Superpro Designer lever-
aging default, built-in models for wastewater treatment plants
(WWTP) and biofuel production. A WWTP system that processed
4800 m® d~! wastewater and produced 4800 kg d~! biosolids was
modeled to determine EEB production potential at a WWTP-
based biorefinery. The technoeconomic model included SCFA pro-
duction from fermentation of biosolids, PHA production, and EEB
production. For biosolids fermentation, our modeled SCFA produc-
tion was based on previously reported findings that showed high
production of SCFAs from WWTP secondary sludge at high pH
[21] (SCFA production was expressed as acetate equivalents). For
PHA production, an anaerobic-aerobic process was modeled on
previous studies [26,27] (PHA production expressed as PHB equiv-
alents). A hydraulic retention time of 6 h and a sludge retention
time of 8 days were assumed. In the modeled system, longer sludge
retention time compared to hydraulic retention time was realized
via clarification and sludge recirculation. Modeled EEB production
conditions included dehydrating the PHB as water inhibits the
reaction and were based on conversion of PHB to ethylated mono-
mers for 2 h at 140 °C with ethanol and sulfuric acid (15% w/w)
[16].

3. Results
3.1. EEB diesel fuel properties

CN for blends of 10%, 20%, and 40% v/v EEB with ULSD were
43.3,41.8, and 38.5, respectively. Thus, the 10% and 20% EEB-ULSD
blends met the CN specification for on-road diesel fuel (specified
minimum CN is 40). The flash point of EEB (56 °C) was within
4°C and 5 °C of the lower limit of the flash point for biodiesel
and diesel suggesting that EEB blended fuels may require a shift
to higher temperature distillate fractions to compensate for the
lower flash point of EEB.

3.2. Internal combustion engine performance and emissions

EEB-ULSD blends up to 50% EEB v/v were evaluated for engine
performance and emissions with a Hatz 517 cc single-cylinder die-
sel research engine. Engine performance characteristics showed
some variation between November 2010 and April 2011 for the
test runs with ULSD (Fig. 1). EEB-ULSD blends of 5%, 10%, 20%,
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Fig. 1. Engine performance profiles for ULSD and EEB-ULSD blends. (a) Exhaust temperature, (b) mean effective pressure (IMEP), (c) crank angle coefficient of variation, (d)
start of combustion crank angle, (e) crank angle at 50% fuel burn (MFB-50), (f) peak cylinder temperature, (g) crank angle delta between 10% and 90% fuel burn (CA10-90), and
(h) indicated power of a test engine fueled with different blends of EEB and ULSD. The test engine was run with 100% ULSD (dark blue line with arrow) as well as 5% (black,
solid line and squares), 10% (orange line and diamonds), 20% (yellow line and triangles), 30% (light blue line and inverted triangles), and 50% (black, dashed line and arrows)
volumetric mixtures of EEB and ULSD. Means with standard deviations are presented for engine tests with 100% ULSD (n = 3) that were run in conjunction with this EEB-ULSD
study. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

and 30% exhibited stable combustion that was comparable to ULSD
combustion as indicated by several combustion parameters includ-
ing exhaust and peak cylinder temperatures, indicated mean effec-
tive pressure, the coefficient of variance of indicated mean
effective pressure, and crank angles at the start of combustion,
50% fuel combustion, and the angle delta between 10% and 90%
combustion (Fig. 1). Even though the lower CN of EEB retarded
the start of combustion of the EEB-ULSD blends (Fig. 1(d)), the
start of combustion of ULSD and the 5% and 10% blends were sta-
tistically comparable (within +15% confidence interval) when mod-
eled using a 2nd order polynomial. The 50% blend failed to
combust under low load conditions (speed = 1800 rpm, fuel flow
rate = 0.135-0.145 g/s), indicating the existence of a combustion-
limited maximum blend volume (Fig. 1).

Indexing the EEB-ULSD blends to 100% ULSD revealed that EEB
at higher blends influenced engine performance (Fig. 2). The 20%
EEB-ULSD blend produced significantly different engine perfor-
mance as measured by SOC and CA10-90 under low-load condi-
tions, and CA10-90 was significantly lower under high-load
conditions for the 20% EEB-ULSD blend (Table 1). The impact of
higher blends on engine performance was more pronounce with
the 30% EEB-ULSD blend where IMEP, CA10-90, and IP were statis-
tically different under low-load and high-load conditions and SOC
was statically higher under high load conditions.

Indicated specific fuel consumption (ISFC), volumetric effi-
ciency, and thermal efficiency were estimated for ULSD and EEB-
ULSD blends (Fig. 3). Fuel consumption and efficiencies for ULSD
and EEB-ULSD blends of 5%, 10%, 20%, and 30% were comparable
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Fig. 2. Comparison of ULSD and EEB-ULSD blends impact on engine performance.
Engine performance metrics were IMEP, crank angle coefficient of variation (COV),
start of combustion (SOC), MGB-50, CA10-90, and indicated power (IP). EEB-ULSD
blends were 5% (black bar), 10% (left-hatched bar), 20% (white bar), and 30% (right-
hatched bar) volumetric mixtures of EEB and ULSD. (a) The percent changes under
low load conditions. (b) The percent changes under high load conditions. Mean data
with standard deviations are presented. An asterisk over a bar indicates a significant
difference (Tukey’s post hoc test of ANOVA with 95% confidence intervals) between
the EEB-ULSD blend and ULSD for that engine performance metric.

despite variation between November 2010 and April 2011 test
runs. Indeed, EEB-ULSD blends had ISFC values that were statisti-
cally comparable to ULSD, although EEB-ULSD blends generally
showed a reduction in ISFC values at low loads (Fig. 4).

Criteria pollutants (i.e., PM, CO, and NOx) and exhaust gases
(i.e., 0y, HC, and CO,) were measured for ULSD and EEB-ULSD
blends (Fig. 5). Criteria pollutants showed some variation between
November 2010 and April 2011 for the test runs with ULSD, how-
ever little variation was observed for the exhaust gases except an
increase for the April 2011 low fuel flow HC measurements. PM
generally decreased where as CO and HC generally increased with
increasing amounts of EEB in the fuel (Fig. 3). Oxygen, CO, and NOx
showed little response to EEB blend level except for the 50% blend
which produced a consistently distinct emissions profile for all
measurements.

The effect of lower cetane number on emissions was largely off-
set by the effect of fuel oxygen (Fig. 4). For instance, under low-
load conditions, all of the EEB-ULSD blends produced equivalent
or less PM compared to ULSD, and the 30% blend produced signif-
icantly less PM, NOx, and carbon dioxide (CO,) compared to ULSD

Table 1

Summary of p-values obtained with ANOVA.
Measurement p-value

EEB20-LL EEB20-HL EEB30-LL EEB30-HL

IMEP 0.0212 0.0001
SoC 0.0390 <0.0001
CA10-90 0.0286 0.0027 0.0362 <0.00001
P 0.0212 0.0001
CO, 0.0018 0.0212 <0.0001
NOx 0.0213 0.0443
PM 0.0464 0.0004

(Table 1). Similar results occurred under high-load conditions; and
again, the 30% blend produced significantly less PM, NOx, and CO,
compared to ULSD. Otherwise, emissions data for EEB-diesel
blends were statistically equivalent to ULSD, except the 20% blend
produced significantly less CO, under high-load conditions. Com-
bined, the combustion and emissions data indicate that addition
of 5% or 10% EEB to ULSD as an oxygenate introduces renewable
carbon without negatively affecting fuel consumption while
improving the fuel’s exhaust emissions profile.

3.3. Technoeconomic modeling of potential EEB production

Our findings indicate that EEB is a possible renewable fuel if
large quantities of EEB can be sustainably and cost-effectively
produced. One possible strategy is the production of EEB from
PHA-rich biomass at WWTP [28]. We modeled an EEB production
process that used WWTP biosolids as the feedstock for PHA synthe-
sis. For modeling, we assumed that acetate was produced from

350
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Fig. 3. Fuel consumption and efficiency profiles for ULSD and EEB-ULSD blends.
(a) Fuel consumption (ISFC), (b) volumetric efficiency, and (c) thermal efficiency of a
test engine fueled with different blends of EEB and ULSD. Lines and symbols are as
described in Fig. 1. Means with standard deviations are presented for engine tests
with 100% ULSD (n = 3) that were run in conjunction with this EEB-ULSD study.
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Fig. 4. Comparison of ULSD and EEB-ULSD blends for fuel consumption (ISFC) and emissions (CO, CO,, NOx, THC, and PM). EEB-ULSD blends were 5% (black bar), 10% (left-
hatched bar), 20% (white bar), and 30% (right-hatched bar) volumetric mixtures of EEB and ULSD. (a) The percent changes under low load conditions. (b) The percent changes
under high load conditions. Mean data with standard deviations are presented. An asterisk over a bar indicates a significant difference (Tukey’s post hoc test of ANOVA with
95% confidence intervals) between the EEB-ULSD blend and ULSD for that fuel characteristic.

biosolids fermentation and that the homopolymer, PHB, was
accumulated in a separate unit operation. The model output under
these conditions was 1117 kg acetate/h, 75 kg volatile suspended
solids/h, and 323,745 kg water/h for biosolids fermentation, which
in turn resulted in predicted polymer production outputs of 360 kg
PHB/h, 1813 kg volatile suspended solids/h, and 8694 kg water/h.
The estimated cost to produce and extract a mixture containing
ethyl crotonate (EC), ethyl 3-hydroxybutyrate, and EEB from PHB
reacted with ethanol under acidic conditions at a WWTP in the
United States was $1.24/L. This estimate was in general agreement
with the production of methyl 3-hydroxyalkanoate gasoline oxy-
genates [14,29]. Our cost estimate was based on production in
the United States with domestically supplied equipment. Global
supply chain efficiencies would likely reduce the overall costs of
EEB since tanker transportation of fuel adds little to its cost [30].
Moreover, WWTPs are near both large metropolitan areas and rural
communities, and thus WWTP-based biorefinery capacity can
expand to process other feedstocks that are local to the service
area.

4. Discussion

The impact of biodiesel on diesel engine performance and emis-
sions has been intensely studied [31-35]. EEB properties as a diesel
oxygenate were distinctly different from biodiesel, although some
attributes were comparable depending on load. For instance, ISFC
was lower for EEB-ULSD blends under low-load conditions and
slightly higher under high-load conditions. Biodiesel is typically

reported to increase fuel consumption compared to diesel [31].
EEB was generally comparable with biodiesel as a diesel oxygenate
for PM across load condition. EEB and biodiesel were also
comparable for CO under high-load conditions, yet they produce
opposite results for THC under high-load conditions. Reductions
in NOx occurred with higher blend levels and EEB co-blended with
biodiesel might serve to mitigate elevated NOx production associ-
ated with unsaturated biodiesel. Indeed, the ethoxy moiety may be
the source of NOx reduction as observed with ether-diesel blends
[36-38]. Moreover, the ethoxy moiety influences the melting point
of EEB such that cloud point should not be a concern for EEB
blended fuels, and EEB might be added to high cloud point fuels.
However, these initial studies were with a research engine in a
laboratory setting, and fleet-based studies are needed to assess
EEB-ULSD blend performance under light-duty and heavy-duty
engine cycles. Furthermore, detailed engine cycle analysis, includ-
ing full rate of heat release profiles, may be done to provide greater
insights into performance of potentially commercial blends of
EEB-ULSD with different engine configurations.

The potential large-scale energy benefit of EEB is in its produc-
tion from a variety of feedstocks. In the aggregate, sources of
inedible organic material including WWTP biosolids, agricultural
crop residues, organic municipal solid waste, and livestock manure
represent several billion tonnes of potential EEB production feed-
stocks [39-42]. Crops dedicated to energy production are potential
feedstocks; however, agricultural-based biofuel production has
implicit limitations [43]. Energy crops that are ecologically low
impact and yet produce high yields of feedstock were proposed
to mitigate these limitations [44]. Moreover, coastal conservation
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Fig. 5. Emissions profiles for ULSD and EEB-ULSD blends. (a) NOx, (b) CO, (c) PM, (d) THC, (e) CO,, and (f) O, emissions of a test engine fueled with different blends of EEB and
ULSD. Lines and symbols are as described in Fig. 1. Means with standard deviations are presented for engine tests with 100% ULSD (n = 3) that were run in conjunction with

this EEB-ULSD study.

approaches that include energy crop production add acreage to the
fuel crop production portfolio while mitigating erosion and provid-
ing a barrier for storm protection. Key features of our overall bio-
fuel production approach are that a variety of feedstocks were
shown to be substrates for acidogenesis [17-20], and acidogenesis
funnels complex feedstocks into a simplified platform for chemical
and fuel production [18]. Indeed, PHA production with mixed
microbial communities using SCFAs has been shown [22]. How-
ever, technical advancements such as process intensification of
both biologic and chemical unit operations are needed to drive
production costs lower. Thus, the scientific groundwork for rapid
and widespread implementation of an EEB production industry is
established, and the engineering efforts to integrate and commer-
cialize this technology are needed.
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