
Re-establishing gas puff radiation sources on the Z Generator: Characterizing the Gas Profile and MHD Modeling of the Source

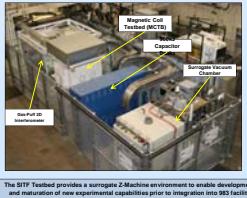
The Team:

C.A.Jennings, B. Jones, D. J. Ampleford, M.E. Cuneo, C.A. Coverdale, S.B.Hansen, E. Waisman, D.C. Lamppa, J. McKenney, M. Jobe, P. Cunningham, G. Torres, R. Mock, G. Denison, M. Krishnan, K. Elliott, R. Madden, P. Coleman, et al. (ASC)
Work on MHD Model Circuit Coupling to Z completed under a New Employee LRD

Z-pinchers are extremely bright x-ray sources, with significant utility for Radiation Effects testing (see presentations by B. Jones, N.W. Moore, T. Flanagan)

Gas-Puffs produce photons in spectral ranges unavailable from wire array z-pinchers

Compared to wire arrays, gas puffs offer the potential to control instability growth through:


- Azimuthally symmetric thick mass shells (large aspect ratio to impede disruption)
- Multiple Nozzles and different pressures (tailored radial mass profiles to control growth)

However:

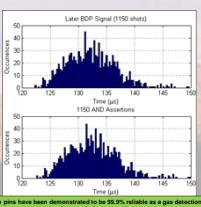
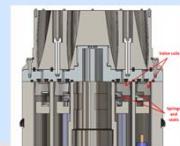
- To design mass distribution the initial conditions **NEED** to be well known, so measurement of gas profiles is crucial
- There are a **LOT** of design variables, so with finite shots available, simulations can be invaluable in source optimization

Systems Integration and Test Facility (SITF) (D.C.Lamppa, M. Jobe)

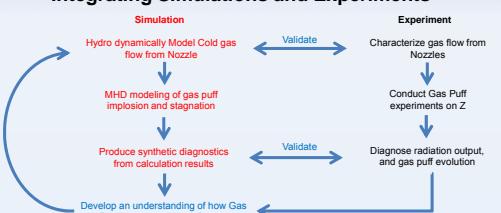
Systems Integration and Test Facility (SITF) has been developed to provide fabrication, assembly, and performance characterization of gas-puff nozzles

SITF Provides Working Gas-Puff Testbed for Reliability Testing, Z-Bound Nozzle Characterization

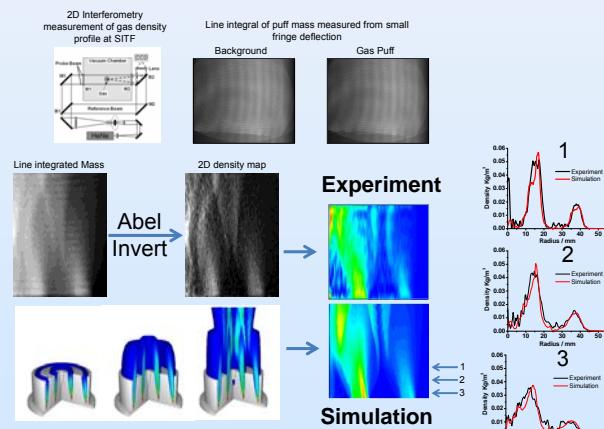
- Over one thousand shots performed in SITF before first Z shot will ever occur



- 120 shot commissioning campaign (Dec10-Jan11)
- 85 shot grid interferometer campaign (Jan11)
- 75 shot no-grid interferometer campaign (Nov11)
- 1,150 shot BDP reliability campaign (Dec11-Jan12)
- 210 shot BDP variability campaign (Feb12)
- 100's of undocumented configuration shots
- 200,000+ simulated shots for AND/OR reliability study

- Rapid-response to experimenter's needs for interferometry and reliability data


- Each nozzle will be characterized and understood before being delivered to Z

First Z shot will be most understood and characterized
Argon gas-puff in recorded history!


Gas-puff system permissive system demonstrated to be 99.9% reliable at SITF

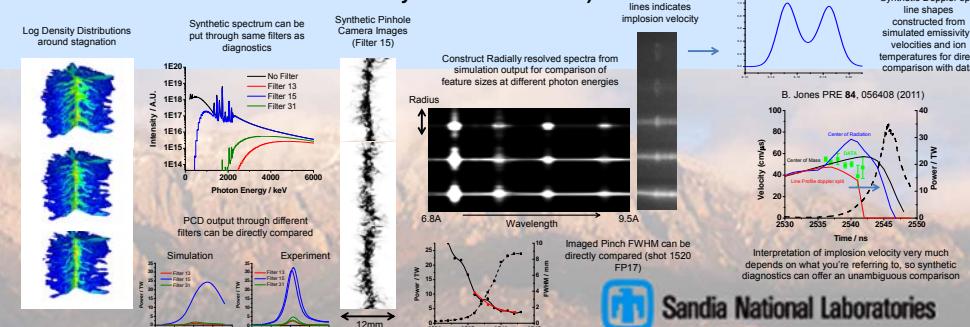
Integrating Simulations and Experiments

SITF Gas flow characterization used to benchmark cold gas flow calculations to provide a validated, flexible tool for assessing different gas puff configurations

Full circumference 3D resistive MHD calculations using non-LTE radiation treatment, coupled to Z equivalent circuit initialized from cold gas flow calculations

MHD model uses non-LTE emissivities and opacities tabulated for total and K-shell spectral regions (S.B.Hansen)

3D random ~10% bubble perturbation applied to 2D gas profile to initialize calculations


Tables are based on the screened-hydrogenic/UTA non-LTE model (SCRM) [1], which, like LLNL's model, is a semi-empirical model that tabulated atomic codes (e.g. SCRAM) [2, 3].

[1] E. Scott and S.B. Hansen, "HEDP-23 (2010) 23, 281-298, and references therein." [2] S.B. Hansen, "HEDP-27 (2014) 27, 1-10." [3] E. Scott, Hansen et al., "HEDP-27 (2014) 27, 1-10." [4] GUDIONON and use IPFC-77 (2006) (2006)

3D random ~10% bubble perturbation applied to 2D gas profile to initialize calculations

Load calculations coupled to Z equivalent circuit using parameterized current losses

Simulated diagnostics being constructed for effective model validation (example from 40mm nested Al array shots 1520 & 1907)

