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Introduction

Crystalline nanoporous frameworks (CNFs) represent a class of hybrid materials composed of ordered networks formed
Metal-based emission Chargmnsfer from metal cations or clusters of “nodes” connected by multi-tropic organic linkers. The presence of both inorganic and
7 >
iy “S organic components enables both the pore size and chemical environment to be tailored to achieve specific properties. In
/

addition, these crystalline structures exhibit high surface area, tunable pores sizes, structural flexibility, and can act as

hosts for a variety of guest molecules. CNFs display a wide range of luminescent behaviors resulting from the multi-

faceted nature of their structure. CNF possess an attractive, alternative platform for achieving long-range organization and

order. Thus they can be incorporated into light-harvesting devices and in the conversion of solar energy to electrical or

chemical energy. These attractive properties make MOF versatile materials that can function as integral, active, and

“ functional components in MOF-based devices. In this study, we probe the nano-confinement of an acceptor molecule
(PCBM) in CNF.
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Luminescent Metal-Organic Frameworks

L Synthesis and Characterization of MOF-177
Motivation

- - » Photoluminescence spectra of MOF-177 and it's linker
» Crystaliine nanoporous frameworks (CNFs), allows for detailed > Metal-organic frameworks (MOFs) provide many opportunities to Zn(NO,), * 6H,0 + H;BTB == MOF-177 reveal the emission originates from the linker itself. The Zn-
control over key interactions at the nanoscale so that the disorder tune energy transfer and the associated luminescence spectrum g _ : ,
and limited synthetic control inherent in conventional excitonic and time dependence ot metal cluster does not play a role in the framework’s
i i i ' emission.
heterojunction (HJ) materials can be overcome. » Tunable pore sizes using different linkers can result in changes in L 12
> The aim is to develop novel heterogeneous materials that will the LUMO and HOMO levels PN MOF-177 Steady-state spectra

serve as platforms for probing both fundamental properties !& o M 1t A
pertaining to PV energy conversion and the electronic and ""“‘lw w{;g ﬂ
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Figure 1. Schematic diagram of a MOF with donor/acceptors in the pores. COpH and BTB linker. .
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» X-ray diffraction shows framework crystallinity and stability.

» These structural features create many opportunities to tune the Figure 3. Increasing the conjugation and linker lengths affects the luminescence of MOFs. Infiltrating MOF-177 with PCBM does not change the framework

Interaction between light and the framework and between the

| orientation.
framework and constituents in the pores cavities. . > There is almost no preferred orientation after sample preparation
» The origins of MOF luminosity include the linker, the coordinated —
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metal ions, antenna effects, excimer and exciplex formation, and ' LI MOF-177 Xoray diffract
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Figure 5. Optical images of MOF-177 crystals.
— 20000 F
w
g
o 3 25000
» DFTB optimized structure shows that MOF-177 has two o ”
SEANTS g unique cavities, cavity A and B (9:4 ratio) shown left. The g 20000 1| —MOF-AT7 + PCBM Experimenta
X : N LR > ' \ 7/ . . . . . c —_— - egretca
o ~ ~ 7% Y = pore diameter is < 20 A in diameter. The diamater of the £ 15000 |/
k) . s AN (4 cavities are approximately 14 A and 24 A. T 10000 /
y QVT,. = Y Z w',,\v I“/- = N ‘,‘ EDDG r \J/\_JM
Figure 4. DFTB optimized structure of MOF-177. 5 10 15 20 25 30
Figure 2. Schematic diagram of a MOF with tunable functionalities. 2 Theta (Deg "C)

Figure 7. XRD powder pattern of MOF-177-PCBM complex
taken in reflection mode .

Probing the Nano-confinement of PCBM in Metal-Organic Frameworks

Crystalline Nanoporous Systems MOF-177 and PCBM Complex Quenching Interactions between MOF-177 and PCBM
» Create systems that allow manipulation and control of the intimate assembly and > Observations of a color change from clear and colorless to a deep purple > Two types of fluorescence quenchir)g can occur: (1) static quenching through the
communication between the different nanoscale PV components so we can understand indicating PCBM pore occupancy in MOF-177. formation of ground state complex; and (2) dynamic quenching due to difiusive

and then engineer the system to allow these materials to optimized their functionality. collisions between the PL emitter and quencher.

. - . » Slicing the MOF-177 crystal exposed the inner core of the crystal which shows _ _ _ _
» These span a range from ionic coordination bonds between positively charged metal inclusion of PBCM is not only in the exterior of the crystal, but also in the » At low gquencher concentrations, the interactions can be described by the Stern-

lons and negatively charged organic donors to fully covalent bonding. Organic “linkers” interior. Evenly colored throughout and uniformity of inclusion. Volmer equation. PLYPL =1 + Kg,, [quencher]
serve as both structure-directing elements and as functional groups that impart

specialized properties such as luminescence and selective molecular adsorption. ' , 5 Stern-Volmer plot: PL of BTB over the PL of PCBM BTB-et Linker and PCBM Absorption Spectra
. R 1
» CNF posses three critical properties: 1) crystallinity, which creates a highly ordered and > . — PCBM. 104 M
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well-defined structure; 2) permanent nanoporosity (1 — 5 nm diameter), which enables the Y e " | [ —PCBM & BTB-Et mixture, 10 M
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fabrication of hybrid structures by filling the pores with a second material; and 3) both 3 BIBEL 1M
inorganic and organic components, providing an unprecedented ability to tune the E
electronic structure. o PCBM
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Figure 10. Optical images of a whole (left) and sliced (right) MOF-177-PCBM complex crystal.
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» Emission of MOF-177 is quenched when infiltrated with PCBM.

n = HHE'.,L
# % "}— Figure 13. Stern-Volmer plot of PL quenching of BTB by PCBM (left) and UV-vis absorption spectra of
g i Iy e BTB (black), PCBM (blue), and BTB-PCBM (red) complex (right)
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MOF-177 @ » In dynamic quenching, the collisions between PCBM and BTB affects the excited
$ 2oE+06 | o state of BTB only. Thus no changes in the absorption spectrum are observed.
Figure 8. Schematic of charge transfer from MOF-177 to acceptor PCBM. E 2 0E+06 1500 |
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» DFTB + Optimized Structure: MOF-177 infiltrated with one PCBM per cavity. Modeling S 1 0E+08 .
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Figure 13. Raman spectra of MOF-177 (blue) and inclusion of PCBM into MOF-177 (red).
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» Comparing the vibrational spectra of MOF-177 and MOF-177-PCBM complex,

signature peaks corresponding to MOF-177 is slightly red-shifted when infiltrated
with PCBM, indicating interaction with the framework.
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Figure 9. DFTB calculated optimized structure of MOF-177-PCBM complex.
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» A new peak observable in the MOF-177 and PCBM complex at a Raman shift of

1462 cm* corresponds to the C44 Ay(2), "pentagonal pinch" mode.?
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© MOF-177-1,= 10 ns (28%); ©,= 24 ns (78%)
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Figure 12. Lifetime measurements of MOF-177 (blue) and MOF-177-PCBM complex (red).
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