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Abstract 
Formal verification techniques such as model checking (MC) and theorem 
proving (TP) have found increasingly widespread use in the design of critical 
digital systems as a means to ensure their functional correctness [4][5]. 
However, both MC and TP have their limitations. TP generally requires non-
trivial human intervention, and MC is limited by the state explosion problem 
[3]. The situation for MC is especially daunting for systems with large data 
components. In these cases, it is common to rely on a model abstraction to 
make MC feasible. Unfortunately, this may also add inaccuracies to the 
verification process, rendering it invalid.  
 
We build upon current research and propose a hybrid verification approach 
that leverages the automation of MC and the logical soundness and 
flexibility of TP to build a highly automated, high confidence verification 
system. We perform a preliminary investigation of the effectiveness of this 
method by verifying a random access memory (RAM) model. We also 
discuss how the lessons learned in this case study can be extended and 
implemented in a robust verification system to verify other similar systems. 

Problem 
• Formal Verification research aims at broadening the class of systems that 

can be verified through increased automation and reduced complexity 
 

• Most common technique for reducing complexity is abstraction 
 

• Automatic discovery of such abstractions is an open problem 
 

• Manual creation of abstractions requires a deep understanding of how 
the system works and some expertise in formal verification 
 

• Manual abstractions + Human error = Potentially disastrous results  
 

• An error in a model abstraction could mask errors in the original model, 
yielding inaccuracies in the overall verification. 
 

• Goal: To reduce the probability of human error playing a role in the 
manual creation of abstractions 
 

• Solution:  
(1) Using a Theorem Prover, we prove the correctness of our 

abstractions through type predicates and theorems.   
(2) Utilizing the proven theorems, we build a simpler abstract 

model to be verified with a Model Checker. 
 

Results and Conclusion 
The resulting runtime advantages from the decomposition abstraction can 
be seen in Fig. 3 and 4 below.  Abstractions like the RAM decomposition 
here make formal verification feasible in larger stateful models.  However, 
it is critical that these abstractions are correct in order for soundness to be 
maintained.  Using the ACL2 theorem prover in conjunction with the 
NuSMV model checker, we show how we can achieve the soundness 
necessary for verifying high consequence systems.  In the future, we hope 
to increase the automation of our system to promote the use of formal 
verification in all safety critical digital systems. 

Case Study: RAM 
We demonstrate our sound verification system as applied to a simple RAM 
model.  The RAM model (formally described below) is especially applicable 
to formal verification and abstraction because of its widespread use and 
notoriously stateful model.  We use the NuSMV symbolic model checker [1] 
in conjunction with the ACL2 theorem prover [2] as our formal verifiers.  
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Fig. 4: Comparison of runtimes for decomposed and unaltered verification 
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Fig. 3 : Runtime explosion for naïve verification 
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Decomposition Abstraction 
The decomposition we use (illustrated in Fig. 1) takes advantage of the 
redundant nature of the RAM model.  We conjecture that by using an 
iterative decomposition approach of splitting larger ram models into 
smaller ones, we can drastically reduce the total runtime for model 
checking and make verification feasible on commodity hardware. 

States 
We define a state 𝑆 as a 5-tuple (𝐼, 𝐴, 𝑇, 𝑂, 𝑌) where: 
 𝐼 represents the input value,  𝐼 ∈ ℤ2𝑀  
𝐴 represents the input address, 𝐴 ∈ ℤ 
𝑇 represents the Read/Write control bit, 𝑇 ∈ 𝑅𝐸𝐴𝐷, 𝑊𝑅𝐼𝑇𝐸  
𝑂 represents the output value, 𝑂 ∈ ℤ2𝑀 
𝑌 represents the stored data as an ordered 𝑁-length list of 𝑀-bit values 

and  𝑌𝑖 represents the 𝑖th value in this list. 𝑌 ∈ ℤ
2𝑀
𝑁  

Initial state 𝑆0 = 0,0, ⊥ 0,0𝑁  

Formal Definitions 
We formally describe the RAM model using a Kripke structure with state 
space 𝑆, transition relation 𝑅, and edge label 𝐿 as follows: 

Transitions 
The transition relation 𝑅 ⊆ 𝑆 × 𝑆 is based off two predicates 𝑟𝑒𝑎𝑑 and 
𝑤𝑟𝑖𝑡𝑒 as well as the control bit 𝑇: 

𝑅 = 𝑆, 𝑆′  | 𝑇 = 𝑅𝐸𝐴𝐷 ∧ 𝑟𝑒𝑎𝑑 𝑆, 𝑆′ ∨ 𝑇 = 𝑊𝑅𝐼𝑇𝐸 ∧ 𝑤𝑟𝑖𝑡𝑒 𝑆, 𝑆′  

We refer the reader to the paper for a detailed description. 

Proof 
The critical component to abstraction in formal verification is verifying that 
the abstraction is actually representative of the target model.  In our case 
study, we use the ACL2 theorem prover to prove that the abstraction is 
correct. An excerpt from our theorems is given in Fig. 2. 
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Fig. 1:  Illustration of RAM Decomposition Abstraction.  Applied iteratively, the size of 
the RAM model that is actually checked becomes trivially small.  The problem is thus 
reduced from one of complexity 𝑂 2𝑁𝑀  to 𝑁 problems of size 𝑂(2𝑀). 

(defthm decompose-is-mem 

 (implies  

  (and  

   (memoryp m) 

   (posp n) 

   (< n (mem-size m))) 

  (let  

   ((r (decompose-memory m n))) 

   (and 

    (memoryp (mv-nth 0 r)) 

    (memoryp (mv-nth 1 r)))))) 

(defthm dec-comp-equal 

 (implies  

  (memoryp mem) 

  (let 

   ((r (decompose-memory mem n))) 

   (equal  

    (compose-memory  

     (mv-nth 0 r)  

     (mv-nth 1 r)) 

    mem)))) 

 

(defthm decompose-is-mem 

 (implies  

  (and  

   (memoryp m) 

   (posp n) 

   (< n (mem-size m))) 

  (let  

   ((r (decompose-memory m n))) 

   (and 

    (memoryp (mv-nth 0 r)) 

    (memoryp (mv-nth 1 r)))))) 

(defthm dec-comp-equal 

 (implies  

  (memoryp mem) 

  (let 

   ((r (decompose-memory mem n))) 

   (equal  

    (compose-memory  

     (mv-nth 0 r)  

     (mv-nth 1 r)) 

    mem)))) 

 

Fig. 2: Theorems in ACL2 used to prove soundness of decomposition abstraction 
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