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1. Our needs
2. Modeling tool, Aleph
3. Complex models need CV & V & SV & SA & UQ
4. Current 3D vacuum arc modeling



Examples:
– Vacuum arc discharge
– Plasma processing
– Spark gap devices
– Gas switches
– Ion and neutral beams

We are especially interested in the transient start-up of arc-based devices.

SNL Modeling Needs

We’re interested in low temperature collisional plasma phenomena. Our 
applications generally share the following requirements:

– Kinetic description.
– Collisions/chemistry, including ionization (arcs). Neutrals are important.
– Very large variations in number densities over time and space.
– Sheaths.
– Real applications with complex geometry.

Vacuum coating



• 1, 2, or 3D Cartesian
• Unstructured FEM (compatible with CAD)
• Massively parallel
• Hybrid PIC + DSMC (PIC-MCC)
• Electrostatics
• Fixed B field
• Solid conduction
• e- approximations (quasi-neutral ambipolar,

Boltzmann)
• Dual mesh (Particle and Electrostatics/Output)
• Advanced surface (electrode) physics models
• Collisions, charge exchange, chemistry,

excited states, ionization
• Advanced particle weighting methods
• Dynamic load balancing (tricky)
• Restart (with all particles)
• Agile software infrastructure for easily extending BCs, post-processed quantities, etc.
• Currently utilizing up to 32K processors (>100M elements, >1B particles)

Description of Aleph

256 core particle load balancing example



CV: Code Verification. Necessary, woefully insufficient.  Can test single 
simple capabilities.

SV: Solution Verification.  Steps taken to confirm a code solution is the 
right solution to the model problem.  Expensive.

V: Validation. Measure agreement between code prediction and 
reality.  Ideally, code prediction has gone through some amount of 
solution verification.

SA: Sensitivity Analysis.  Applies to both code and experiment.  
Determine which numerical/physical parameters impact the 
prediction, experimental result, and/or validation comparison.  
Identifies problem areas and is a source of planning 
decisions/efficiency.

UQ: Uncertainty Quantification.  Estimate uncertainty in a code 
prediction, usually without experimental comparator.  Incorporates 
error estimation and quantified code prediction uncertainties.

Paul’s poster

All Interesting Arc/Plasma Behavior Is Nonlinear And Coupled – How 
Can We Be Confident In Our Predictions?

CV & SV & V & SA & UQ

ALL OF THIS IS MORE COMPLICATED 
BECAUSE OUR BASIC MODELING METHODS 

ARE STOCHASTIC (PIC, MCC, MD, ...) AND 
DO NOT HAVE TYPICAL “GRID 
CONVERGENCE” BEHAVIOR



3D Model of Cu-Cu Arc System

At vacuum
1.5 mm inner-to-inner distance
0.75 mm diameter electrodes
Copper electrodes (this picture is Cu-Ti)
2 kV drop across electrodes
20Ω resistor in series
Steady conditions around 50V, 100A
Breakdown time << 100ns
Ionization mfp = 1.5 mm at maximum σ

 ni ~ 1016 – 1017 #/cm3



3D Model of Cu-Cu Arc System
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3D Model of Cu-Cu Arc System
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Approximate smallest ∆x at (Te = 10 eV, ne = 1016/cm3) ~ 0.25 μm

Lines of constant λD

Approximate smallest ∆x at (Te = 10 eV, ne = 1016/cm3) ~ 0.25 μm

plasma Te (eV)
∆x ~ λD ~ (Te/ne)1/2

∆t ~ ωp
-1 ~ ne

-1/2

3D Model of Cu-Cu Arc System
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ωp-based ∆t at (ne = 1018) ~ 35 fs
CFL-based ∆t at (V = 2000V) ~ 10fs

 CFL-based ∆t dominates until potential collapses to ~ 500V



3D Model of Cu-Cu Arc System

4 mm x 1.5 mm x 2 mm = 24 mm3

+ volE = 0.1 μm3

+ ~ 5% of volume is at smallest ∆x

~ 5B elements

~ 10 ns breakdown time at ∆t = 10 fs
+ ~ 100 ns evolution time at ∆t = 100 fs
+ ~ 5% of volume is at smallest ∆x

2M timesteps

... assuming fixed work per timestep, which is why we developed 
dynamic particle weighting (keep # particles/element fixed)

... not there, yet.  Results are 1/10th domain size, 2x ∆x, 1018

background Cu ... on 256 cores ... awaiting better meshing 
capability ...



3D Model of Cu-Cu Arc System



3D Model of Cu-Cu Arc System



The End



Basic algorithm for one time step of length      :
1. Given known electrostatic field     , move each particle for      via:

2. Compute intersections (non-trivial in parallel).
3. Transfer charges from particle mesh to static mesh.
4. Solve for          ,

5. Transfer fields from static mesh to dynamic mesh.
6. Update each particle for another       via:

7. Perform DSMC collisions: sample pairs in element, determine cross section and probability of 
collision.  Roll a digital die, and if they collide, re-distribute energy.

8. Perform chemistry: for each reaction, determine expected number of reactions.  Sample particles 
of those types, perform reaction (particle creation/deletion).

9. Reweight particles.
10. Compute post-processing and other quantities and write output.
11. Rebalance particle mesh if appropriate (variety of determination methods).

Description of Aleph
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