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INTRODUCTION
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Laser Engineered Net Shaping (LENSTM)

 Pros
 Complex part geometries

 Rapid design to production

 Cons

 Speed

 Finishing required

 Open scientific questions
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Fundamental Questions

 How does the mechanical response of a LENS material 
compare to that of a wrought material.
 What role does the exotic microstructure play?

 Variability?

 How do we predict the response?
 What level of sophistication do we need in our simulations?

 Loss of ‘scale separation’?
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Parameter Sensitivities

 Laser power

 3.8 kW, 2 kW, 0.5 kW

 Parallel Hatch vs. Cross Hatch

 As-Deposited vs. Annealed

 Anisotropy

 X vs. Y vs. Z

 Center vs. Edge

 Strain Rate

 10-5 s-1 to 109 s-1

 Temperature

 20 oC to 300 oC

6

Schematic raster fill patterns

Sample Geometry



Parameter Sensitivities

 Laser power

 3.8 kW, 2 kW, 0.5 kW

 Parallel Hatch vs. Cross Hatch

 As-Deposited vs. Annealed

 Anisotropy

 X vs. Y vs. Z

 Center vs. Edge

 Strain Rate

 10-5 s-1, 10-3 s-1,  to 109 s-1

 Temperature

 20 oC to 300 oC
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EXPERIMENTS
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LENS Microstructure Orthographic Projections
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Wrought vs. LENS Microstructure
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Base Material
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Tensile Tests
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SIMULATIONS
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Crystal Plasticity Model
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(sum over slip systems)

Matous, K. and Maniatty, A., Finite element formulation for modeling large deformations in elasto-
viscoplastic polycrystals. Int. J. Numerical Methods in Engineering. 2004; 60:2313-2333.



Synthetic Microstructure Generation
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•

•

Potts grain growth model with a moving heat source



Synthetic Microstructure Generation
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Voronoi Overlay on a Hexahedral Mesh
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Inverse Pole Figures
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Mesh Convergence
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Mesh Convergence
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Calibration and Statistical Consistency
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Neutron Diffraction
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Bragg’s Law

http://en.wikipedia.org/wiki/Bragg's_law (modified)



Lattice Strains
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Anisotropy Predictions
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Validation Simulations
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Summary

 Experiments
 Additively manufactured 304L is 50-100% stronger and less ductile than 

comparable wrought 304L

 Simulations
 Synthetic microstructures generated

 Mesh convergence is difficult to obtain

 Qualitatively validated the model against neutron diffraction 
measurements

 Predicted mild anisotropy in yield and hardening
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Questions?



Crystal Plasticity
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Composition Differences
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Fe Cr Ni Mn Si Mo N Co P S C O
Wrought bal (68.2) 19.5 10.1 1.5 0.58 0.027 0.049 0.029 0.015 0.015 0.013 0
LENS Deposited bal (68.8) 18.8 10.28 1.49 0.51 0.04 0.075 0 0.007 0.007 0.01 0.023



Indicators of Dislocation Density
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Ferrite / Martensite
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Ferrite / Martensite
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Experiment Simulations
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Modeling Strategy

 Homogeneous Plasticity Models
 Isotropic, Von Mises

 Anisotropic, Hill

 Crystal Plasticity Finite Element Models
 Textured microstructure with equiaxed grains of uniform size

 Textured microstructure with approximate grain morphology

 Other material models?
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