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Background and Motivation

= Layer-by-layer powder bed fusion processes (e.g. SLM/SLS):

Laser (or electron)

beam to melt/sinter
particles

2O | =

Particle deposition

Selective laser melting Particle deposition Selective laser melting

= Does powder bed structure matter?
= Surface structure may affect laser/particle bed interactions
= Bulk powder packing may affect defect formation and surface finish of manufactured parts

= Need to understand effects of particle properties and powder process parameters on
powder bed structure

= Models of laser interaction, powder fusion depend on effective powder bed properties and
their variability = tied to particle-scale structure




Typical powder characteristics ) i
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Particle shape very close to spherical 2 well-suited for existing modeling capabilities
Typical particle diameter: 10-100 um; polydispersity factor 4-5

Powder layer thickness 30-150 um, laser beam spot size 70-200 pm (ref. 1)

m==) Understanding powder bed structure at the scale of individual particles is important

1. Vandenbroucke, B. and Kruth, J.P. Rapid Prototyping Journal 13 (2007): 196
2. Yadroitsev, 1., et al. Journal of Laser Applications 25 (2013): 052003




Sandia
Overview i) Natoat

= Discrete Element Method (DEM) simulations of powder spreading
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Simulation methods (DEM)

. Discrete Element Method (DEM): molecular-dynamics-like simulation of Newton’s
laws of motion for a collection of particles
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= Collision:

(SZRZ—I—RJ—HI‘@—FJH >0

= Standard approach to compute forces/torques: spring-dashpot, aka Cundall-
Strack?

=  Normal contact force:

Fn =V R€5(l€n611@'j — mevnvn)
1 . ] \ Y J

Elastic force due to deformation  Dissipative force
(Hertzian case here) (associated with
coefficient of restitution < 1) krn.,yn Constants related to material properties

R, = RiRj/(Ri - Rj)
Mme = mym;/(m; +m;)

F, = VR.6(—kuy — meyevy) ng; = (ri —r;)/[|ri — 4|

Vi = ((vi = v;) - nj;)ny;

= Tangential contact force

Truncated such that ||Fy|| < [|[uF || vi = (vi—Vv;) = vy — (Riw; + Rjw;) X ny;
Relative tangential displacement; duy v, — Ug - Ty
throughout duration time t of contact: dt t T?j
M Coefficient of friction
1
Total force:  Fitor = mig + Z(Fn,ij +Fyij)  Total torque: ;o1 = ) Z rij X Fiij
J J 5
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Simulations of powder spreading ) i

= Goalis not an exact match to actual process, but to capture key features, length scale ratios
and overall trends.

= Several approaches to representing complex, moving boundaries in DEM

Surface triangle mesh Clustered, overlapping Geometry primitives
(LIGGGHTS code) spheres
= Poor computational performance . Undesirable artificial roughness . Slight inaccuracy in forces at corners
= Inaccurate forces where . Inaccurate forces where . Not general, but adequate for current
multiple triangles contact multiple ‘wall spheres’ contact work
particles particles
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Large parameter space! ) feses_

Process-related Particle-related

=  Particle size distribution
= Type of distribution
=  Overall spread

- Contact parameters

= Stiffness, damping = relates to Young’s modulus, contact
mechanics

------ aps SEERHA 1 s =  Friction - relates to surface characteristics
de- = Cohesion = in progress!

i = Note: contact parameter sets can be different for particle-
i particle and particle-wall contact

y, build direction

> X, roller/slider direction 7
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Descriptors of powder bed top surface ) e,

Height profile: height averaged over z
direction as a function of x

~— ~~r T

> X, roller direction

z, periodic

Top view, grayscale intensity corresponds to height

Height autocorrelation function:
A(r) = <(H(X)-p) (H(x+r)-p)>/ 62
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Descriptors of bulk powder bed
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> X, roller direction
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Descriptors of bulk powder bed: ‘coarseness’ ) Jesms

Cubic samples of Full-thickness samples,
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Effects of spreader type rh) i,

Slider Roller, rotation in Roller, rotation against
direction of translation (forward) direction of translation (reverse)
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Effects of spreader speed i) Voo
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Increasing speed
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Effects of powder layer thickness ) S,

d,: controls layer thickness

dp I- d,: controls amount of powder

All previous data forgap = 1.0,dp =5.0,ds = 2.0
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Effects of particle size polydispersity ) S,

40
=  Gaussian distributions, mean —o =001
radius 0.5, vary o 30 o =01

=  Data shown for slider only
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Particle friction coefficient i) Moot

Surface properties also affected, but notable differences in bulk packing structure:
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= Spreader geometry, configuration and speed control quality of powder bed surface
= Slider generally more robust, roller in reverse rotation better than forward rotation
= Bulk packing (below surface) not strongly affected by spreader parameters

=  Particle properties control bulk packing (as well as powder bed surface)

= Higher friction = higher porosity, increased heterogeneity
= Larger polydispersity results in more homogeneous packing

Future work

= Include particle cohesion, rolling friction, more realistic geometries

= Adjust particle contact parameters based on experimental flowability data (e.g. angle of repose, Hall
flowmeter)

= Look at powder deposition near partially manufactured part
= Ray-tracing calculations for laser-power bed interaction (with LLNL)
= Coarse-grained calculations of thermal conductivity in particle packs, coupling to macroscale thermal models
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