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International Technology Roadmap for Semiconductors (ITRS)
11 nm half-pitch for dense pattern, 4.5 nm CDs by 2022

– Optical Lithography Limit: 
32 nm ½ pitch (193 nm, H2O, double exposure)

– Extreme Ultraviolet Lithography (EUV)

• 13.2 nm soft x-ray source power

• High-resolution resist development

• Low Line Edge Roughness (LER)

• Complexity and cost

– Maskless (ML2)

• Electron-beam = costly, slow, charging

– Imprint Lithography

• Overlay

• Defect density

• Low cost

– Directed Self-assembly

• Defect density

• Alignment

• Assemble various pattern densities/pitches

• Long-range order
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Optical Interference Lithography
Prof. Steven J. Brueck, Alex Raub, Ruichao Zhu Matt George, Lance Williamson

• Interference pattern formed by splitting two or more spatially and temporally coherent light waves, 
producing a periodic series of fringes with intensity minima and maxima.

- 2-beam interference produces fringes with a period of ( /2)/sin( /2)

- 3-beam interference produces arrays with hexagonal symmetry

- 4-beam interference produces arrays with rectangular symmetry

• This interference pattern is recorded in a photopolymer which is subsequently baked/developed

• Critical dimensions approach 50 nm, patterned areas approach 4cm2

Brueck, Proc. IEEE 93 1704 (2005)
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Block-Copolymer Self Assembly
Prof. Paul F. Nealey, Charlie Liu, Lance Williamson

Prof. Juan de Pablo, Darin Pike, Brandon Peters

• Immiscible polymer blocks covalently bonded

• Periodicity depends on the molecule length, 
morphology depends on the volume fraction of 
each block

• Dense patterns of 5 - 50nm features

Ruiz et al., Science 321 936 (2008) 

Periodic Lines

T-junctions

Jog

300 nm

Isolated Lines

Spots

Bends

500 nm 

Stoykovich et al. ACS Nano, 2007, Science 2005
Daoulas et al., Langmuir, 2008
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Nano-Imprint Lithography
Jack L. Skinner, Peter Yang, Chip Steinhaus

– Uses a mold to transfer patterns into a thermally or UV cured resist

– Can fabricate large areas of features with sizes <10 nm

– Pattern entire wafer surfaces in the matter of minutes

California
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Technical Approach

Brueck, Proc. IEEE 93 1704 (2005)

1) <100nm feature definition by IL

Periodic Lines

T-junctions

Spots

Bends

500 nm 

Stoykovich et al. ACS Nano, 2007, Science 2005

2) BCP self assembly directed by IL to 
form final 10-50nm features

Crossbar array

Hybrid 1D/2D 
plasmonic
resonator

3) Transfer of BCP 
structures to NIL 
mask for device-

capable patterning

N
IL

 m
a

s
k

Focus on the science of DSA 
and multi-technique integration

Probe ultimate limitations and 
feasibility of BCP techniques

Develop tools for probing, 
understanding, and directing 
nanoscale interfaces, structures, 
behaviors, interactions

Deliver knowledge and 
understanding, not devices.  

Crossbar array

Hybrid 1D/2D 
plasmonic
resonator

4) Quantify

N
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a

s
k

4) Extensive metrology throughout; 
identify, quantify coupled parameters
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Directed Self Assembly

IL + BCP

Chemically-patternable mat 
+ end grafted brush
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4X multiplication by DSA

300nm

22-22k on 100nm
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Simulations of Surface-Dominated Structures
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Pattern Transfer

posts

holes

Pattern inversion and mask hardening by ALD infiltration

Dense patterns of 13-50nm features can now 
be fabricated in Si, SiO2, Si3N4, Al2O3, TiO2, 

Al, Cr, and more…

Complex structures
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Enhanced Optical Response from NIL Features

NIL mold via BCP

Simple SERS demonstration via NIL
AFM

Raman scattering plots of R6G on a) 
device chip - patterned section, b) 
control chip - bare silicon, and c) device 
chip – bare silicon section. Black arrows 
denote R6G scattering peaks.

SEM

Integration of block 
copolymer self 
assembly and 
nanoimprint
lithography presents 
a more rapid and 
cost-effective 
approach to 
nanofabrication 
compared to e-beam 
template writing.
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Metrology Throughout
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Wire Grid Polarizer
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~160 nm etch depth 

Transmission and Reflectance vs. etch (gap) depth
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Personnel Advancement

Alex Raub – employed by Periodic Structures, Inc.
Ruichao Zhu – finishing 2nd year of grad school

Charlie Liu – employed at IBM
Darin Pike – employed at SNL
Lance Williamson – close to graduating
Brandon Peters – close to graduating

Matt George – employed at Moxtek
Jack Skinner – Professor at MT Tech
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Summary

• 1x, 2x, 3x, 4x density multiplication via DSA

• Simulation and experiment actually correspond!

• Pattern transfer by etching, ALD infiltration, NIL

• NIL from BCP  plasmonic device

• Metrology processes developed, demonstrated

z


