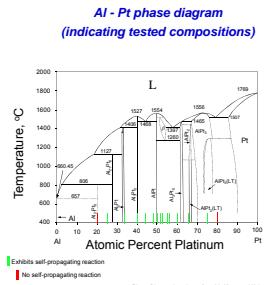


Reactive Al/Pt Multilayers: Investigating the Stoichiometric Limits of Self-Sustained Reactions

Poster ID: OO5.11

Abstract:

Point ignition tests of sputter-deposited Al/Pt multilayers demonstrate that foils of different net composition (from $Al_{0.25}Pt_{0.75}$ to $Al_{0.75}Pt_{0.25}$) exhibit self-propagating, high temperature reactions. Equiatomic Al/Pt multilayers exhibit the maximum reaction rate consistent with the largest measured heat of formation (ΔH_f) for the Al-Pt system. The reaction propagation speeds vary with bilayer thickness for all tested film compositions; peak speeds for $Al_{0.5}Pt_{0.5}$ are approximately 80 m/s. X-ray diffraction shows that phase formation is mostly consistent with published Al-Pt phase diagrams. However, a recently-discovered metastable, complex metal alloy phase having 39 formula units per rhombohedral unit cell forms over a range of composition from $Al_{56}Pt_{44}$ – $Al_{47}Pt_{53}$.


David P. Adams, M.A. Rodriguez,
R.V. Reeves, E.D. Jones, Jr.

Sandia National Laboratories, Albuquerque, New Mexico

Materials Research Society
Fall Meeting, 2012 Session OO
Boston, MA

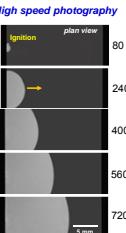
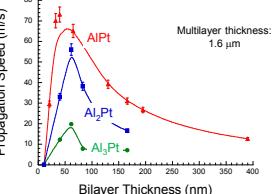
Goals of this study include:

- Evaluate whether nanoscaled Al/Pt multilayers made of different composition exhibit self-sustained, high temperature formation reactions.
- Determine the propagation speeds for different compositions and bilayer thicknesses; compare with the stored chemical energy in each multilayer.
- Determine the phases that form as a result of self-propagating reactions (for all tested compositions).
- Determine the range of solubility for a recently-discovered metastable, complex metal alloy (R-3 AlPt).

Background: Al/Pt System**Summary of reported equilibrium phases (indicated in phase diagram)**

Phase	Range at.% Pt	Space Group	ΔH_f (kJ/mol-at)*	K_{eff} (W/mK)*
Al_2Pt_5	19.2	-	-57	205.5
Al_3Pt_8	27	$I4_1a$	-72	
Al_5Pt	31.5 - 33.5	$Fm\bar{3}m$	-84	181.8
Al_5Pt_2	40	$P3m1$	-95	
$AlPt$	50	$P2_13$	-100	154.3
$\beta AlPt$ (HT)	52 - 56	$Pm\bar{3}m$	unknown	
Al_5Pt_6	61.5 - 63	$Pb\bar{m}$	-88	134.5
Al_5Pt_2 (LT)	66 - 67	$Pm\bar{3}a$	unknown	
Al_5Pt_3 (LT)	67 - 78	$Pmm\bar{a}$	-88	126.7
Al_5Pt_3 (LT)	73-100	$P4/mbm$	unknown	
Al_5Pt_3 (LT)	73-100	$P4/mbm$	-70	112.9

* Data is taken from the table of *Calorization in Metals : Transition metal Alloys* (1989) and *Phase Diagrams* (1996).



Estimates based on a rule of mixtures.

Self-Propagating Reaction Rates**Depiction of test setup**

Point ignition
Freestanding multilayer (foil)
No preheating above ambient
Tested in air
Igniter (25V)

Details of advancing front

Stable reaction front (no instabilities)
Uniform radial velocity
No secondary combustion reactions w/ air

Plot of propagation speeds: Al rich and equiatomic compositions

- Bilayer thickness dependence is explained by
 - increased heat release rate with decreased bilayer
 - premixed reactant effects (for small bilayer).

- Propagation speeds are largest for equiatomic composition compared with Al rich multilayers.

Propagating AlPt
Al5Pt3
Al3Pt2

Propagating AlPt
Al5Pt3
Al3Pt2