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Metrics for determining the stability- and performance-robustness of a given controller 

to variations in open-loop dynamics are examined. Of particular interest are the probability 

distributions that these metrics have given some amount of uncertainty in the plant. The 

analysis herein characterizes these distributions using frequency response data collected 

experimentally for the open-loop plant. In doing so, it avoids using a model for the plant, 

thereby reducing errors and uncertainty inherent to the modeling of a plant. For a proposed 

controller, a Monte-Carlo method is used to evaluate the closed-loop performance and 

stability metrics for a large ensemble of test data and thus create an estimate of their 

distributions. Since ensembles of test data are typically quite small, a Karhunen-Loeve 

expansion based method is used to synthetically expand the set of FRFs. 

Nomenclature 

   = Random process vector 

   = Mean vector for random process 

   = j
th

 experimental realization of random process vector 

  = Orthogonal basis vectors 

  = Weighting matrix 

  = Linear combination vector 

  = Deviation matrix 

( )̂ = Estimated from experimental data 

  = Length of random process vector 

  = Number of contributing basis vectors 

  = Number of experimental realizations 

  = Smoothing parameter 

   = Kernel density estimator 

  = Perturbation of linear combination vector 
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       = Candidate combination vector 

 ̃ 
 
 = l

th
 Metropolis-Hastings Monte-Carlo generated combination vector for j

th
 test realization 

     = Probability of acceptance for candidate combination vector 

     = Acceptance parameter 

( )(  ) = Generated using Metropolis-Hastings Monte Carlo 

      = Performance and stability cost function 

      = Closed-loop, open-loop, and controller transfer functions 

   = k
th

 frequency point in transfer function 

  = Number of outputs in transfer function 

  = Number of inputs in transfer function 

       = Physical Mass, Stiffness and Damping Matrices 

   = Modal damping matrix 

   = Modal damping parameter for r
th

 mode 

   = r
th

 natural frequency 

  = Mode Matrix 

        = State-space matrices 

   = Cholesky decomposition of mass matrix 

  = Random matrix of zero mean, independent, normally distributed variables 

   = Dispersion level 

     = Number of degrees of freedom in model 

   = Second dimension of random matrix 

I. Introduction 

 major concern in control design is robustness both in stability and in performance. It is important to understand 

whether a nominally stable controller will become unstable or suffer in performance if the system changes or 

deviates from what has been modeled. Plant uncertainty can be quite significant, so it is the focus of many 

robustness studies including the research presented here. 

Robust performance for a controller, as described in Ref. 1, is the idea that for all plants belonging to a certain set, 

internal stability, and performance criteria should met. Robustness calculations for single-input, single-output 

systems often begin with gain and phase margins for the nominal system. Large gain and phase margins are meant to 

ensure that small system changes don’t upset the stability of the system. Ref. 2 suggests that this approach may be 

flawed as small parameter changes can cause the Nyquist curve to change shape resulting in large changes in gain 

and phase margins, and sometimes instability. Some robustness studies circumvent this issue by creating guaranteed 

stability bound estimates that seek to provide stability even for the worst-case plant scenario. Ref. 3 surveys several 

such methods and gives numerous definitions for stability including Lyapunov stability, asymptotic stability, and 

exponential stability. Such stability bound estimates demand that controllers are robust in stability to all possible 

system parameter variations and as a result are often excessively conservative and sacrifice performance. Perhaps a 

very small chance of instability is an acceptable tradeoff for a large improvement in performance. This notion has 

motivated stochastic robustness analyses, which can be used to estimate the likelihood that a system will be stable or 

that it will meet a defined stability criterion.  

Probability of instability, as discussed by Refs. 2,4-6, uses a nominal model for the plant and introduces 

parameter variation through Monte Carlo simulation. It then applies a controller and analyzes the system’s closed-

loop eigenvalues to determine stability. A limitation of the methods described in Refs. 2,4-6, is that they require a 

model of the plant. Although a model is usually available, there is no guarantee that it is sufficiently accurate for 

closed-loop control. In fact, models invariably introduce additional uncertainty into the system due to model-form 

error and uncertainty in model parameter distributions. Ref. 7 proposes a method that uses test data to estimate 

whether or not a closed-loop system is stable. It uses a set of measurements from the plant, but doesn’t require a 

plant model thus eliminating the difficulty of accurate identification of the plant. 

The method explored in this research also relies exclusively on test data to evaluate the stability and performance 

of a proposed controller. Starting with a small ensemble of test data, a large synthetic ensemble is created by using a 

Karhunen-Loeve decomposition combined with a Kernel Density Estimator and a Metropolis-Hastings Markov 

Chain Monte Carlo randomization as described in Ref. 8. This expanded set of test data is then evaluated using 

stability and performance metrics described in Ref. 9. The derived distribution of these metrics is then used to 

evaluate a controller. 

A 
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II. Expanding a Test Ensemble 

Even for relatively simple linear plants, it is difficult to predict the changes in performance or stability in a closed-

loop system resulting from parameter variation in the open-loop plant. For this reason, Monte Carlo simulation is a 

valuable tool. It can easily evaluate a large ensemble of perturbed systems to give a distribution of stability and 

performance results. This is a relatively straightforward process when a parameterized model is available for the 

open-loop plant. The focus of this research is to understand the performance- and stability-robustness of a proposed 

controller without access to a parameterized model of the open-loop plant. For this reason, the Monte Carlo 

simulation begins with a set of test data consisting of a frequency response function for each test realization. In order 

to perform the Monte Carlo simulation, additional synthetic realizations are created from an estimated probability 

density function of the open-loop plant. 

The method used to expand the test ensemble begins with a Karhunen-Loeve expansion (KLE) as described in 

Ref. 8. The KLE can be used to represent a nonstationary random process. A special case of this is the representation 

of a univariate, continuous valued, discrete parameterized, nonstationary random process. The random process of 

interest is     
 , and is created by stacking all of the input-output channels of the MIMO frequency response 

function, real and then imaginary.   is determined by the number of frequencies used in the FRF, and the number of 

input-output channels included. This vector random process can be described as a deviation from a mean vector 

    
 , where the deviation is represented using a singular value decomposition, 

          . (1)  

In this decomposition,        where    , is a diagonal matrix that contains the singular values of the 

deviation from the mean. The matrix        contains orthonormal vectors, which when added in linear 

combinations make up the deviation.      is a random vector which determines the contribution of each basis 

vector to the random process vector. The components of   correspond to the   vectors in   which contribute to the 

deviation (some vectors in   do not contribute at all due to the small corresponding weighting value in  ). The set 

of singular values can be truncated to the set of significant singular values. This step is omitted, but can be seen in 

Ref. 8. Using test data denoted by     
 ,   *     + where   is the number of test realizations, the 

components of the KLE in Eq. (1) can be estimated. The mean vector for all of the test realizations is first subtracted 

from each test vector and then filled into the deviation matrix       . 

Using a singular value decomposition of  , the estimated KLE components  ̂      ,  ̂      , and  ̂  
     can be found so that 

    ̂ ̂ ̂. (2)  

For every test realization    there is a corresponding vector     
  such that, 

  ̂  ,     -   
   . (3)  

The next step in generating additional realizations of    is to create additional realizations of   . This requires that 

a joint probability density function (PDF) be created for  . This can be done with the kernel density estimator 

(KDE) given as,  

  ̂ ( )  
 

 
∑

 

(    )   
    0

 

   
‖    ‖

 
1 

      (4)  

In this KDE,      is the vector at which the PDF is being evaluated, and      is the user selected smoothing 

parameter that determines the sharpness of the Gaussians about the original data vectors. A large smoothing 

parameter (   ) increases the probability that generated samples will have large deviations from the original data. 

A small smoothing parameter (     ) can result in a clustering of results around the original data points. The 

value can be chosen so that the model distribution matches the measured distribution. 

Realizations of    and    can now be created using a Metropolis-Hastings Markov-Chain Monte-Carlo technique. 

This method uses a starting vector and adds some random deviation to create a trial vector. The technique then 

evaluates the likelihood of the trial vector occurring using the KDE. The trial vector is accepted or rejected based on 

this likelihood compared to the likelihood of the starting vector. If the trial vector is more likely than the starting 

vector, it is automatically accepted. If the trial vector is less likely than the starting point, it is accepted based on the 

relative probability of it occurring. For example, if the trial vector is half as likely to occur as the starting vector, it 

has a 50% chance of being accepted. Note that no matter how unlikely a trial vector, it still has a small chance of 

being selected. If the trial vector is accepted, it then becomes the next starting vector, and the process is repeated. 

The initial starting vector can be randomly selected, or it can be chosen to be one of the original data vectors. The 

steps to implement this process are outlined as follows. 
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1) Suppose that      (divisible by  ) additional realizations are desired. Set the initial starting vector  ̃ 
 
 

   equal to the experimental vector   . From there, repeat steps a-d until           realizations have 

been created. 

a. Create a random trial vector, 

         ̃ 
 
     (5)  

where   is a variation vector that is small enough to allow         
  to remain in the vicinity of  ̃ 

 
. 

b. Evaluate the probability of acceptance for        as follows: 

      
 ̂ (      )

 ̂ . ̃ 
 
/

. (6)  

c. Find the random acceptance parameter      ,   - by randomly sampling a uniform distribution from 

zero to one. 

i. If          , then set  ̃   
 
         and start again at step (a.) using  ̃   

 
 as the new value for  ̃ 

 
. 

ii. If           then reject       , and start again at step (a.) using the same starting vector  ̃ 
 
 again. 

2) Repeat step 1 for each of the vectors    in the original test ensemble.  

3) Create a matrix containing all of the new realizations of  , 

  (  )  {[ ̃ 
     ̃  

 ]   [ ̃ 
     ̃  

 ]}         . (7)  

With  (  ) constructed, realizations of   
(  )

   , can be created as, 

   
(  )

     ̂ ̂  
(  )

, (8)  

where   {        }, and   
(  )

 is the k
th

 column of  (  ). 

III. Closed-Loop Evaluation 

A feedback controller can be evaluated for closed-loop performance and stability. The control design approach 

must not be specified. In order to evaluate the closed-loop system for any particular plant realization, stability and 

performance cost metrics that require non-parametric open-loop system data such as frequency response are desired. 

Though other stability and performance metrics may also work, those in Ref. 9 are suitable for this analysis. For a 

system with   inputs and   outputs, defined for the frequency vector     
    *      +  the performance 

based cost function     
  is defined as 

 
   

 

 
∑   ,    

 -  
  

   
 

(9)  

     (   )   (   ) (   ) (10)  

  (   )  , (   )   (   ) (   )-
   (11)  

where        is the closed-loop transfer function,       ,        is the plant realization,       , and is 

the controller being implemented, and    √  . This control metric can be split into contributions from 

performance output variables, and control output variables, and weighted based on their relative importance. This 

process is described in Ref. 9. 

The stability-based cost function     
  penalizes the distance between the closed-loop transfer function and the 

critical point on the Nyquist plot. The stability-based cost function is defined as  

    
 

 
∑

 

  (   )
  

  
   , (12)  

where 

  (   )     . (   )   (   ) (   )/. (13)  

With the stability and performance cost metrics evaluated for each of the plant realizations, probability density 

function estimates can be plotted for each metric.  

IV. Numerical Example 

To test the method described above, a simple simulation was analyzed. It contained six masses and ten springs 

interconnected as shown in Fig. 1, with the nominal design values given in Table 1. Modal damping (ζi3%) was 
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assumed. The performance output was selected to be the displacement of   , and the control output was selected to 

be the displacement of   . Random force inputs acted at   , and   . The nominal mass and stiffness matrices were 

formed for the model, 

    

[
 
 
 
 
 
       
       
       
       
       
       ]

 
 
 
 
 

 (14)  

    

[
 
 
 
 
 
                 

         
         
   
   
         

     
     
     

         
          
                    ]

 
 
 
 
 

. (15)  

The modal damping matrix is given as, 

     

[
 
 
 
 
 
          
          
          
          
          
          ]

 
 
 
 
 

 (16)  

where     
     *      +  is the  th

 undamped natural frequency of the spring mass system, and    is the 

number of degrees of freedom (DOF) in the model. The values used in  ,  , and    can be found in Table 1.  

 

The physical damping matrix which is used in the state space model can then be computed as, 

          
   (17)  

   [       ], (18)  

where          is a matrix containing the set of mass normalized mode shapes, which solve the eigenvalue 

equation, 

 ,    
  -    . (19)  

At this point the state-space representation containing 12 states can be formed 

 
  [

 (     )  (  )

           
] 

(20)  

   0
 
   1 

(21)  

   , (  )  (     )- (22)  

   , -. (23)  

A positive position feedback (PPF) controller was selected to increase the damping on the 1
st
 and 4

th
 plant modes. 

A. Synthetic Test Sample Generation 

Using the maximum entropy randomization method described in Ref. 10, new realizations of the mass matrix 

were created, 

 
      

 

  
  

 (   )   
(24)  

       (
      

  
 
)  (25)  
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where     
          is 

the Cholesky 

decomposition of the 

nominal mass matrix, 

           is a matrix 

of independent, zero mean, 

unit variance, normally 

distributed variables, and 

   (   - is the 

dispersion level, a value 

governing how much 

“randomness” is added to 

the nominal mass. For this 

example, a dispersion level 

of 5% was used. The 

operation    ( ) , rounds 

toward zero. The same 

process can be used for the 

stiffness and damping 

matrices to create the 

randomized realization of the system. Parameter variation could also have been used to create randomized systems, 

but doing so assumes that the model form is correct. The maximum entropy approach encompasses parameter 

uncertainty as well as model form uncertainty, and is thus more scalable to larger, more complex systems. 

Ten realizations were created and for each of these realizations, a frequency response function was calculated. In 

the absence of true test data, these FRFs were treated like test data. This gives the benefit of knowing the original 

distribution from which the “test” samples were being drawn. Additionally, sampling this original distribution gives 

state-space realizations of the original distribution which can be analyzed using the methods of Refs. 2,4-6, to give a 

plot of the closed loop roots shown in Fig. 2. The corresponding probability of instability is zero, indicating that 

every realization of the original distribution is stable when paired with the controller used. 

B. KLE based FRF Generation 

The KLE generation method was then employed to create additional realizations of the FRF as seen in Fig. 3. As 

noted in Ref. 8, some of these FRFs represent physically unlikely systems. For example, some of the FRFs contain 

positive peaks where they should be negative and some have more than 6 peaks. Some of these systems would be 

considered physically unrealizable if the model form was assumed to be correct, but as mentioned above, no 

assumptions are made as to model form. 

The smoothing parameter   was chosen to be 0.25 using some trial-and-error iteration so that the resulting PDF 

estimates for the performance and stability metric didn’t seem to favor the individual test values, but seemed to 

 
Figure 1. Six DOF Spring-mass system 

diagram. Random force inputs are located at 

DOFs 4 and 5. A control input is located at DOF 

6. Control and performance outputs are located 

at DOFs 6 and 1 respectively. 

 

 
Figure 2. Root Locations for open and closed loop 

expected system distribution. The loci of eigenvalues 

for the open-loop and closed-loop systems is shown using 

the set of randomly generated plants. 
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Figure 3. Imaginary component of FRF. The 

imaginary component of the drive point FRF at DOF 6 is 

shown for the nominal system (black), the test 

realizations (red), and the generated systems (green). 
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Generated

Test

Nominal

Generated

Test

Nominal

Design 

Variable 

Nominal 

Value 

k1 3000 (N/m) 

k2 1500 (N/m) 

k3 1000 (N/m) 

k4 2000 (N/m) 

k5 1100 (N/m) 

k6 1400 (N/m) 

k7 1250 (N/m) 

k8 5000 (N/m) 

k9 3000 (N/m) 

k10 1000 (N/m) 

m1 1.0 (kg) 

m2 1.5 (kg) 

m3 1.2 (kg) 

m4 2.0 (kg) 

m5 2.5 (kg) 

m6 1.1 (kg) 

ζ1- ζ6 0.1 (N·s/m) 

Table 1. Nominal Design 

Parameters. 6 DOF Spring 

Mass System design variables. 
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model the whole distribution from which the test data 

might have come. Estimated PDFs for the stability metric 

are shown for values of   that are too high, and too low in 

Fig. 4. Fig. 5 shows the estimated PDFs for the closed-

loop performance metric for the performance output, and 

Fig. 6 shows the estimated PDFs for the closed-loop 

stability metric. Despite the unlikely FRF realizations 

mentioned previously, the KLE generated samples do a 

good job of approximating the expected distributions 

given the very limited amount of initial test data used.  

The biggest difference between the expected and 

generated results is the presence of some outliers. Even 

when the test data is closely grouped, the KLE generation 

method creates a few outliers in stability metric as well as 

performance metric values. To investigate the cause of 

the outliers in stability, the plant realizations that gave the 

maximum and minimum values for the stability metric 

were analyzed. Fig. 7 shows the open-loop and closed-

loop FRFs for these maximum and minimum systems. 

Fig. 8 shows the Nyquist plot for the closed-loop systems 

in Fig. 7. It is apparent from the Nyquist plot that the 

points leading up to the first mode are closest to the 

critical point and thus contribute most to the stability 

metric. The FRFs show that the variations in magnitude 

for the points leading up to the first mode are very small 

in the open-loop, and are only slightly larger in the 

closed-loop. Nevertheless, this variation accounts for the 

majority of the variation in the stability metric. Note that 

both the maximum and minimum FRFs have some KLE generated abnormalities compared to the nominal, but these 

have little effect on their stability metric outcomes because they are “well behaved” at low frequencies.  

Similar analysis of the performance metric maximum and minimum indicates that the performance metric is more 

sensitive to the abnormal FRFs. The performance metric penalizes FRFs which have large magnitudes. The largest 

magnitudes occur at the natural frequencies, and the controller is designed to increase the damping at the modal 

frequencies. When open-loop plant realizations have large peaks at frequencies that are even slightly shifted from 

those that the controller is designed for, the result is large magnitudes in the closed-loop FRF, and large 

performance-metric values. The effect is that the estimated distributions are shifted right as seen in Fig. 5. 

 

 

 
Figure 4. Examples of PDFs with badly selected 

smoothing parameters. This shows probability density 

functions for the (closed loop) stability cost metric when 

plant realizations are generated with a low value of   
(top plot       ), and a high value of   (bottom plot 
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Figure 5. Estimated performance metric probability 

distribution function. This plot shows the expected 

distribution of closed-loop performance cost (black), as 

well as the estimated performance cost distributions for 

the test realizations (red), and the generated realizations 

(green). 
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Figure 6. Estimated stability metric probability 

distribution function. This plot shows the expected 

distribution of closed-loop stability cost (black), as well as 

the estimated stability cost distributions for the test 

realizations (red), and the generated realizations (green). 
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V. Conclusion 

The analysis in this paper attempts to estimate the effects of plant uncertainty on the closed-loop controller. It 

does so using small sets of FRF data allowing test results without models to be used in the evaluation of a controller. 

This reduces the amount of uncertainty in the analysis because no model uncertainty is added. 

Certain problems are inherent to the use of small data sets in estimating PDFs. A single outlier, for example can 

skew the results quite a bit. For this reason, large outliers in the test data may warrant exclusion from the analysis. 

Many of the difficulties encountered with the techniques used revolve around the abnormal FRFs created by the 

KLE generation method. For this reason, other methods for FRF generation are being explored. Auto-Regressive-

Moving-Average (ARMA) parameterization, for example does a good job creating FRFs without abnormalities, but 

has difficulties when the FRFs have closely spaced modes. The ARMA method also requires some prior knowledge 

of the original system (such as number of modes) that is not necessary with the methods used in this paper. Another 

approach that has shown promise includes constraints in the KLE generation method to weed out abnormal 

realizations. 

Further work may attempt to refine the techniques used to generate the FRFs. This will involve developing more 

concrete guidelines to the choosing of the smoothing parameter. Further investigations could also include a wider 

array of controllers (perhaps some that are less sensitive to frequency shifts). 
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Figure 7. Open- and closed-loop stability curves. 
The top plot shows the open-loop FRFs that led to the 

maximum (red), and minimum (green) stability cost. 

Also shown is the nominal FRF (black). The bottom 

plot shows the same thing for the closed-loop system. 

0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

M
a

g
n

it
u

d
e

Frequency [Hz]

 

 

Nominal

Stability Maximum

Stability Minimum

0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

M
a

g
n

it
u

d
e

Frequency [Hz]

 

 

Nominal

Stability Maximum

Stability Minimum

-2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

--
---

---
--f

 =
 0

 H
z

--
---

---
--f

 =
 3

 H
z

Real

Im
a

g
in

a
ry

 

 

Nominal

Stability Maximum

Stability Minimum

0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

M
a

g
n

it
u

d
e

Frequency [Hz]

 

 

Nominal

Stability Maximum

Stability Minimum

0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

M
a

g
n

it
u

d
e

Frequency [Hz]

 

 

Nominal

Stability Maximum

Stability Minimum

-2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

--
---

---
--f

 =
 0

 H
z

--
---

---
--f

 =
 3

 H
z

Real

Im
a

g
in

a
ry

 

 

Nominal

Stability Maximum

Stability Minimum

 
Figure 8. Nyquist Contours. This plot shows the Nyquist 

contours for the closed loop systems that led to the 

maximum (red) and minimum (green) stability cost. Also 

shown is the nominal system Nyquist curve (black). 
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