

Dear Author,

Please, note that changes made to the HTML content will be added to the article before publication, but are not reflected in this PDF.

Note also that this file should not be used for submitting corrections.

3 Ethyl 3-ethoxybutyrate, a new component of the transportation 4 renewable fuel portfolio

7 Michael P. Bunce ^{a,1}, John M.E. Storey ^a, Jennifer W. Edmonds ^{b,2}, Robert H. Findlay ^b, Stephen M.C. Ritchie ^c,
8 Laurent Evers ^{d,3}, Zackery A. McMurry ^{d,4}, James C. Smoot ^{d,*}

9 ^a Fuels, Engines, and Emissions Research Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

10 ^b Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA

11 ^c Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA

12 ^d C/e-Solutions, Inc., Woodland, CA 95695, USA

HIGHLIGHTS

- 18 We characterize a novel fuel oxygenate, ethyl 3-ethoxybutyrate (EEB).
- 19 EEB–diesel blends had cetane values that exceeded 40.
- 20 Reduced criteria pollutant emissions was achieved with 5% and 10% EEB–diesel blends.
- 21 Economically viable production of EEB at wastewater treatment plants is promising.
- 22 EEB in the transportation fuel portfolio could lower global fossil carbon emissions.

ARTICLE INFO

Article history:

Received 17 June 2015

25 Received in revised form 21 August 2015

Accepted 22 August 2015

Available online xxxx

Keywords:

Biofuels

Criteria pollutants

Fuel oxygenates

Technoeconomic modeling

ABSTRACT

The vast majority of energy that powers our global economy is from combustion of fossil fuels with the unintended consequence of increased deposition of carbon dioxide in the atmosphere and oceans. The scientific and technical challenges for the energy sector are to develop renewable energy sources that are sufficient to meet human energy consumption, are economically viable, and are ecologically sustainable. We investigated ethyl 3-ethoxybutyrate (EEB) as a fuel oxygenate in ultra low sulfur diesel (ULSD) with a bench-scale research engine and determined its economic potential as a renewable fuel with technoeconomic modeling using wastewater treatment plant biosolids as the feedstock for poly-3-hydroxyalkanoates (PHB), a bacterial storage polymer from which EEB can be synthesized. EEB blended well with ULSD, and cetane values of 10% and 20% v/v EEB–ULSD blends exceeded 40. A diesel internal combustion engine fueled with 5%, 10%, and 20% EEB–ULSD blends met or exceeded all tested transportation diesel fuel emissions criteria. Inedible organic feedstocks may be used to produce PHB; and thus, EEB might contribute to carbon reductions without compromising performance or air pollutant emissions. However, further research is needed to determine its role in the overall fuel portfolio.

© 2015 Published by Elsevier Ltd.

1. Introduction

Economically viable and ecologically sustainable renewable energy sources that meet human energy consumption rates are

* Corresponding author at: West Sacramento, CA 95691, USA. Tel.: +1 530 8481527.

E-mail address: jc_smoot@yahoo.com (J.C. Smoot).

¹ Present address: MAHLE Powertrain, LLC, Farmington Hills, MI 48337, USA.

² Present address: Physical and Life Sciences, Nevada State College, Henderson, NV 89002, USA.

³ Present address: 1234 Vessy, Switzerland.

⁴ Present address: Vitruvian Energy, SPC, Seattle, WA 98107, USA.

many advantages to biodiesel, it also has several drawbacks including plant and animal based biodiesel production is limited by environmental sustainability issues, algae based biodiesel production is limited by production cost, high cloud point temperatures and increased nitrogen oxides (NO_x) emissions result in technical limitations of biodiesel [4]. Other potential diesel oxygenates under investigation include alcohols, ethers, acetone, and emulsions with water [5–7]. However, practical concerns such as corrosion and low flash point will likely limit the commercial viability of low molecular weight oxygenates [8].

The purposes of the effort reported here were to introduce ethyl 3-ethoxybutyrate (EEB) as a novel, renewable diesel oxygenate and to show a potential pathway of EEB production. This and another article are the first reports of using EEB as a fuel [9]. Prior studies of EEB were limited to its synthesis and stereochemistry [10–13]; however, methyl 3-hydroxybutyrate, which originates from the same precursor (poly-3-hydroxybutyrate (PHB)) as EEB, was investigated as a biofuel additive [14,15]. EEB can be produced from PHB under acidic conditions after esterification with ethanol via ethoxylation of ethyl 3-hydroxybutyrate [16] or synthesized under caustic conditions via addition of ethanol to ethyl crotonate (produced during esterification of PHB via dehydration of 3-hydroxybutyrate) [10].

PHB and the related poly-3-hydroxyalkanoate (PHA) are produced from short chain fatty acids (SCFA) which enables many inedible organic wastes to be used as feedstocks [17–21]. PHB and PHA are produced naturally by many taxa of bacteria grown under carbon replete conditions, when cellular replication is limited by a nutrient or a redox imbalance [22]. A variety of waste organic feedstocks can be used in their production, and industrial-scale operations are currently in place where EEB can be produced. For instance, industries that are favorable for development of PHB and PHA accumulation unit operations include wastewater treatment plants, food processors, and paper mills [22].

2. Materials and methods

2.1. Fuel characteristics of EEB

Synthesis and purification of EEB used during this study were described elsewhere [9]. Cetane (CN) and flash point were determined with ASTM certified analyses by a contract testing company (Midwest Laboratories, Inc., Omaha, NE).

2.2. Engine tests with EEB

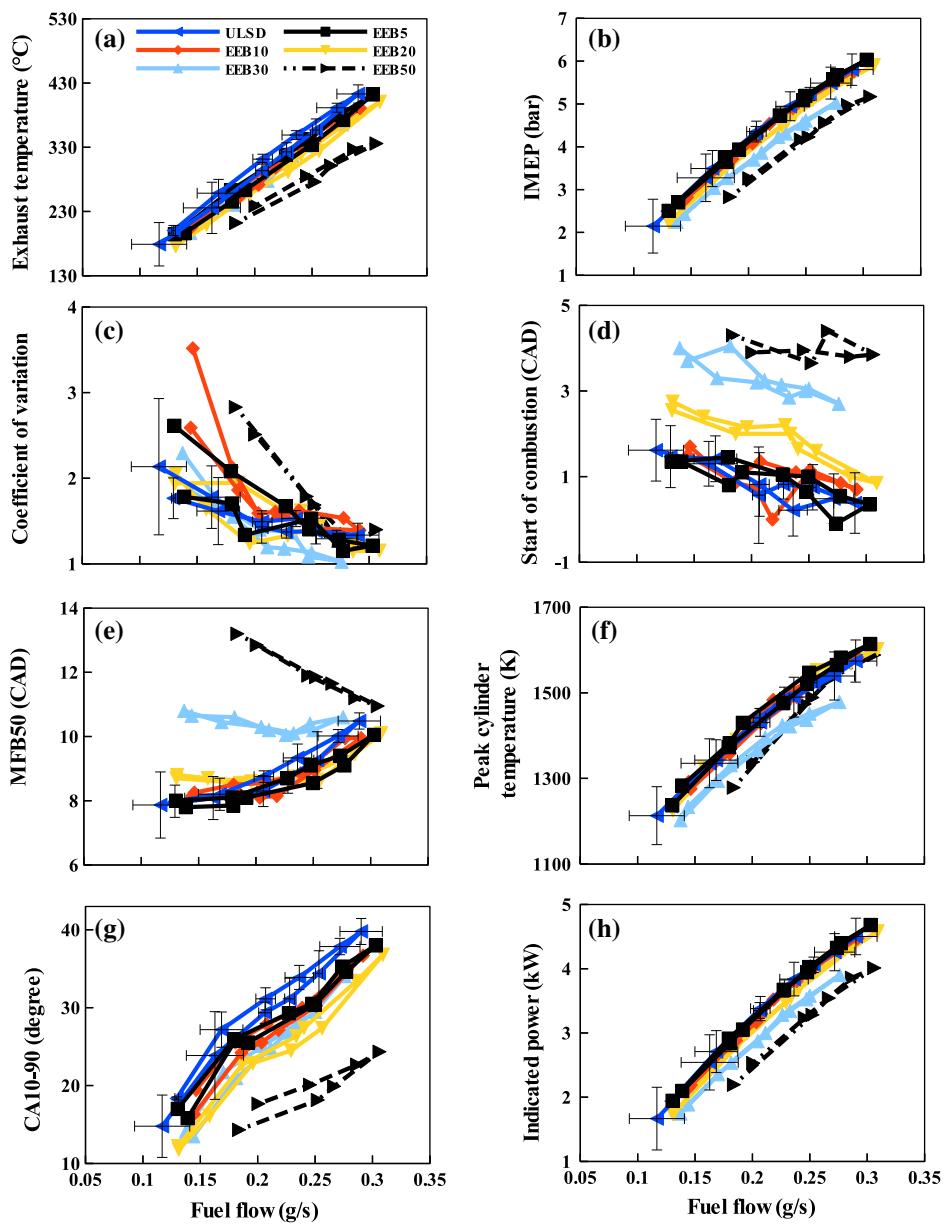
The research engine, its setup, and calculations used to determine heat release were previously described [23–25]. Briefly, EEB blended with ultra low sulfur diesel (ULSD) at different volumetric ratios (5%, 10%, 20%, 30%, and 50% EEB v/v) was tested in a 517 cc Hatz single-cylinder research diesel internal combustion engine. Speed was held constant while fuel delivered to the engine was varied in a low–high–low sweep to produce IMEP values that spanned the engine's operating range. Once the engine reached steady state at each load point, data were recorded and averaged over 250 cycles. Data were acquired as low-speed (time-based) data and high-speed (crank-angle based) data using Indicom software in conjunction with multiple F-FEM-AIN fast front end modules, a microFEM piezo amplifier, and an Indimodul signal acquisition and processing unit (AVL LIST GmbH). Blend specific calorific data for engine analysis was based on the chemical composition of EEB, and the calorific value for 100% EEB was estimated to be equal to soy biodiesel (37.5 MJ/kg). Emissions were collected using a CLD NO_x analyzer (California Analytical Instruments),

flame ionization hydrocarbon analyzer, non-dispersive infrared three-gas analyzer, and opacity smoke meter (AVL LIST GmbH).

Data were normalized to fuel flow rate and indexed to 100% ULSD tests run proximal to the blend test to compare the different EEB–ULSD blends. Statistical analysis to compare EEB blended fuels with 100% ULSD was with the *pairw.anova* function of asbio package (0.4–11) in R (3.0.1) using the Tukey method and 95% confidence intervals. Low and high loads were functionally defined as the first and third tertiles for each blend (low load conditions, speed = 1800 rpm, fuel flow rate = 0.09 – 0.19 g/s, and high load conditions, speed = 1800 rpm, fuel flow rate = 0.23–0.31 g/s). Data in tertiles of low and high loads were engine test specific (low load data for all blends (*n* = 4); high load data for 5% EEB (*n* = 5), 10% EEB (*n* = 3), 20% EEB (*n* = 3), and 30% EEB (*n* = 4)). ULSD low load (*n* = 4) and high load (*n* = 3) data were collected on the same day as data collected for 5%, 10%, 20% EEB–ULSD blends. Data collected for the 30% EEB–ULSD blend were collected 5 d prior to ULSD low load (*n* = 3) and high load (*n* = 4) data.

2.3. Technoeconomic model of EEB production

Technoeconomic modeling was performed to understand the cost efficiency of producing EEB from wastewater sludge and key cost drivers. The modeling was done with Superpro Designer leveraging default, built-in models for wastewater treatment plants (WWTP) and biofuel production. A WWTP system that processed 4800 m³ d⁻¹ wastewater and produced 4800 kg d⁻¹ biosolids was modeled to determine EEB production potential at a WWTP-based biorefinery. The technoeconomic model included SCFA production from fermentation of biosolids, PHA production, and EEB production. For biosolids fermentation, our modeled SCFA production was based on previously reported findings that showed high production of SCFAs from WWTP secondary sludge at high pH [21] (SCFA production was expressed as acetate equivalents). For PHA production, an anaerobic-aerobic process was modeled on previous studies [26,27] (PHA production expressed as PHB equivalents). A hydraulic retention time of 6 h and a sludge retention time of 8 days were assumed. In the modeled system, longer sludge retention time compared to hydraulic retention time was realized via clarification and sludge recirculation. Modeled EEB production conditions included dehydrating the PHB as water inhibits the reaction and were based on conversion of PHB to ethylated monomers for 2 h at 140 °C with ethanol and sulfuric acid (15% w/w) [16].


3. Results

3.1. EEB diesel fuel properties

CN for blends of 10%, 20%, and 40% v/v EEB with ULSD were 43.3, 41.8, and 38.5, respectively. Thus, the 10% and 20% EEB–ULSD blends met the CN specification for on-road diesel fuel (specified minimum CN is 40). The flash point of EEB (56 °C) was within 4 °C and 5 °C of the lower limit of the flash point for biodiesel and diesel suggesting that EEB blended fuels may require a shift to higher temperature distillate fractions to compensate for the lower flash point of EEB.

3.2. Internal combustion engine performance and emissions

EEB–ULSD blends up to 50% EEB v/v were evaluated for engine performance and emissions with a Hatz 517 cc single-cylinder diesel research engine. Engine performance characteristics showed some variation between November 2010 and April 2011 for the test runs with ULSD (Fig. 1). EEB–ULSD blends of 5%, 10%, 20%,

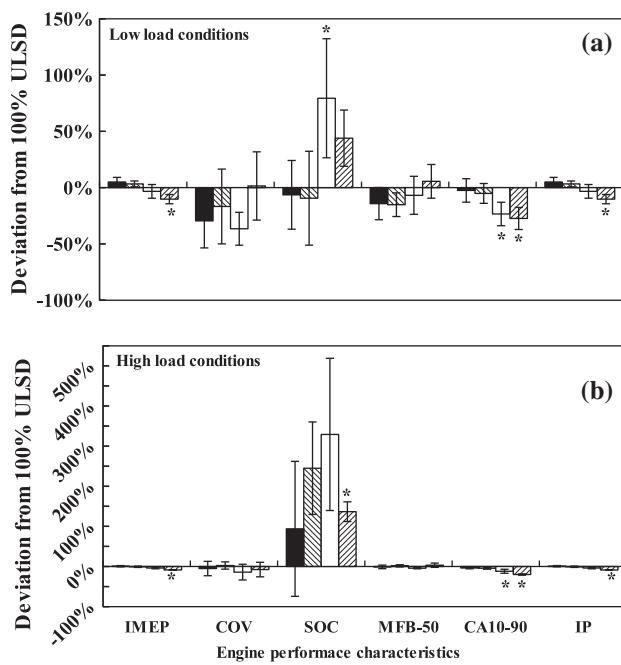


Fig. 1. Engine performance profiles for ULSD and EEB-ULSD blends. (a) Exhaust temperature, (b) mean effective pressure (IMEP), (c) crank angle coefficient of variation, (d) start of combustion crank angle, (e) crank angle at 50% fuel burn (MFB-50), (f) peak cylinder temperature, (g) crank angle delta between 10% and 90% fuel burn (CA10-90), and (h) indicated power of a test engine fueled with different blends of EEB and ULSD. The test engine was run with 100% ULSD (dark blue line with arrow) as well as 5% (black, solid line and squares), 10% (orange line and diamonds), 20% (yellow line and triangles), 30% (light blue line and inverted triangles), and 50% (black, dashed line and arrows) volumetric mixtures of EEB and ULSD. Means with standard deviations are presented for engine tests with 100% ULSD ($n = 3$) that were run in conjunction with this EEB-ULSD study. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

and 30% exhibited stable combustion that was comparable to ULSD combustion as indicated by several combustion parameters including exhaust and peak cylinder temperatures, indicated mean effective pressure, the coefficient of variance of indicated mean effective pressure, and crank angles at the start of combustion, 50% fuel combustion, and the angle delta between 10% and 90% combustion (Fig. 1). Even though the lower CN of EEB retarded the start of combustion of the EEB-ULSD blends (Fig. 1(d)), the start of combustion of ULSD and the 5% and 10% blends were statistically comparable (within $\pm 15\%$ confidence interval) when modeled using a 2nd order polynomial. The 50% blend failed to combust under low load conditions (speed = 1800 rpm, fuel flow rate = 0.135–0.145 g/s), indicating the existence of a combustion-limited maximum blend volume (Fig. 1).

Indexing the EEB-ULSD blends to 100% ULSD revealed that EEB at higher blends influenced engine performance (Fig. 2). The 20% EEB-ULSD blend produced significantly different engine performance as measured by SOC and CA10-90 under low-load conditions, and CA10-90 was significantly lower under high-load conditions for the 20% EEB-ULSD blend (Table 1). The impact of higher blends on engine performance was more pronounced with the 30% EEB-ULSD blend where IMEP, CA10-90, and IP were statistically different under low-load and high-load conditions and SOC was statistically higher under high load conditions.

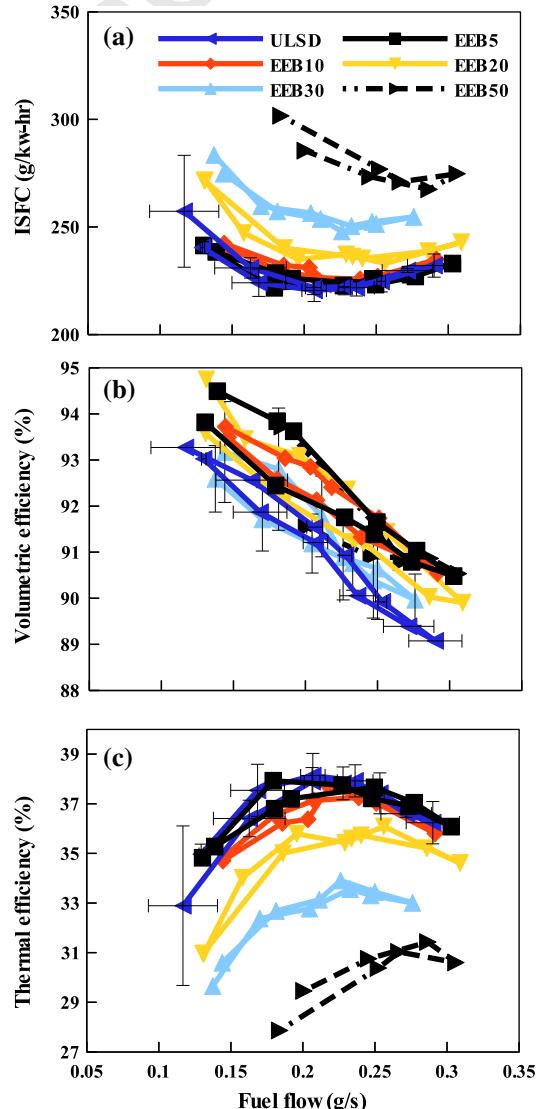
Indicated specific fuel consumption (ISFC), volumetric efficiency, and thermal efficiency were estimated for ULSD and EEB-ULSD blends (Fig. 3). Fuel consumption and efficiencies for ULSD and EEB-ULSD blends of 5%, 10%, 20%, and 30% were comparable

Fig. 2. Comparison of ULSD and EEB-ULSD blends impact on engine performance. Engine performance metrics were IMEP, crank angle coefficient of variation (COV), start of combustion (SOC), MGB-50, CA10-90, and indicated power (IP). EEB-ULSD blends were 5% (black bar), 10% (left-hatched bar), 20% (white bar), and 30% (right-hatched bar) volumetric mixtures of EEB and ULSD. (a) The percent changes under low load conditions. (b) The percent changes under high load conditions. Mean data with standard deviations are presented. An asterisk over a bar indicates a significant difference (Tukey's post hoc test of ANOVA with 95% confidence intervals) between the EEB-ULSD blend and ULSD for that engine performance metric.

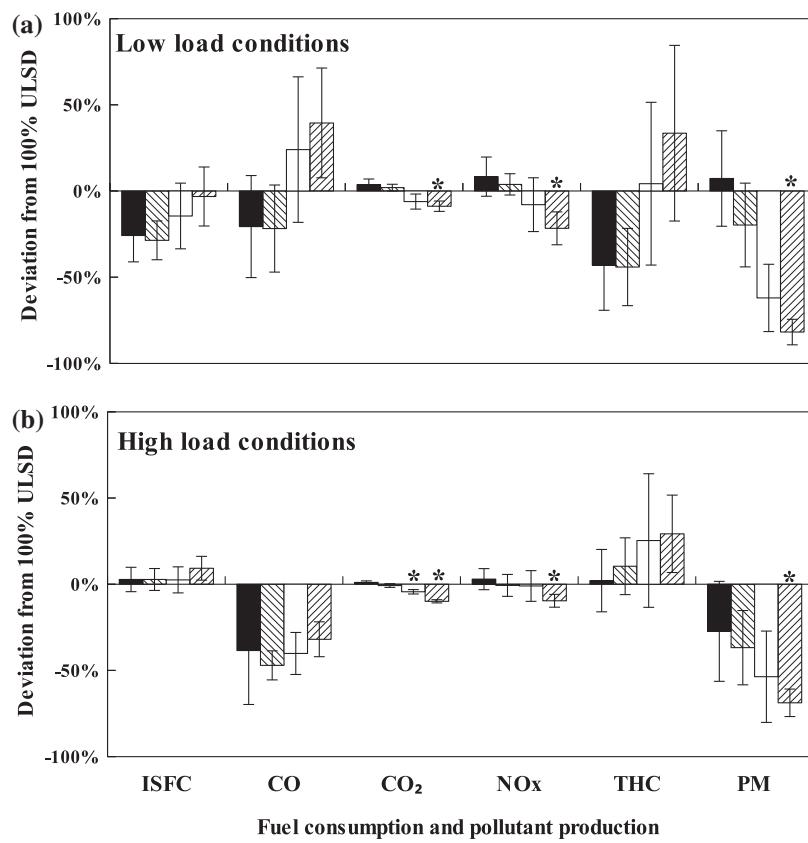
despite variation between November 2010 and April 2011 test runs. Indeed, EEB-ULSD blends had ISFC values that were statistically comparable to ULSD, although EEB-ULSD blends generally showed a reduction in ISFC values at low loads (Fig. 4).

Criteria pollutants (i.e., PM, CO, and NOx) and exhaust gases (i.e., O₂, HC, and CO₂) were measured for ULSD and EEB-ULSD blends (Fig. 5). Criteria pollutants showed some variation between November 2010 and April 2011 for the test runs with ULSD, however little variation was observed for the exhaust gases except an increase for the April 2011 low fuel flow HC measurements. PM generally decreased where as CO and HC generally increased with increasing amounts of EEB in the fuel (Fig. 3). Oxygen, CO₂ and NOx showed little response to EEB blend level except for the 50% blend which produced a consistently distinct emissions profile for all measurements.

The effect of lower cetane number on emissions was largely offset by the effect of fuel oxygen (Fig. 4). For instance, under low-load conditions, all of the EEB-ULSD blends produced equivalent or less PM compared to ULSD, and the 30% blend produced significantly less PM, NOx, and carbon dioxide (CO₂) compared to ULSD


Table 1
Summary of *p*-values obtained with ANOVA.

Measurement	<i>p</i> -value			
	EEB20-LL	EEB20-HL	EEB30-LL	EEB30-HL
IMEP			0.0212	0.0001
SOC	0.0390			<0.0001
CA10-90	0.0286	0.0027	0.0362	<0.00001
IP			0.0212	0.0001
CO ₂		0.0018	0.0212	<0.0001
NOx			0.0213	0.0443
PM			0.0464	0.0004

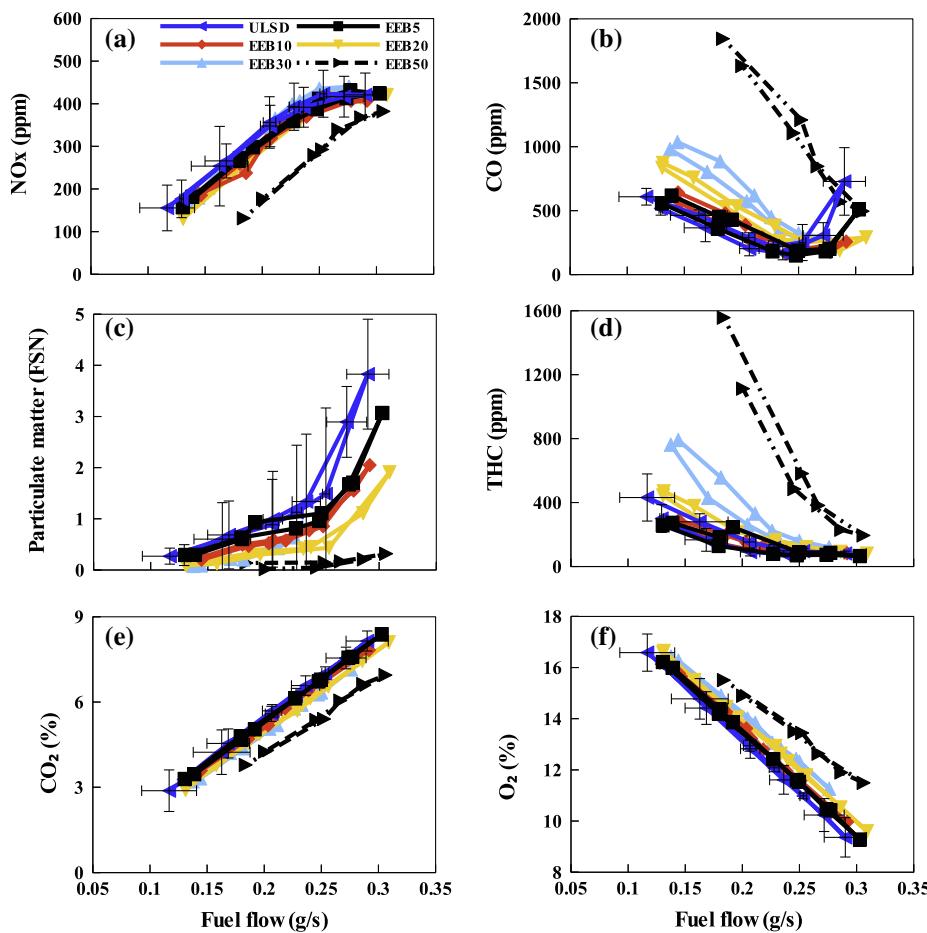

(Table 1). Similar results occurred under high-load conditions; and again, the 30% blend produced significantly less PM, NOx, and CO₂ compared to ULSD. Otherwise, emissions data for EEB-diesel blends were statistically equivalent to ULSD, except the 20% blend produced significantly less CO₂ under high-load conditions. Combined, the combustion and emissions data indicate that addition of 5% or 10% EEB to ULSD as an oxygenate introduces renewable carbon without negatively affecting fuel consumption while improving the fuel's exhaust emissions profile.

3.3. Technoeconomic modeling of potential EEB production

Our findings indicate that EEB is a possible renewable fuel if large quantities of EEB can be sustainably and cost-effectively produced. One possible strategy is the production of EEB from PHA-rich biomass at WWTP [28]. We modeled an EEB production process that used WWTP biosolids as the feedstock for PHA synthesis. For modeling, we assumed that acetate was produced from

Fig. 3. Fuel consumption and efficiency profiles for ULSD and EEB-ULSD blends. (a) Fuel consumption (ISFC), (b) volumetric efficiency, and (c) thermal efficiency of a test engine fueled with different blends of EEB and ULSD. Lines and symbols are as described in Fig. 1. Means with standard deviations are presented for engine tests with 100% ULSD (*n* = 3) that were run in conjunction with this EEB-ULSD study.

Fig. 4. Comparison of ULSD and EEB-ULSD blends for fuel consumption (ISFC) and emissions (CO, CO₂, NOx, THC, and PM). EEB-ULSD blends were 5% (black bar), 10% (left-hatched bar), 20% (white bar), and 30% (right-hatched bar) volumetric mixtures of EEB and ULSD. (a) The percent changes under low load conditions. (b) The percent changes under high load conditions. Mean data with standard deviations are presented. An asterisk over a bar indicates a significant difference (Tukey's post hoc test of ANOVA with 95% confidence intervals) between the EEB-ULSD blend and ULSD for that fuel characteristic.


252 biosolids fermentation and that the homopolymer, PHB, was
 253 accumulated in a separate unit operation. The model output under
 254 these conditions was 1117 kg acetate/h, 75 kg volatile suspended
 255 solids/h, and 323,745 kg water/h for biosolids fermentation, which
 256 in turn resulted in predicted polymer production outputs of 360 kg
 257 PHB/h, 1813 kg volatile suspended solids/h, and 8694 kg water/h.
 258 The estimated cost to produce and extract a mixture containing
 259 ethyl crotonate (EC), ethyl 3-hydroxybutyrate, and EEB from PHB
 260 reacted with ethanol under acidic conditions at a WWTP in the
 261 United States was \$1.24/L. This estimate was in general agreement
 262 with the production of methyl 3-hydroxyalkanoate gasoline oxy-
 263 genates [14,29]. Our cost estimate was based on production in
 264 the United States with domestically supplied equipment. Global
 265 supply chain efficiencies would likely reduce the overall costs of
 266 EEB since tanker transportation of fuel adds little to its cost [30].
 267 Moreover, WWTPs are near both large metropolitan areas and rural
 268 communities, and thus WWTP-based biorefinery capacity can
 269 expand to process other feedstocks that are local to the service
 270 area.

271 4. Discussion

272 The impact of biodiesel on diesel engine performance and emis-
 273 sions has been intensely studied [31–35]. EEB properties as a diesel
 274 oxygenate were distinctly different from biodiesel, although some
 275 attributes were comparable depending on load. For instance, ISFC
 276 was lower for EEB-ULSD blends under low-load conditions and
 277 slightly higher under high-load conditions. Biodiesel is typically

278 reported to increase fuel consumption compared to diesel [31].
 279 EEB was generally comparable with biodiesel as a diesel oxygenate
 280 for PM across load condition. EEB and biodiesel were also
 281 comparable for CO under high-load conditions, yet they produce
 282 opposite results for THC under high-load conditions. Reductions
 283 in NOx occurred with higher blend levels and EEB co-blended with
 284 biodiesel might serve to mitigate elevated NOx production associ-
 285 ated with unsaturated biodiesel. Indeed, the ethoxy moiety may be
 286 the source of NOx reduction as observed with ether-diesel blends
 287 [36–38]. Moreover, the ethoxy moiety influences the melting point
 288 of EEB such that cloud point should not be a concern for EEB
 289 blended fuels, and EEB might be added to high cloud point fuels.
 290 However, these initial studies were with a research engine in a
 291 laboratory setting, and fleet-based studies are needed to assess
 292 EEB-ULSD blend performance under light-duty and heavy-duty
 293 engine cycles. Furthermore, detailed engine cycle analysis, includ-
 294 ing full rate of heat release profiles, may be done to provide greater
 295 insights into performance of potentially commercial blends of
 296 EEB-ULSD with different engine configurations.

297 The potential large-scale energy benefit of EEB is in its produc-
 298 tion from a variety of feedstocks. In the aggregate, sources of
 299 inedible organic material including WWTP biosolids, agricultural
 300 crop residues, organic municipal solid waste, and livestock manure
 301 represent several billion tonnes of potential EEB production feed-
 302 stocks [39–42]. Crops dedicated to energy production are potential
 303 feedstocks; however, agricultural-based biofuel production has
 304 implicit limitations [43]. Energy crops that are ecologically low
 305 impact and yet produce high yields of feedstock were proposed
 306 to mitigate these limitations [44]. Moreover, coastal conservation

Fig. 5. Emissions profiles for ULSD and EEB-ULSD blends. (a) NO_x, (b) CO, (c) PM, (d) THC, (e) CO₂, and (f) O₂ emissions of a test engine fueled with different blends of EEB and ULSD. Lines and symbols are as described in Fig. 1. Means with standard deviations are presented for engine tests with 100% ULSD ($n = 3$) that were run in conjunction with this EEB-ULSD study.

approaches that include energy crop production add acreage to the fuel crop production portfolio while mitigating erosion and providing a barrier for storm protection. Key features of our overall biofuel production approach are that a variety of feedstocks were shown to be substrates for acidogenesis [17–20], and acidogenesis funnels complex feedstocks into a simplified platform for chemical and fuel production [18]. Indeed, PHA production with mixed microbial communities using SCFAs has been shown [22]. However, technical advancements such as process intensification of both biologic and chemical unit operations are needed to drive production costs lower. Thus, the scientific groundwork for rapid and widespread implementation of an EEB production industry is established, and the engineering efforts to integrate and commercialize this technology are needed.

Acknowledgements

We thank J. Brown for technical assistance provided during EEB synthesis and purification. We thank the FEERC technical support staff for assistance provided during engine testing. C/e-Solutions, Inc. received financial support from the National Science Foundation (Grant No. IIP-1013100) and the California Energy Commission (Grant No. 55180A/07-04). Neither sponsor had involvement in the design, execution, or publication of the work reported here. C/e-Solutions, Inc. personnel were involved in all aspects of the work. We thank two anonymous reviewers for comments that greatly strengthened this manuscript.

References

- [1] Panel on Alternative Liquid Transportation Fuels (PALTF). Liquid transportation fuels from coal and biomass: technological status, costs, and environmental impacts. Washington, D.C.: The National Academies Press; 2009.
- [2] Davis SJ, Caldeira K, Matthews HD. Future CO₂ emissions and climate change from existing energy infrastructure. *Science* 2010;329:1330–3.
- [3] O'Sullivan J. Liquid fuel. In: International energy outlook. Washington, D.C.: U. S. Energy Information Administration; 2011. p. 25–41.
- [4] Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. *Renew Sust Energy Rev* 2012;16:2070–93.
- [5] Xue J, Grift TE, Hansen AC. Effect of biodiesel on engine performances and emissions. *Renew Sust Energy Rev* 2011;15:1098–116.
- [6] Tsai J-H, Chen S-J, Huang K-L, Lin W-Y, Lee W-J, Lin C-C, et al. Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: analyses of emitted PM, particulate carbon, and PAHs. *Sci Total Environ* 2014;466–467:195–202.
- [7] Chang Y-C, Lee W-J, Wu T-S, Wu C-Y, Chen S-J. Use of water containing acetone–butanol–ethanol for NO_x–PM (nitrogen oxide–particulate matter) trade-off in the diesel engine fueled with biodiesel. *Energy* 2014;64:678–87.
- [8] Weber de Menezes E, da Silva R, Cataluna R, Ortega RJC. Effect of ethers and ether/ethanol additives on the physicochemical properties of diesel fuel and on engine tests. *Fuel* 2006;85:815–22.
- [9] Storey JME, Bunce MP, Edmonds JW, Findlay RH, Ritchie SMC, Evers L, et al. Fuel economy and pollutant emissions from an automobile fueled with ethyl 3-ethoxybutyrate and gasoline. *Fuel* 2015 [submitted for publication].
- [10] Mohrig JR, Fu SS, King RW, Warner R, Gustafson G. Stereochemistry of nucleophilic conjugate addition. Addition of ethanol-*d* and 2-methyl-2-propanoethiol-*d* to ethyl crotonate. *J Am Chem Soc* 1990;112:3665–7.
- [11] Mohrig JR, Lee PK, Stein KA, Mitton MJ, Rosenberg RE. Diastereoselectivity in the protonation of ester enolates. The importance of aggregation with LDA. *J Org Chem* 1995;60:3529–32.
- [12] Mohrig JR, Rosenberg RE, Apostol JW, Bastienanssen M, Evans JW, Franklin SJ, et al. Diastereoselectivity of enolate anion protonation. H/D exchange of β -substituted ethyl butanoates in ethanol-*d*. *J Am Chem Soc* 2007;119:479–86.

367 [13] Caballero A, Diaz-Requejo MM, Belderrain TR, Nicasio MC, Trofimenko S, Perez
368 PJ. Functionalization of carbon–hydrogen bonds of hydrocarbons and ethers
369 via carbene insertion with copper(I)-homoscorpionate catalysts.
370 *Organometallics* 2003;22:4145–50.

371 [14] Zhang X, Luo R, Wang Z, Deng Y, Chen G-Q. Application of (R)-3-hydroxy-
372 alkanoate methyl esters derived from microbial polyhydroxalkanoates as
373 novel biofuels. *Biomacromolecules* 2009;10:707–11.

374 [15] Wang SY, Wang Z, Liu MM, Xu Y, Zhang XJ, Chen G-Q. Properties of a new
375 gasoline oxygenate blend component: 3-hydroxybutyrate methyl ester
376 produced from bacterial poly-3-hydroxybutyrate. *Biomass Bioenergy*
377 2010;34:1216–22.

378 [16] McMurry ZA, Smoot JC. Process for producing a renewable biofuel from waste
379 water treatment plants. U.S. Patent No. 8,377,151; 2013.

380 [17] Lee WS, Chua ASM, Yeoh HK, Ngoh GC. A review of the production and
381 applications of waste-derived volatile fatty acids. *Chem Eng J* 2014;235:83.

382 [18] Chang HN, Kim N-J, Kang J, Jeong CM. Biomass-derived volatile fatty acid
383 platform for fuels and chemicals. *Biotechnol Bioprocess Eng* 2010;15:1–10.

384 [19] Agbogbo FK, Holtzapple MT. Fixed-bed fermentation of rice straw and chicken
385 manure using a mixed culture of marine mesophilic microorganisms.
386 *Bioresour Technol* 2007;98:1586–95.

387 [20] Thanakoses P, Black AS, Holtzapple MT. Fermentation of corn stover to
388 carboxylic acids. *Biotechnol Bioeng* 2003;83:191–200.

389 [21] Yuan H, Chen Y, Zhang H, Jiang S, Zhou Q, Gu G. Improved bioproduction of
390 short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions.
391 *Environ Sci Technol* 2006;40:2025–9.

392 [22] Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM. Strategies for PHA
393 production by mixed cultures and renewable waste materials. *Appl Microbiol*
394 *Biotechnol* 2008;81:615–28.

395 [23] Bunting B, Bunce M, Joyce B, Crawford R. Investigation and optimization of
396 biodiesel chemistry for HCCI combustion. In: Steve Hung S, Subic A, Wellnitz J,
397 editors. *Sustainable automotive technologies*. Berlin, Heidelberg: Springer-
398 Verlag; 2011. p. 51–8.

399 [24] Bunting BG, Bunce M, Puduppakkam K, Naik C. Kinetic modeling of fuel effects
400 over a wide range of chemistry, properties, and sources. In: Subic A, Wellnitz J,
401 Leary M, Koopmans L, editors. *Sustainable automotive technologies*. Berlin,
402 Heidelberg: Springer-Verlag; 2012. p. 127–33.

403 [25] Bunce M, Bunting BG, Wang J, Crawford R. Experimental and statistical
404 comparison of engine response as a function of fuel chemistry and properties
405 in CI and HCCI engines. *SAE Technical Paper* 2012-01-0857 2012. <http://dx.doi.org/10.4271/2012-01-0857>.

406 [26] Satoh H, Iwamoto Y, Mino T, Matsuo T. Activated sludge as a possible source of
407 biodegradable plastic. *Water Sci Technol* 1998;38:103–9.

408 [27] Choi J, Lee SY. Efficient and economical recovery of poly(3-hydroxybutyrate)
409 from recombinant *Escherichia coli* by simple digestion with chemicals.
410 *Biotechnol Bioeng* 1999;62:546–53.

411 [28] Coats ER, Loge FJ, Wolcott MP, Englund K, McDonald AG. Synthesis of
412 polyhydroxalkanoates in municipal wastewater treatment. *Water Environ
413 Res* 2007;79:2396–403.

414 [29] Cui Z, Beach ES, Anastas PT. Green chemistry in China. *Pure Appl Chem*
415 2011;83:1379–90.

416 [30] Bergeron SR. Chartering and operations. In: Huber M, editor. *Tanker operations
417 a handbook for the person-in-charge*. Centreville: Cornell Maritime Press;
418 2001. p. 210–28.

419 [31] Lapuerta M, Armas O, Rodríguez-Fernández J. Effect of biodiesel fuels on diesel
420 engine emissions. *Prog Energy Combust Sci* 2008;34:198–223.

421 [32] Hajbabaei M, Johnson KC, Okamoto RA, Mitchell A, Pullman M, Durbin TD.
422 Evaluation of the impacts of biodiesel and second generation biofuels on NO_x
423 emissions for CARB diesel fuels. *Environ Sci Technol* 2012;46:9163–73.

424 [33] Hajbabaei M, Johnson KC, Okamoto RA, Durbin TD. Evaluation of the impacts of
425 biofuels on emissions for a California certified diesel fuel from heavy-duty
426 engines. *SAE Int J Fuels Lubr* 2013;6:393–406.

427 [34] Wang X, Zhan Z, Hu T, Huang Z. Influence of biodiesel/diesel blends on
428 particulate emissions in a turbocharged common rail diesel engine. *SAE Int J
429 Fuels Lubr* 2014;7:643–52.

430 [35] Bari S. Performance, combustion and emission tests of a metro-bus running on
431 biodiesel-ULSD blended (B20) fuel. *Appl Energy* 2014;124:35–43.

432 [36] Pugazh vadivu M, Rajagopan S. Investigations on a diesel engine fueled with
433 biodiesel blends and diethyl ether as an additive. *Indian J Sci Technol*
434 2009;2:31–5.

435 [37] Kannan TK, Marappan R. Comparative study of performance and emission
436 characteristics of a diesel engine fueled by emulsified biodiesel/diethyl ether
437 blended biodiesel. *J Appl Sci* 2011;16:2961–7.

438 [38] Qi DH, Chen H, Geng LM, Bian YZ. Effect of diethyl ether and ethanol additives
439 on the combustion and emission characteristics of biodiesel-diesel blended
440 fuel engine. *Renew Energy* 2011;36:1252–8.

441 [39] Beecher N, USA, Summary of wastewater treatment solids management in the
442 United States. In: LeBlanc RJ, Matthews P, Richard RP, editors. *Global atlas of
443 excreta, wastewater sludge, and biosolids management: moving forward the
444 sustainable and welcome uses of a global resource*. Nairobi: United Nations
445 Human Settlements Programme; 2008. p. 542–8.

446 [40] Industry and Economics International Environmental Technology Centre
447 (IEIETC). *Integrated solid waste management plan training manual. Assessment
448 of current waste management system and gaps therein*, vol. 2. Osaka: United Nations
449 Environmental Programme; 2009.

450 [41] Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, et al.
451 Solutions for a cultivated planet. *Nature* 2011;478:337–42.

452 [42] Pelletier N, Tyedmers P. Forecasting potential global environmental costs of
453 livestock production 2000–2050. *Proc Natl Acad Sci USA* 2010;107:18371–4.

453 [43] Karp A, Richter GM. Meeting the challenge of food and energy security. *J Exp
454 Bot* 2011;62:3263–71.

455 [44] Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-
456 diversity grassland biomass. *Science* 2006;314:1598–600.

457

458

459