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Introduction
• In an accident, reactive metal hydrides may be unintentionally 

exposed to air or water.

• The resulting exothermic reaction may endanger the safety of those 
around.

• To enable widespread use of these materials, an intrinsic hazard 
mitigation strategy could be employed.

Approach
• A composite mixture of the metal hydride with a polymer should a 

mitigating feature such as:

– Slowing the reaction rate.

– Stopping the penetration of oxygen.

– Absorbing the heat of reaction.

• The ideal polymer would:

– Form a cross-linked matrix to act as a “scaffold” for the active material.

– Be able to be polymerized in-situ with the active material.

– Withstand the operating environment.

– Have one or more of the  mitigating features.

– Have an insignificant effect on the performance of the metal hydride.

Results
• Synthesis: Three polymers were successfully synthesized  with 

sodium alante to composite materials. TGA analysis shows the neat 
polymers have acceptable performance:

– Polystyrene + divinyl benzene (DVB)

– Siloxane (-R2SiO-)

– Polystyrene+DVB-siloxane mixtures.

• Qualitative: Experiments visually compare mitigated and 
unmitigated pellets and powder dropped into water.
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Results
• Cycling: Hydrogen adsorption/desorption cycling at normal 

operating temperatures tests the capacity and durability of the 
composite material.

– Addition of the mitigating material decreases the hydrogen capacity of 
the metal hydride and effects vary with number of cycles:

• Reactivity: Oxygen is flowed through the sample and the heat 
released by the reaction determines the mitigating material’s 
effectiveness.

– The composites mitigate well initially, reducing heat release to between 
49% and 75% of its original amount, but degrade under repeated 
cycling:

• Thermal Stability: The polymers decompose at lower temperatures 
when mixed with the metal hydride in the composite materials

Conclusions
• Polymer/metal-hydride composites were successfully synthesized. 

• The composites started thermal decomposition at lower 
temperatures than their polymer constituent, but did form a char.

• The addition of the mitigating polymer to the metal hydride 
decreases the hydrogen capacity more than expected and is 
postulated to be due to mechanical blocking of sorption sites.  

• As-produced, the composites were found to mitigate well, reducing 
heat release to between 49% and 75% of its original amount. 

• Cycling under realistic operating conditions revealed that more work 
must be done to prevent the polymer matrix from  degrading. 

• It is suggested that the polymer composite approach to hazard 
mitigation has merit, and that future work which strives to 
understand the interaction between the polymer and active material 
during synthesis as well as cycling may enable better engineering of 
the polymers to avoid destruction of it mitigating property upon use.
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Cycling conditions:

• Adsorption: 30 min at 145 C; 
1900 psia (130 bar) supply pressure.

• Desorption: 60 min at 190 C; to vacuum.

• Number of cycles set by user.
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Flow-through Conditions:

• 24% O2, 75% N2, 1% He

• 200 C at start

• 0.1 SLPM
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The other polymer 
composites exhibited 

similar behavior.
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