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Metrics for determining the stability- and performance-robustness of a given controller
to variations in open-loop dynamics are examined. Of particular interest are the probability
distributions that these metrics have given some amount of uncertainty in the plant. The
analysis herein characterizes these distributions using frequency response data collected
experimentally for the open-loop plant. In doing so, it avoids using a model for the plant,
thereby reducing errors and uncertainty inherent to the modeling of a plant. For a proposed
controller, a Monte-Carlo method is used to evaluate the closed-loop performance and
stability metrics for a large ensemble of test data and thus create an estimate of their
distributions. Since ensembles of test data are typically quite small, a Karhunen-Loeve
expansion based method is used to synthetically expand the set of FRFs.

Nomenclature

X, = Random process vector

Uy = Mean vector for random process

x; = ™ experimental realization of random process vector
/4 = Orthogonal basis vectors

w = Weighting matrix

u = Linear combination vector

Y = Deviation matrix

0 = Estimated from experimental data

n = Length of random process vector

q = Number of contributing basis vectors

M = Number of experimental realizations

€ = Smoothing parameter

fu = Kernel density estimator

6 = Perturbation of linear combination vector
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Uirial = Candidate combination vector

u; = I™ Metropolis-Hastings Monte-Carlo generated combination vector for j™ test realization
P = Probability of acceptance for candidate combination vector

Tace = Acceptance parameter

(HMH) = Generated using Metropolis-Hastings Monte Carlo

JprJs = Performance and stability cost function

H,G,Q = Closed-loop, open-loop, and controller transfer functions

Wy = K" frequency point in transfer function

m = Number of outputs in transfer function

P = Number of inputs in transfer function

M,K,C, = Physical Mass, Stiffness and Damping Matrices

Cp = Modal damping matrix

7 = Modal damping parameter for r™ mode

w, = " natural frequency

)] = Mode Matrix

A,B,C,D = State-space matrices

Ly = Cholesky decomposition of mass matrix

R = Random matrix of zero mean, independent, normally distributed variables
Om = Dispersion level

Naof = Number of degrees of freedom in model

Ny = Second dimension of random matrix

I. Introduction

major concern in control design is robustness both in stability and in performance. It is important to understand

whether a nominally stable controller will become unstable or suffer in performance if the system changes or
deviates from what has been modeled. Plant uncertainty can be quite significant, so it is the focus of many
robustness studies including the research presented here.

Robust performance for a controller, as described in Ref. 1, is the idea that for all plants belonging to a certain set,
internal stability, and performance criteria should met. Robustness calculations for single-input, single-output
systems often begin with gain and phase margins for the nominal system. Large gain and phase margins are meant to
ensure that small system changes don’t upset the stability of the system. Ref. 2 suggests that this approach may be
flawed as small parameter changes can cause the Nyquist curve to change shape resulting in large changes in gain
and phase margins, and sometimes instability. Some robustness studies circumvent this issue by creating guaranteed
stability bound estimates that seek to provide stability even for the worst-case plant scenario. Ref. 3 surveys several
such methods and gives numerous definitions for stability including Lyapunov stability, asymptotic stability, and
exponential stability. Such stability bound estimates demand that controllers are robust in stability to all possible
system parameter variations and as a result are often excessively conservative and sacrifice performance. Perhaps a
very small chance of instability is an acceptable tradeoff for a large improvement in performance. This notion has
motivated stochastic robustness analyses, which can be used to estimate the likelihood that a system will be stable or
that it will meet a defined stability criterion.

Probability of instability, as discussed by Refs. 2,4-6, uses a nominal model for the plant and introduces
parameter variation through Monte Carlo simulation. It then applies a controller and analyzes the system’s closed-
loop eigenvalues to determine stability. A limitation of the methods described in Refs. 2,4-6, is that they require a
model of the plant. Although a model is usually available, there is no guarantee that it is sufficiently accurate for
closed-loop control. In fact, models invariably introduce additional uncertainty into the system due to model-form
error and uncertainty in model parameter distributions. Ref. 7 proposes a method that uses test data to estimate
whether or not a closed-loop system is stable. It uses a set of measurements from the plant, but doesn’t require a
plant model thus eliminating the difficulty of accurate identification of the plant.

The method explored in this research also relies exclusively on test data to evaluate the stability and performance
of a proposed controller. Starting with a small ensemble of test data, a large synthetic ensemble is created by using a
Karhunen-Loeve decomposition combined with a Kernel Density Estimator and a Metropolis-Hastings Markov
Chain Monte Carlo randomization as described in Ref. 8. This expanded set of test data is then evaluated using
stability and performance metrics described in Ref. 9. The derived distribution of these metrics is then used to
evaluate a controller.
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1. Expanding a Test Ensemble

Even for relatively simple linear plants, it is difficult to predict the changes in performance or stability in a closed-
loop system resulting from parameter variation in the open-loop plant. For this reason, Monte Carlo simulation is a
valuable tool. It can easily evaluate a large ensemble of perturbed systems to give a distribution of stability and
performance results. This is a relatively straightforward process when a parameterized model is available for the
open-loop plant. The focus of this research is to understand the performance- and stability-robustness of a proposed
controller without access to a parameterized model of the open-loop plant. For this reason, the Monte Carlo
simulation begins with a set of test data consisting of a frequency response function for each test realization. In order
to perform the Monte Carlo simulation, additional synthetic realizations are created from an estimated probability
density function of the open-loop plant.

The method used to expand the test ensemble begins with a Karhunen-Loeve expansion (KLE) as described in
Ref. 8. The KLE can be used to represent a nonstationary random process. A special case of this is the representation
of a univariate, continuous valued, discrete parameterized, nonstationary random process. The random process of
interest is x, € R™, and is created by stacking all of the input-output channels of the MIMO frequency response
function, real and then imaginary. n is determined by the number of frequencies used in the FRF, and the number of
input-output channels included. This vector random process can be described as a deviation from a mean vector
U, € R™, where the deviation is represented using a singular value decomposition,

X = Uy + VWU, (8]

In this decomposition, W € R™? where n > q, is a diagonal matrix that contains the singular values of the
deviation from the mean. The matrix V € R™" contains orthonormal vectors, which when added in linear
combinations make up the deviation. u € R? is a random vector which determines the contribution of each basis
vector to the random process vector. The components of u correspond to the g vectors in ¥V which contribute to the
deviation (some vectors in ¥ do not contribute at all due to the small corresponding weighting value in W). The set
of singular values can be truncated to the set of significant singular values. This step is omitted, but can be seen in
Ref. 8. Using test data denoted by x; € RY, j € {1,..,M} where M is the number of test realizations, the
components of the KLE in Eq. (1) can be estimated. The mean vector for all of the test realizations is first subtracted
from each test vector and then filled into the deviation matrix ¥ € R,

Using a singular value decomposition of 1, the estimated KLE components ¥ € R™"*, W € R™M, and U €
RM*M can be found so that

P =TWU. @)
For every test realization x; there is a corresponding vector u; € R such that,
U =[uy - uy] € RMM ®)

The next step in generating additional realizations of x; is to create additional realizations of u;. This requires that
a joint probability density function (PDF) be created for U. This can be done with the kernel density estimator
(KDE) given as,

7 1 1 1 2

fu(@) =EZ}Z1WBXP [EH“_"J‘” ] (4)
In this KDE, a € R is the vector at which the PDF is being evaluated, and ¢ € R* is the user selected smoothing
parameter that determines the sharpness of the Gaussians about the original data vectors. A large smoothing
parameter (e~1) increases the probability that generated samples will have large deviations from the original data.
A small smoothing parameter (¢ < 0.1) can result in a clustering of results around the original data points. The
value can be chosen so that the model distribution matches the measured distribution.

Realizations of u; and x; can now be created using a Metropolis-Hastings Markov-Chain Monte-Carlo technique.
This method uses a starting vector and adds some random deviation to create a trial vector. The technique then
evaluates the likelihood of the trial vector occurring using the KDE. The trial vector is accepted or rejected based on
this likelihood compared to the likelihood of the starting vector. If the trial vector is more likely than the starting
vector, it is automatically accepted. If the trial vector is less likely than the starting point, it is accepted based on the
relative probability of it occurring. For example, if the trial vector is half as likely to occur as the starting vector, it
has a 50% chance of being accepted. Note that no matter how unlikely a trial vector, it still has a small chance of
being selected. If the trial vector is accepted, it then becomes the next starting vector, and the process is repeated.
The initial starting vector can be randomly selected, or it can be chosen to be one of the original data vectors. The
steps to implement this process are outlined as follows.
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1) Suppose that Ny, (divisible by M) additional realizations are desired. Set the initial starting vector ﬁ{J €
R™ equal to the experimental vector u;. From there, repeat steps a-d until N. = N, /M realizations have
been created.

a. Create a random trial vector,

Utrial = ﬁ{ + 6' (5)

where 6 is a variation vector that is small enough to allow u,,;,; € R to remain in the vicinity of ﬁ{
b. Evaluate the probability of acceptance for u,,;,; as follows:

Pace = 2180 (6)
c. Find the random acceptance parameter .. € [0,1] by randomly sampling a uniform distribution from
zero to one.
i If P,.. = 1., then set ﬁ{H = Ui and start again at step (a.) using ﬁ{+1 as the new value for i/
ii. If P, < 7y then reject u,,.;q;, and start again at step (a.) using the same starting vector ﬁ{ again.
2) Repeat step 1 for each of the vectors u; in the original test ensemble.
3) Create a matrix containing all of the new realizations of u,

v = {[ag, ..,y |, .. [ul, .. al ]} € R Ngen, @)
With UMH) constructed, realizations of x(MH) € R", can be created as,
xfCMH) U, + VWu(MH) (8)

where k € {1, ..., Nyep }, and ™™ is the k™ column of U™,

I11. Closed-Loop Evaluation

A feedback controller can be evaluated for closed-loop performance and stability. The control design approach
must not be specified. In order to evaluate the closed-loop system for any particular plant realization, stability and
performance cost metrics that require non-parametric open-loop system data such as frequency response are desired.
Though other stability and performance metrics may also work, those in Ref. 9 are suitable for this analysis. For a
system with m inputs and p outputs, defined for the frequency vector w;, € R*,k € {1, ...,n,}, the performance
based cost function J,, € R* is defined as

1 n
]p =Ezki tT[Hka ]Aw (9)
H, = H(jwy) = S(wir)G(wy) (10)
SGwi) = [Ipxpy + GG )QGwi)] ™ (11)

where H € CP*™ is the closed-loop transfer function, § € CP*P, G € CP*™ is the plant realization, Q € C™*?, and is

the controller being implemented, and j =+/—1. This control metric can be split into contributions from
performance output variables, and control output variables, and weighted based on their relative importance. This
process is described in Ref. 9.

The stability-based cost function J, € R* penalizes the distance between the closed-loop transfer function and the
critical point on the Nyquist plot. The stability based cost function is defined as

Zk 1d2(}wk) S Aw, (12)
where
d(jay) = det (Ipxp) + G0 )QGwL))- (13)

With the stability and performance cost metrics evaluated for each of the plant realizations, probability density
function estimates can be plotted for each metric.

IV. Numerical Example
To test the method described above, a simple simulation was analyzed. It contained six masses and ten springs
interconnected as shown in Fig. 1, with the nominal design values given in Table 1. Modal damping ({;=3%) was
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assumed. The performance output was selected to be the displacement of m,, and the control output was selected to

be the displacement of m,. Random force inputs acted at m,, and ms. The nominal mass and stiffness matrices were
formed for the model,

[m 0 0 0 0 0 1
0 my 0 0 0 0
1o 0 my 0 o0 o0
M=10 o 0 m 0 o0 (14)
0 0 0 0 ms O
lo o0 o o 0 ml
fatlo+ks+k, —k,  —ky 0 0 —k, 1
| —k, ky+ks 0 0 0 —ks |
_ | —ks3 0 ks+ke O 0 —ke |
k=1 0 0 0 kytks O —k, : (15)
| 0 0 0 0 kg+hkiy —kg I
| —k, —ks  —ks —k,  —kg ko4 ks+ke+ky+ kol
The modal damping matrix is given as,
20w, 0 0 0 0 0
0 25w, O 0 0 0
| o 0 2Gws O 0 0
=1 9 0 0 20w, O 0 (16)
0 0 0 0 2%ws 0 |
[ o 0 0 0 0 2wl

where o, € R*, r € {1, ...,np}, is the " undamped natural frequency of the spring mass system, and n,, is the
number of degrees of freedom (DOF) in the model. The values used in M, K, and €, can be found in Table 1.
The physical damping matrix which is used in the state space model can then be computed as,

Cp = MOCL®™M (17)

D= [y, ..0,,]. (18)

where @ € R™ "D js a matrix containing the set of mass normalized mode shapes, which solve the eigenvalue
equation,

[K — w,.2M]¢, = 0. (19)

At this point the state-space representation containing 12 states can be formed
A= [0("D><TID) I("D) ] (20)

-M'Kk -M~lc),

_[ O 21
B = [M-l] @)
C= [I("D) O(HDXnD)] (22)
D = [0]. (23)

A positive position feedback (PPF) controller was selected to increase the damping on the 1% and 4™ plant modes.

A. Synthetic Test Sample Generation
Using the maximum entropy randomization method described in Ref. 10, new realizations of the mass matrix
were created,

Mrand - _LMT(RRT)LM (24)
nm
n +1
Ny = Fix< d;f 3 ), (25)
M
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where Ly, € R"dof*"dof s
the Cholesky
decomposition  of  the
nominal mass  matrix,
R € R"of*™ s a matrix
of independent, zero mean,

Design Nominal
Variable Value
kq 3000 (N/m)
ko 1500 (N/m)
ks 1000 (N/m)
Ka 2000 (N/m)

ks 1100 (N/m)
ke 1400 (N/m) unit variance, normally
ks 1250 (N/m) distributed variables, and
A e s
Ko 1000 (N/m) dlspers_lon level, a value
m 1.0 (kg) governing how  much
m, 1.5 (kg) “randomness” is added to
ms 1.2 (kg) the nominal mass. For this
m;‘ 32 gtg; _ _ _ example, a dispersion level
Me 1.1 (kg) Figure 1. Six DOF Spring-mass system of 5% was used. The
G- G 0.1 (N"s/m) diagram. Random force inputs are located at operation Fix(-), rounds
Table 1. Nominal Design  DOFs 4 and 5. A control input is located at DOF  toward zero. The same
Parameters. 6 DOF Spring 6. Control and performance outputs are located process can be used for the
Mass System design variables. at DOFs 6 and 1 respectively. stiffness and damping

matrices to create the
randomized realization of the system. Parameter variation could also have been used to create randomized systems,
but doing so assumes that the model form is correct. The maximum entropy approach encompasses parameter
uncertainty as well as model form uncertainty, and is thus more scalable to larger, more complex systems.

Ten realizations were created and for each of these realizations, a frequency response function was calculated. In
the absence of true test data, these FRFs were treated like test data. This gives the benefit of knowing the original
distribution from which the “test” samples were being drawn. Additionally, sampling this original distribution gives
state-space realizations of the original distribution which can be analyzed using the methods of Refs. 2,4-6, to give a
plot of the closed loop roots shown in Fig. 2. The corresponding probability of instability is zero, indicating that
every realization of the original distribution is stable when paired with the controller used.

B. KLE based FRF Generation

The KLE generation method was then employed to create additional realizations of the FRF as seen in Fig. 3. As
noted in Ref. 8, some of these FRFs represent physically unlikely systems. For example, some of the FRFs contain
positive peaks where they should be negative and some have more than 6 peaks. Some of these systems would be
considered physically unrealizable if the model form was assumed to be correct, but as mentioned above, no
assumptions are made as to model form.

The smoothing parameter & was chosen to be 0.25 using some trial-and-error iteration so that the resulting PDF
estimates for the performance and stability metric didn’t seem to favor the individual test values, but seemed to

x 10°
1 T T T T
150 ’ Frrrrrr r T
5 ‘ Closed-Loop g
100 "@m " Open-Loop
50 -
g - © - -
5 0 2
g = E 1
= 50 w ]
w Generated
-100 > ’ 5L “Test H
150 L T N R Nominal
10° 10" 10° 10t 0 5 10 15 20 25
Real Frequency [HZ]

Figure 2. Root Locations for open and closed loop Figure 3. Imaginary component of FRF. The
expected system distribution. The loci of eigenvalues imaginary component of the drive point FRF at DOF 6 is
for the open-loop and closed-loop systems is shown using shown for the nominal system (black), the test
the set of randomly generated plants. realizations (red), and the generated systems (green).
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Figure 4. Examples of PDFs with badly selected
smoothing parameters. This shows probability density
functions for the (closed loop) stability cost metric when
plant realizations are generated with a low value of ¢
(top plot € = 0.02), and a high value of & (bottom plot
e =1.2).

model the whole distribution from which the test data
might have come. Estimated PDFs for the stability metric
are shown for values of ¢ that are too high, and too low in
Fig. 4. Fig. 5 shows the estimated PDFs for the closed-
loop performance metric for the performance output, and
Fig. 6 shows the estimated PDFs for the closed-loop
stability metric. Despite the unlikely FRF realizations
mentioned previously, the KLE generated samples do a
good job of approximating the expected distributions
given the very limited amount of initial test data used.
The biggest difference between the expected and
generated results is the presence of some outliers. Even
when the test data is closely grouped, the KLE generation
method creates a few outliers in stability metric as well as
performance metric values. To investigate the cause of
the outliers in stability, the plant realizations that gave the
maximum and minimum values for the stability metric
were analyzed. Fig. 7 shows the open-loop and closed-
loop FRFs for these maximum and minimum systems.
Fig. 8 shows the Nyquist plot for the closed-loop systems
in Fig. 7. It is apparent from the Nyquist plot that the
points leading up to the first mode are closest to the
critical point and thus contribute most to the stability
metric. The FRFs show that the variations in magnitude
for the points leading up to the first mode are very small
in the open-loop, and are only slightly larger in the
closed-loop. Nevertheless, this variation accounts for the
majority of the variation in the stability metric. Note that

both the maximum and minimum FRFs have some KLE generated abnormalities compared to the nominal, but these
have little effect on their stability metric outcomes because they are “well behaved” at low frequencies.

Similar analysis of the performance metric maximum and minimum indicates that the performance metric is more
sensitive to the abnormal FRFs. The performance metric penalizes FRFs which have large magnitudes. The largest
magnitudes occur at the natural frequencies, and the controller is designed to increase the damping at the modal
frequencies. When open-loop plant realizations have large peaks at frequencies that are even slightly shifted from
those that the controller is designed for, the result is large magnitudes in the closed-loop FRF, and large
performance-metric values. The effect is that the estimated distributions are shifted right as seen in Fig. 5.
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o 6r Q o8-
2 2
] 4+ 506
S S
& ) 5 0.4+
0.2
e == c c r DRLT T % ok "
4 45 5 55 6 6.5 7 195
5 x10° s

Figure 5. Estimated performance metric probability

Figure 6. Estimated stability —metric

probability

distribution function. This plot shows the expected
distribution of closed-loop performance cost (black), as
well as the estimated performance cost distributions for
the test realizations (red), and the generated realizations

(green).
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distribution function. This plot shows the expected
distribution of closed-loop stability cost (black), as well as
the estimated stability cost distributions for the test
realizations (red), and the generated realizations (green).
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Also shown is the nominal FRF (black). The bottom shown is the nominal system Nyquist curve (black).

plot shows the same thing for the closed-loop system.

V. Conclusion

The analysis in this paper attempts to estimate the effects of plant uncertainty on the closed-loop controller. It
does so using small sets of FRF data allowing test results without models to be used in the evaluation of a controller.
This reduces the amount of uncertainty in the analysis because no model uncertainty is added.

Certain problems are inherent to the use of small data sets in estimating PDFs. A single outlier, for example can
skew the results quite a bit. For this reason, large outliers in the test data may warrant exclusion from the analysis.
Many of the difficulties encountered with the techniques used revolve around the abnormal FRFs created by the
KLE generation method. For this reason, other methods for FRF generation are being explored. Auto-Regressive-
Moving-Average (ARMA) parameterization, for example does a good job creating FRFs without abnormalities, but
has difficulties when the FRFs have closely spaced modes. The ARMA method also requires some prior knowledge
of the original system (such as number of modes) that is not necessary with the methods used in this paper. Another
approach that has shown promise includes constraints in the KLE generation method to weed out abnormal
realizations.

Further work may attempt to refine the techniques used to generate the FRFs. This will involve developing more
concrete guidelines to the choosing of the smoothing parameter. Further investigations could also include a wider
array of controllers (perhaps some that are less sensitive to frequency shifts).
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