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Directly apply a solar energy 
source  to effectively split CO2

and H2O into syn gas, utilizing 
redox-active metal oxides,  in 
a process analogous to, but 
more efficient than, 
photochemical or biological 
processes.
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Sunlight + CO2 + H2O  Fuel + O2

Two step solar-thermochemical process utilizing redox reaction to split 
CO2 or H2O:

MOx + Sunlight  MOx-δ + δ/2O2 (Thermal Reduction, TR)

MOx-δ + δCO2  MOx + δCO (CO2-Splitting Oxidation, CDS)
MOx-δ + δH2O  MOx + δH2 (H2O-Splitting Oxidation, WS)

Vision: Sunshine to Petrol



Thermo-Chemical 
Splitting: The CR5
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Diver, Miller, et al., J Solar Ener Eng, 2008, 130 (4), Art #041001.



The Ferrite System

• Ferrites, Fe3O4 is redox active

•Require a “support” material, e.g. ZrO2

or YSZ, for efficient long-term cyclability

(Tamaura, Kodama)

• Behavior of the ferrite systems at 

reactor temperatures and conditions is 

not well understood

• Such questions include:

- equilibrium reactions

- oxygen transport

- structure-property relationships
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Fe3O4 + Heat  3FeO + ½ O2

3FeO + CO2  Fe3O4 + CO

Net:  CO2  CO + ½O2

A systematic study of the ferrite system has been undertaken to answer 
these questions. The design of in-situ experiments to investigate the 
chemistry under operating conditions has been a main focus. The 
results of these experiments and how they relate to material 
performance are presented.



Solid Solubility
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• Following Vegard’s
Law, estimate 
solubility of ~ 9.4 
mol% Fe in 8YSZ at rt

• At low [Fe] can 
assume complete 
solid solution, i.e., all 
Fe is 
crystallographically
substituted in YSZ 
crystal lattice

• At higher [Fe] can 
assume composite of 
solid solution + “free” 
Fe2O3 

Solid state synthesis
Calcined  1350 °C/48h, 1500 °C/2hr

Solid sol’n Composite

AmbrosiniCoker Rodriguez, et al. In Advances in CO2 Conversion and 
Utilization, American Chemical Society: 2010; Vol. 1056, pp 1.



In-situ XRD
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• Temperature range: 25 to 1450oC

• Pressure range: 10-9 to 1000 Torr (< 2 bar)

• Sample size: ~1 cm2 

• Heating rates: 1 to 100 oC/min

• Phase fraction detection limit: ~1 w%

Question: Does solid solubility change with 
temperature/environment?



Solubility of Fe in 8YSZ is 
Dynamic
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• As sample is heated under He,  Fe2O3Fe3O4FeO
• YSZ lattice expansion from both thermal expansion and migration of Fe 
• 1st cycle shows significant migration of Fe out of YSZ; 2nd cycle shows 
minor migration of Fe out of YSZ
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Coker, E. N.; Rodriguez, M. A.; Ambrosini, A.; Miller, J. E.; Stechel, E. B., Powd. Diffr., 2012, 27 (02), 117.



TGA: Redox Ar/CO2 of 
Fe2O3:8YSZ

Ar CO2
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Long Redox of Fe2O3:8YSZ

 1st cycle shows deeper reduction and incomplete reoxidation; more 
pronounced for 14.5% sample

• Samples don’t reoxidize completely to Fe2O3 (or Fe3+) after  
initial reduction

 Re-oxidation magnitude remains constant between cycles
 Subsequent cycles resemble 2nd cycle (not shown)
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Iron utilization

Dissolved vs. Bulk Fe
Fe in solid solution:

• Fe3+ ↔ Fe2+

• Each Fe theoretically 
accessible, though we 
don’t see 100% utilization

Fe in composite (bulk):

• Fe3O4 ↔  FeO

• 2/3 Fe theoretically 
accessible

• See much less utilization 
at higher loadings

Why? 

Hypothesis: Surface 
limitations in bulk redox 

reaction



Stagnation Flow Reactor

500 W CW near IR laser (SNL-CA)
• Uniform flux at sample surface
• Investigate thermal reduction
• Investigate cycle variability

Chem. Mater. 2011, 23, 2030–2038

• Screen for O2 uptake and release
– System viability

• Resolve thermal reduction 
behavior

– Variable heating rates

• Resolve gas splitting behavior
– Variable T, P, [OX]

• Analysis
– Rate limiting mechanisms
– Kinetic models
– Material stability
– Cycle performance



Modeling Kinetic Data 
from Stagnation Flow

 Least-squares optimization fit to H2 production rate curves

 Model the entire time domain.

• Approach is new to this field of research

 Tested 14 individual kinetic models and 9 model pairs.

• H2 evolution best described by 1-D diffusion (D1) at early 
times and 2nd order reaction (F2) at later times

• D1 is a simple parabolic rate law that describes the 
thickness of a growing oxide layer in 1-dimension (e.g. 
surface diffusion)

• F2 is a second-order based “homogeneous-like” reaction 
where the rate decelerates parabolically as the extent of 
reaction increases (e.g. heterogeneous bulk reaction)

• Results consistent with findings of Coker, et. al., paper

 Model can be used to evaluate material performance in a 
simulation of a dynamic, reacting environment

J.R. Scheffe, A.H. McDaniel, M.D. Allendorf, A.W. Weimer, submitted to Energy & Environ. Sci., May 2012. 

Validated water oxidation model for ferrite/ZrO2 composites reveals multiple 
kinetic mechanisms 



SIMS: Tie Between Structure 
(Scale) and Performance

• FeOx particles in YSZ thermally reduced
• Short oxidation with C(18O)2 gives “eggshell” appearance in 18O 

imaging
• Gradual penetration into interior of particles on extended CDS

18O

Ohlhausen, Coker, Ambrosini, Miller, Surf. Interface Anal. (2012), in press.
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 The Sunshine to Petrol program at Sandia aims to utilize CSP and redox-
active metal oxides to thermochemically split CO2 and H2O into syn gas

 The Fe:8YSZ system shows dynamic behavior during temperature cycling 
under reducing and oxidizing conditions

 In-situ XRD illustrates solubility of Fe in YSZ dependent upon 
temperature, Fe oxidation state

 TGA cycling experiments show %Fe utilization greater for lower 
iron-loaded (solid solution) samples

 Stagnation flow experiments and kinetic modeling predict  multiple 
reaction mechanisms

 ToF-SIMS shows limited re-oxidation of bulk iron oxide particles under 
CO2

 Techniques developed and lessons learned can aid in the design of 
improved and more efficient materials for thermochemical water splitting

Summary and Conclusions
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Fossil Fuels – Non 
Renewable, Buried 

Sunshine
 Each gallon of gasoline is estimated as equivalent to 100 tons* 

of prehistoric biomass, processed for millions of years 

• Ancient stored solar energy

 Estimate of Conversion Efficiency ~210-4 %

• We don’t have millions of years to make what we are 
burning in centuries

 Corn Ethanol Conversion Efficiency ~0.1%

• Lot better

 But can we improve on that efficiency even more by using 
chemical processes?  10%?

• E.g. Solar driven thermo-chemical processes

*Jeffrey S. Dukes, Climatic Change 61: 31–44, 2003.



CO2 Splitting Over 5% 
Fe2O3/YSZ

Feed is 80% CO
2
 unless noted

TR: 1 hour @ 1400 °C, WO/CDO @ 1100 °C

Elapsed Time (minutes)
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Water Splitting
Cycle 2
Cycle 6
Cycle 15 
Cycle 35
Cycle 29 
(50% damp CO2)

Cycle 33 
(100% damp CO

2
)

•CO2 (and H2O) splitting 
demonstrated over 
multiple temperature 
cycles 

•Material does not reach 
steady state even after 
multiple cycles

•10-15% reaction extent 
in 2-3 minute cycles in 
On-Sun testing

•Higher % Fe utilization in 
5 wt% loaded Fe2O3

than 20 wt% (not shown)

47 cycles laboratory cycles of 2.8 g lattice monolith



Room Temperature XRD of 
Fe2O3:8YSZ
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TGA Experiments

• Examined both solid solution and composite compositions

• Samples were sintered pellets or bars cut from pellets

• Pt TGA pans used (Al2O3 reacts with powders)

• Gas flowed at 100 sccm throughout experiment

• O2 scrubbers were placed on both Ar and CO2 gas lines

• Ramp rates were 20 ˚C/min; gas stream changed when desired temperature 
reached: 1400 ˚C for reduction (Ar), 1100 ˚C for oxidation (Ar/CO2 or pure CO2)

• Assumed weight change during isotherm due to O2 gain/loss in sample; weight 
change calculated for isotherms (not ramps)



XRD of 3 wt% Fe2O3 post-
redox TGA 
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XRD of 10 wt% Fe2O3

post-redox TGA
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TGA
Soluble vs. bulk iron oxides

dashed line – 1st cycle 
solid line – 2nd cycle 
Red: 4.5 mol-% Fe/8YSZ
Blue: 14.5 mol-% Fe/8YSZ
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Co-precipitation
Calcined 1350 °C/36hr; 1450 °C/4hr

•Always see greater reduction on 1st cycle, even for “fully soluble.”
•Mass increase vs. Fe-loading is not linear above 8 mol-% Fe
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Before After

SEM of 10 wt% Fe2O3 
Before and After TGA



Evaluating oxidation and 
reduction behavior

• Screen for O2 uptake and 
release
– System viability

• Resolve thermal reduction 
behavior
– Variable heating rates

• Resolve gas splitting 
behavior
– Variable T, P, [OX]

• Analysis
– Rate limiting mechanisms
– Kinetic models
– Material stability
– Cycle performance



Iron utilization

Even at 1.8 mol-% Fe, still some un-
utilized Fe

 Lower Fe-loading gives higher 
utilization

 For “free” iron oxide possible reaction 
mechanism is: Fe2O3  Fe3O4  FeO

• After initial reduction to FeO
complete reoxidation is unlikely 
under TGA conditions

• XRD post-reduction and post-TGA 
cycle show presence of wüstite and 
magnetite phases

• Is the reaction in bulk FeOx surface 
limited?

*  Utilization assumes Fe3O4  3FeO + ½O2
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• Fe2O3 disappeared by 800 °C
• Trace of Fe3O4 1100 – 1300 °C
• FeO first observed ~ 1250 °C 
• No other Fe-phases 800 – 1100 °C; Fe in solid solution with YSZ 
• Solubility limit (Fe2O3 in 8YSZ) ≥ 9 wt.-% (14 mol.-%) 800 – 1100 °C
• Once FeO formed, it does not return to solid solution on cooling under He
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ToF-SIMS

18O Raw
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Time-of-Flight Surface Ionization Mass Spectrometry
• Isotopically label sample with 18O; analyze 18O distribution
•TR under Ar, 1400 °C/16 hr; CDS under C(18O)2, 1100 °C/7 hr
• Disc cross-sectioned, polished

8YSZ matrix: uniform 18O & 16O distribution--fast 
oxygen transport

14.5 mol-% Fe/8YSZ7.5 mol-% Fe/8YSZ


