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Modeling Quantum Dots

Quantum Computer Aided Design (QCAD) Device Simulator
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Optimization & Design Guidance

¢ Dakota in conjunction with the QCAD Poisson Solver enables optimization of gate
voltages for simultaneous targets:
— Electrons in a dot (e.g., 1le- in the left dot)
— Electron density at a tunnel barrier automatically detected through saddle-point-
searching algorithm (e.g., LTB, DB, LQPCB)
— Distance b.t.w where a charge sensing constriction forms and where a dot forms

Sample 538, 1e- in
the left dot

Depletion gate pattern of an
experimental quantum dot
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Selected SEM depletion gate patterns of experimental DQDs that have been simulated

* What optimizations have been able to tell us :
— Which experimental layouts perform better (e.g., which ones allow 1e- in each dot
and simultaneously turning on barriers)
— Does barrier turn on before/after dot has many electrons? (openness)
— Location / shape of “main” dots and charge sensing barriers/dots
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Validation of Self-Consistent P-S Solver
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Application of Self-Consistent P-S to Quantum Dot Summary
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