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Abstract
The Climax Stock, a Cretaceous granitic (quartz monzonite) body located on 
the Nevada National Security Site (NNSS, formerly the Nevada Test Site) hosted 
three underground nuclear tests in the 1960s. Seismic recordings of these 
tests were characterized, in part, by anomalously high-amplitude shear waves. 
Several hypotheses exist as to how shear waves are generated by explosions, 
which, in theory, are purely compressive sources. The possible sources of shear 
waves include interaction with the free surface and spall, tectonic release, 
scattering at local velocity heterogeneities, and bulk rock velocity anisotropy. 
We investigated the latter hypothesis by characterizing seismic velocity 
anisotropy of the Climax Stock. We conducted a 9-component seismic survey 
(vertical and dipole shear vibration source recorded by 3-component sensors). 
The 288-channel survey consisted of 96 3-component receiver locations, 
spaced at 5-meter intervals, recording 96 3-component “mini-vibe” sources, 
spaced between each receiver location. These data allow us to find both the 
magnitude of shear-wave anisotropy and its dominant azimuth. The results of 
this effort will be combined with those of other experiments conducted under 
the Source Physics Experiments (SPE) series of explosives tests at the NNSS.  A 
goal of the SPE is to study all aspects of shear-wave generation.
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Nine-Component (9C) seismic data comprises three source orientations 
(vertical and orthogonal horizontal shear (SI and SX)), and three receiver orien-
tations (vertical and orthogonal horizontal (RI and RX)). For a 2D linear survey, 
the shear sources and receivers are typically aligned inline and crossline with 
the trend of the acquisition line. 

Field Coordinates

In the presence of shear-wave velocity anisotropy (aka birefringence), these 
field coordinates are not optimal as they lead to splitting of s-waves into “fast” 
and “slow” arrivals, complicating seismic interpretation. When this birefrin-
gence is caused by vertical fractures (horizontal transverse anisotropy, HTI), 
the dominant azimuth of the fractures can be found. This occurs when data 
and sources in field coordinates are rotated to “natural” coordinates, parallel 
and perpendicular to fracture strike. At this azimuth  energy is minimized on 
cross-terms and maximized on alike terms.
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Natural Coordinates

Fractures

Rotation into natural coordinates is accomplished though a process known as 
Alford Rotation. Alford Rotation can be thought of as acting on field data by 
rotating sources counter-clockwise while simultaneously rotating receivers 
clockwise though some angle. For field data V,  rotation matrix R, and natural 
data U...
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For subsurface reflection data excited and recorded on the surface, the zero-
offset geometry is shown below. 

To simulate this geometry of vertically-
propagating waves, we compute a 
common midpoint (CMP) stack of near-
offset source receiver pairs. For near-
offset pairs, stacking velocity is not a par-
ticularly sensitive parameter, and the in-
creased fold will reduce uncorrelated 
noise.
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Alford 
RotationParameter Value  

Geophones 96 3-Comp 4.5 Hz 
Recorders 12 Geometrics Geodes 
Sources 96 IVI 3-C Vibe Locs  
Receiver Spacing 5 Meters 
Source Spacing 5 Meters 
Sweep Length 20 Seconds (20 – 220 HZ) 
Sample Interval  1 Millisecond 
Listening Time 3 Seconds 
Stacks 5  
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Particularly Noisy Record (Hammer Drilling)
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Less Noisy Record (Reaming)

Due to drilling delays, a schedule conflict arose such active drilling was com-
mencing 100 meters from the line. There were two types of drilling ongoing at 
the site: drilling for depth with a hammer drill, and reaming of the hole after 
total depth was reached. Hammer drilling rendered anything other than first 
break picking impossible. Reaming was less noisy.

The Nevada National 
Security Site is located 
in southern Nevada. 
Field area is indicated 
by the star. 

Red squares are re-
ceiver locations. A 3-C 
vibrator source is lo-
cated between each 
receiver location. The 
blue star is the location 
of a raised-bore drill 
rig, in concurrent op-
eration. 

Two main difficulties presented them-
selves when processing the data. 1) 
High-amplitude reflections are rare in 
this data set as the Climax Stock quartz 
monzonite seems fairly uniform with 
depth; and 2) the noise from the drill rig 
obscured any low-amplitude reflections. 
The use of near-source CMP stacking 
mitigated these difficulties somewhat as 
the vibrator strength is at a maximum 
near the source. The other way to maxi-
mize signal-to-noise ratio was to con-
centrate the analysis on the upper few 
hundred milliseconds of the record, 
where signal strength was at its greatest. 
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The figure above plots the energy of all 96 off-axis 
CMP stack components versus rotation angle.  This 
was computed via the sum of the square root of 
amplitude squared.  The orientation of the frac-
tures is parallel to the acquisition when this value is 
minimized (at 59 degrees rotation here). If this 
holds true, then the fractures are oriented N34E, 
since our field coordinates are oriented N15W.  The 
overall reduction of energy at the optimal rotation 
angle is only around 2%, which suggests that the 
magnitude of anisotropy is small, however.  The 
rose diagram below plots the optimal rotation 
angle of each of the 96 CMP traces (blue bars) and 
the dip angle plus 90 degrees of high-angle frac-
tures mapped in boreholes 100 meters from the 
line (black bars). The blue arrow is the N34E value 
from averaging all CMPs. As can be seen, the rose 
diagram shows a bimodal distribution which sug-
gests that fractures do not have a consistent azi-
muth along the line. This is currently being investi-
gated. 

Conclusions

Rotation vs. Off-Axis Amplitude

Blue: Alford Azimuth
Black: Borehole Fracture  Dip +90 deg
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P-wave Refraction Tomography

We also computed P-wave velocity tomograms using an inter-
nal 3-D finite difference ray-tracing algorithm. Due to the drill-
ing, first break picks were weighted, with greater weights 
given to nearer offsets. The site is characterized by velocities 
consistent with decomposed granite or sand at depths shal-
lower than 5 meters in the north end,  rapidly transistioning to 
intact granite velocities below that. This velocity information 
will be used in the future to stack and migrate the reflection 
data.

1) Alford rotation of 9-C data at the Climax Stock site yields 
natural coordinates consistent with the azimuth of one set of 
fractures mapped in an adjacent borehole.

2) Anistropy appears to be weak in that the overall reduction 
in off-axis energy at optimal rotation angle is only appoxi-
mately 2 percent. Borehole mapping shows two orthogonal 
sets of vertical fractures. If the effect on seismic waves of 
these fractures is more or less equal, this behavior may be ex-
pected, as media is no longer HTI and is orthorhombic. This 
will be modeled in the future. 

3) The rotation angle is not consistent along the entire 475 
meter line, indicating inconsistent fracture azimuth, or poor 
signal-to-noise data.

4) Noise from adjacent drilling and low-amplitude reflections 
in granite combined to make interpretation difficult.
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