
Large amounts of stable crack growth followed by 
kinking lead to lower strength, and lower variability

As              decreases with increasing kinking is 
expected even if i is not a strong function of 

Increasing iand stiffness of matrix will lead to 
higher strength

Is the interface fracture toughness a function of
geometry as well?  increases even though KII↓
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The Role of Circumferential Cracking In Fracture Originating From Cylindrical Inclusions
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Materials Motivation: Low temp. co‐fired ceramic (LTCC) is versatile glass‐filled ceramic composite packaging 
material. Cracking problems are sometimes observed during production and use.
Mechanics Motivation: Cylindrical inclusions, such as fibers, electrical vias, and metal connector pins are 
common features in many functional ceramic materials. 
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Test Structure                Fractured Structure: Top Fracture Surface showing Crack Path         Higher Mag. View of Fracture
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10.6 mm

3.2 mm

Material, # E (GPa)   (GPa) (ppm/°C)

LTCC, 1 116 0.24 47 7

Gold‐Via fill, 

2

78 0.44 27 15

Calculated Values (Plane‐Stress)

   th (MPa)

‐0.1958 ‐0.01464 0.0046 156

Model: Interfacial Arc Crack              Stress Intensity Factors                                 Interface K, G expressions Elastic Properties

Driving Forces: 
‐ rr=tensile, as 2>1

‐Biaxial loads, N1 and N2

‐=compressive. In‐plane stress
for kinking analysis
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Note: is extremely small, ~0
K1, K2 ~ KI, KII

The via causing fracture was identified, 
and the crack angle at which kinking 
occurred  was measured. 2=148± 15º. 

Crack initiates at the via‐LTCC boundary at several vias. These cracks grow as arc cracks along the interface on ↑ stress.
At some load, one of the arc cracks kinks out into the matrix, links up with other cracks, and causes failure.

Normalized K’s: K1 rises and decays more
rapidly than K2. Mode mix increases with . 

Measured Distribution of Crack Angles            Stress Intensity Factors, Mode Mixity G as a function of Crack Length

G has a maximum at ~50º. Kinking occurs on the
decreasing portion of G‐curve.

(He et al. J. Am. Ceram Soc. 74, (1991))

where Gmax, is the maximized energy release rate 
at kink angle .

Non‐dimensional length parameter which 
characterizes the stress parallel to the interface.

 plays an important role in determining kink 
condition
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Crack kinking out of an interface   For Arc Crack at LTCC‐Au interface  Conclusions and Issue
‐ Crack kinking equality eq. satisfied due to decrease
in               with increasing 
‐For interface arc crack, mode mixity  at kinking~40º.
‐Even though there is a compressive stress parallel 
to the interface, the contribution of the biaxial 
applied stress must exceed this value  stress parallel 
to the interface must be positive
‐There does not appear to be any natural length 
parameter ‘a’ for calculation of 
‐Taking =0 will provide an upper bound for i

Therefore i/s ~ 0.6 (=0), or ~0.8 (=‐0.5)
s ~9 J/m

2. Max. i ~5.5‐7.2 J/m
2 – very brittle

interfaceG

interfaceG

R. Tandon, in preparation

Thermal vias, R=190 m

Thermal vias, R=190 m

Initiation      Next nearest via 
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