
Maintaining Soundness in Hybrid Verification
Approaches for Stateful Models: A Case Study

Kevin Hulin
The University of Texas at Dallas

kjhulin@sandia.gov

Yalin Hu
Sandia National Laboratories

yhu@sandia.gov

Abstract
Formal verification techniques such as model checking (MC) and theorem
proving (TP) have found increasingly widespread use in the design of critical
digital systems as a means to ensure their functional correctness [4][5].
However, both MC and TP have their limitations. TP generally requires non-
trivial human intervention, and MC is limited by the state explosion problem
[3]. The situation for MC is especially daunting for systems with large data
components. In these cases, it is common to rely on a model abstraction to
make MC feasible. Unfortunately, this may also add inaccuracies to the
verification process, rendering it invalid.

We build upon current research and propose a hybrid verification approach
that leverages the automation of MC and the logical soundness and
flexibility of TP to build a highly automated, high confidence verification
system. We perform a preliminary investigation of the effectiveness of this
method by verifying a random access memory (RAM) model. We also
discuss how the lessons learned in this case study can be extended and
implemented in a robust verification system to verify other similar systems.

Problem
• Formal Verification research aims at broadening the class of systems that

can be verified through increased automation and reduced complexity

• Most common technique for reducing complexity is abstraction

• Automatic discovery of such abstractions is an open problem

• Manual creation of abstractions requires a deep understanding of how
the system works and some expertise in formal verification

• Manual abstractions + Human error = Potentially disastrous results

• An error in a model abstraction could mask errors in the original model,
yielding inaccuracies in the overall verification.

• Goal: To reduce the probability of human error playing a role in the
manual creation of abstractions

• Solution:
(1) Using a Theorem Prover, we prove the correctness of our

abstractions through type predicates and theorems.
(2) Utilizing the proven theorems, we build a simpler abstract

model to be verified with a Model Checker.

Results and Conclusion
The resulting runtime advantages from the decomposition abstraction can
be seen in Fig. 3 and 4 below. Abstractions like the RAM decomposition
here make formal verification feasible in larger stateful models. However,
it is critical that these abstractions are correct in order for soundness to be
maintained. Using the ACL2 theorem prover in conjunction with the
NuSMV model checker, we show how we can achieve the soundness
necessary for verifying high consequence systems. In the future, we hope
to increase the automation of our system to promote the use of formal
verification in all safety critical digital systems.

Case Study: RAM
We demonstrate our sound verification system as applied to a simple RAM
model. The RAM model (formally described below) is especially applicable
to formal verification and abstraction because of its widespread use and
notoriously stateful model. We use the NuSMV symbolic model checker [1]
in conjunction with the ACL2 theorem prover [2] as our formal verifiers.

1

10

100

1000

10000

100000

1000000

0 2 4 6 8 10 12

R
u

n
ti

m
e

 (
Se

co
n

d
s)

Memory size (N)

Naïve Policy Run-times for M = 8, 12, 16

M=8 M=12 M=16

Fig. 4: Comparison of runtimes for decomposed and unaltered verification

1

1E+25

1E+50

1E+75

1E+100

1E+125

1E+150

1E+175

1

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

N
u

m
b

e
r

o
f

St
at

e
s

R
u

n
ti

m
e

 (
Se

co
n

d
s)

U

si
n

g
fl

ag
s

-c
o

i,
 -

d
f,

 -
d

yn
am

ic

Memory Size (N)

Comparison of Runtimes for RAM (M=16)

Number of States Unaltered Runtime Decomposition Runtime

Fig. 3 : Runtime explosion for naïve verification

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly subsidiary of Lockheed Martin Corporation
for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

SAND# 2012-XXXXX

Image: digitalart / FreeDigitalPhotos.net

Decomposition Abstraction
The decomposition we use (illustrated in Fig. 1) takes advantage of the
redundant nature of the RAM model. We conjecture that by using an
iterative decomposition approach of splitting larger ram models into
smaller ones, we can drastically reduce the total runtime for model
checking and make verification feasible on commodity hardware.

States
We define a state 𝑆 as a 5-tuple (𝐼, 𝐴, 𝑇, 𝑂, 𝑌) where:
 𝐼 represents the input value, 𝐼 ∈ ℤ2𝑀
𝐴 represents the input address, 𝐴 ∈ ℤ
𝑇 represents the Read/Write control bit, 𝑇 ∈ 𝑅𝐸𝐴𝐷, 𝑊𝑅𝐼𝑇𝐸
𝑂 represents the output value, 𝑂 ∈ ℤ2𝑀
𝑌 represents the stored data as an ordered 𝑁-length list of 𝑀-bit values

and 𝑌𝑖 represents the 𝑖th value in this list. 𝑌 ∈ ℤ
2𝑀
𝑁

Initial state 𝑆0 = 0,0, ⊥ 0,0𝑁

Formal Definitions
We formally describe the RAM model using a Kripke structure with state
space 𝑆, transition relation 𝑅, and edge label 𝐿 as follows:

Transitions
The transition relation 𝑅 ⊆ 𝑆 × 𝑆 is based off two predicates 𝑟𝑒𝑎𝑑 and
𝑤𝑟𝑖𝑡𝑒 as well as the control bit 𝑇:

𝑅 = 𝑆, 𝑆′ | 𝑇 = 𝑅𝐸𝐴𝐷 ∧ 𝑟𝑒𝑎𝑑 𝑆, 𝑆′ ∨ 𝑇 = 𝑊𝑅𝐼𝑇𝐸 ∧ 𝑤𝑟𝑖𝑡𝑒 𝑆, 𝑆′

We refer the reader to the paper for a detailed description.

Proof
The critical component to abstraction in formal verification is verifying that
the abstraction is actually representative of the target model. In our case
study, we use the ACL2 theorem prover to prove that the abstraction is
correct. An excerpt from our theorems is given in Fig. 2.

0

N

M = word width (bits) M = word width (bits)

N
 =

 N
u

m
b

er
 o

f
W

o
rd

s
N

 =
 N

u
m

b
er

 o
f

W
o

rd
s

…

0

N/2-1

M M

N
/2

N

/2

…

N/2

N

M M

N
/2

N

/2

…

Fig. 1: Illustration of RAM Decomposition Abstraction. Applied iteratively, the size of
the RAM model that is actually checked becomes trivially small. The problem is thus
reduced from one of complexity 𝑂 2𝑁𝑀 to 𝑁 problems of size 𝑂(2𝑀).

(defthm decompose-is-mem

 (implies

 (and

 (memoryp m)

 (posp n)

 (< n (mem-size m)))

 (let

 ((r (decompose-memory m n)))

 (and

 (memoryp (mv-nth 0 r))

 (memoryp (mv-nth 1 r))))))

(defthm dec-comp-equal

 (implies

 (memoryp mem)

 (let

 ((r (decompose-memory mem n)))

 (equal

 (compose-memory

 (mv-nth 0 r)

 (mv-nth 1 r))

 mem))))

(defthm decompose-is-mem

 (implies

 (and

 (memoryp m)

 (posp n)

 (< n (mem-size m)))

 (let

 ((r (decompose-memory m n)))

 (and

 (memoryp (mv-nth 0 r))

 (memoryp (mv-nth 1 r))))))

(defthm dec-comp-equal

 (implies

 (memoryp mem)

 (let

 ((r (decompose-memory mem n)))

 (equal

 (compose-memory

 (mv-nth 0 r)

 (mv-nth 1 r))

 mem))))

Fig. 2: Theorems in ACL2 used to prove soundness of decomposition abstraction

References
[1] NuSMV Model Checking Tool (http://nusmv.fbk.eu/)
[2] ACL2 A Computational Logic for Applicative Common Lisp
(http://www.cs.utexas.edu/~moore/acl2/)
[3] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking, The MIT Press,
1999.

[4] Intel Corporation, Statistical Analysis of Floating Point Flaw, FDIV
Replacement Program, November 1994.
[5] J. L. Lions, Report by the Inquiry Board, Ariane 5 Flight 501 Failure, July
1996.

SAND2011-0481C

