

Used Fuel Disposition Campaign

Technical Feasibility of Direct Disposal of DPCs – Summary and Recommendations

Laura Price
Sandia National Laboratories

Used Fuel Disposition Working Group Meeting
Las Vegas, NV
June 11, 2015

Outline

- Purpose of the report
- Contributors
- Safety
- Engineering Feasibility
- Thermal Management
- Postclosure Criticality Control
- Recommendations

Purpose of the Report

- **Summarize results of a multi-year study of the feasibility of disposing of spent nuclear fuel in dual-purpose canisters**
 - Safety
 - Engineering feasibility
 - Thermal management
 - Postclosure criticality control
- **Recommend further information needs, particularly site-specific information needed to take disposal of SNF in DPCs into account in site screening or siting decisions**
- ***Summary of Investigations on Technical Feasibility of Direct Disposal of Dual-Purpose Canisters (FCRD-UFD-2015-000129)***

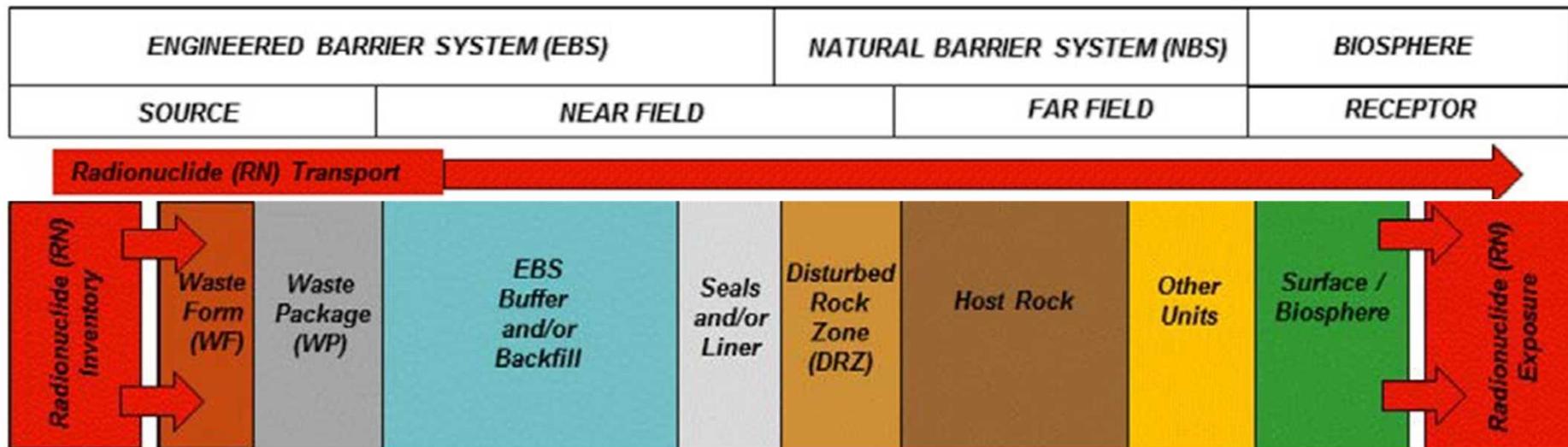
■ Sandia National Laboratories

- Ernie Hardin, Elena Kalinina, Teklu Hadgu, Anastasia Ilgen, Charles Bryan, Michael Voegele, Geoff Freeze, and Katrina Groth

■ Los Alamos National Laboratory

- Frank Perry

■ Oak Ridge National Laboratory


- John Scaglione, Kaushik Banerjee, Justin Clarity, Robert Jubin, Vladimir Sobes, and Rob Howard

■ Savannah River National Laboratory

- Joe Carter, Thomas Severynse

Used Fuel Disposition

Postclosure Safety

- Salt repository concept
 - Postclosure safety relies primarily on backfill and host rock
- Hard-rock, unbackfilled, open concept
 - Postclosure safety relies primarily on waste package
- Hard-rock, backfilled, open concept
 - Postclosure safety relies primarily on waste package
- Sedimentary, backfilled, open concept
 - Postclosure safety relies primarily on host rock
- Cavern-vault disposal concept
 - Postclosure safety relies primarily on backfill/buffer

■ Disposal Overpacks

- Site-specific design, either corrosion-resistant or corrosion-allowance

■ Shielding

- Within current state of practice

■ Surface-to-Underground Transportation

- Vertical shaft with hoist; hoist with required payload not yet developed
- Straight ramp with rail-based or rubber-tire based transport vehicle
- Spiral ramp with rubber-tire based transport vehicle; rubber-tire based vehicle with required payload not yet developed

■ Underground Transportation

- Rail-based or rubber-tire based

■ Emplacement Methods

- Open or enclosed

■ Buffer and Backfill Materials

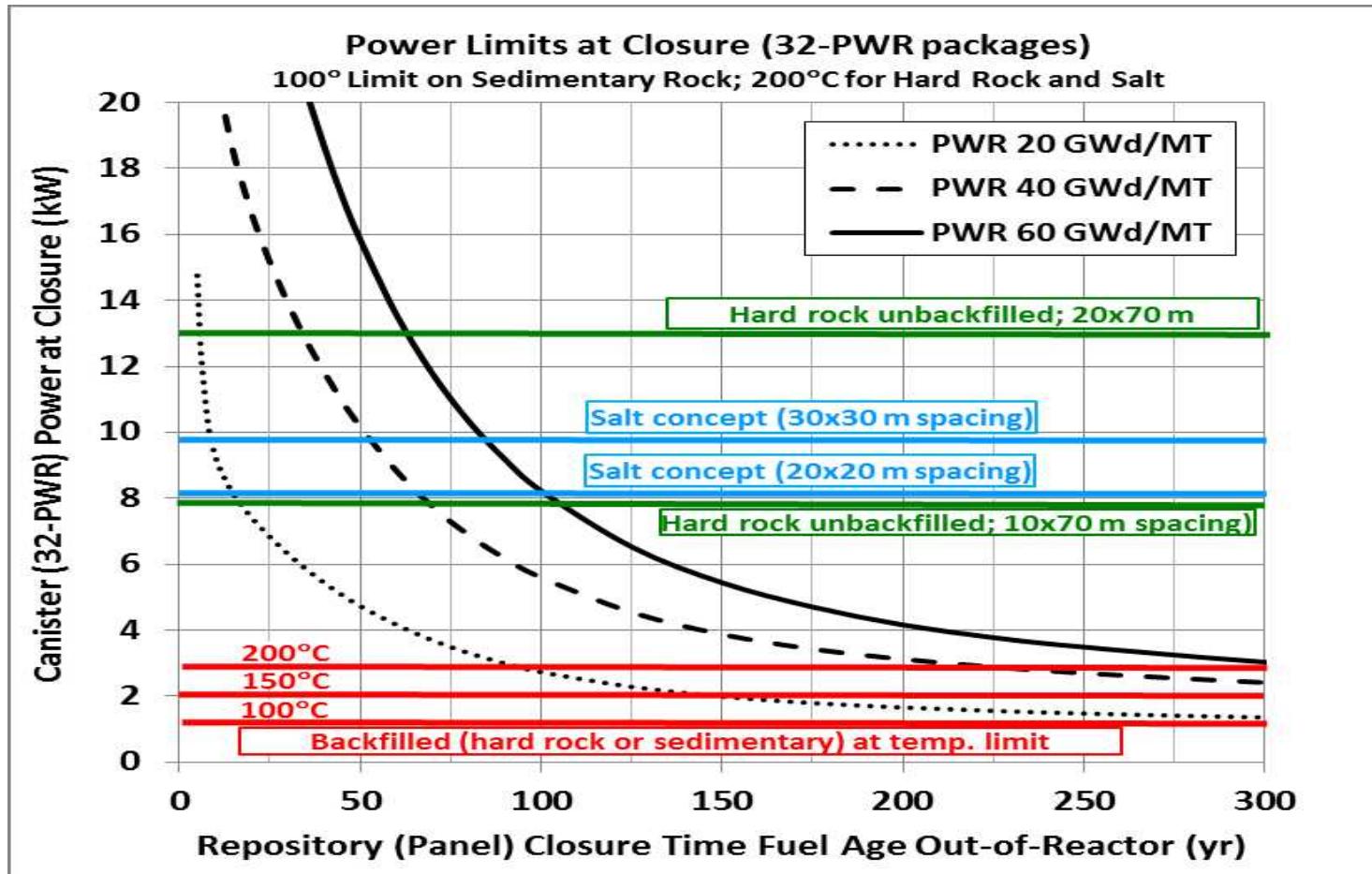
- Clay-based materials studied extensively; have low thermal conductivity and peak temperature target of 100°C
- Salt would be used for a salt repository; higher thermal conductivity, peak temperature tolerance of at least 200°C

■ Water Diversion

- Drip shield or backfill/buffer

■ Ground Support

- Excavation and ground support methods readily available
- Requiring long-term stability (100 years or more) would involve a more complex system

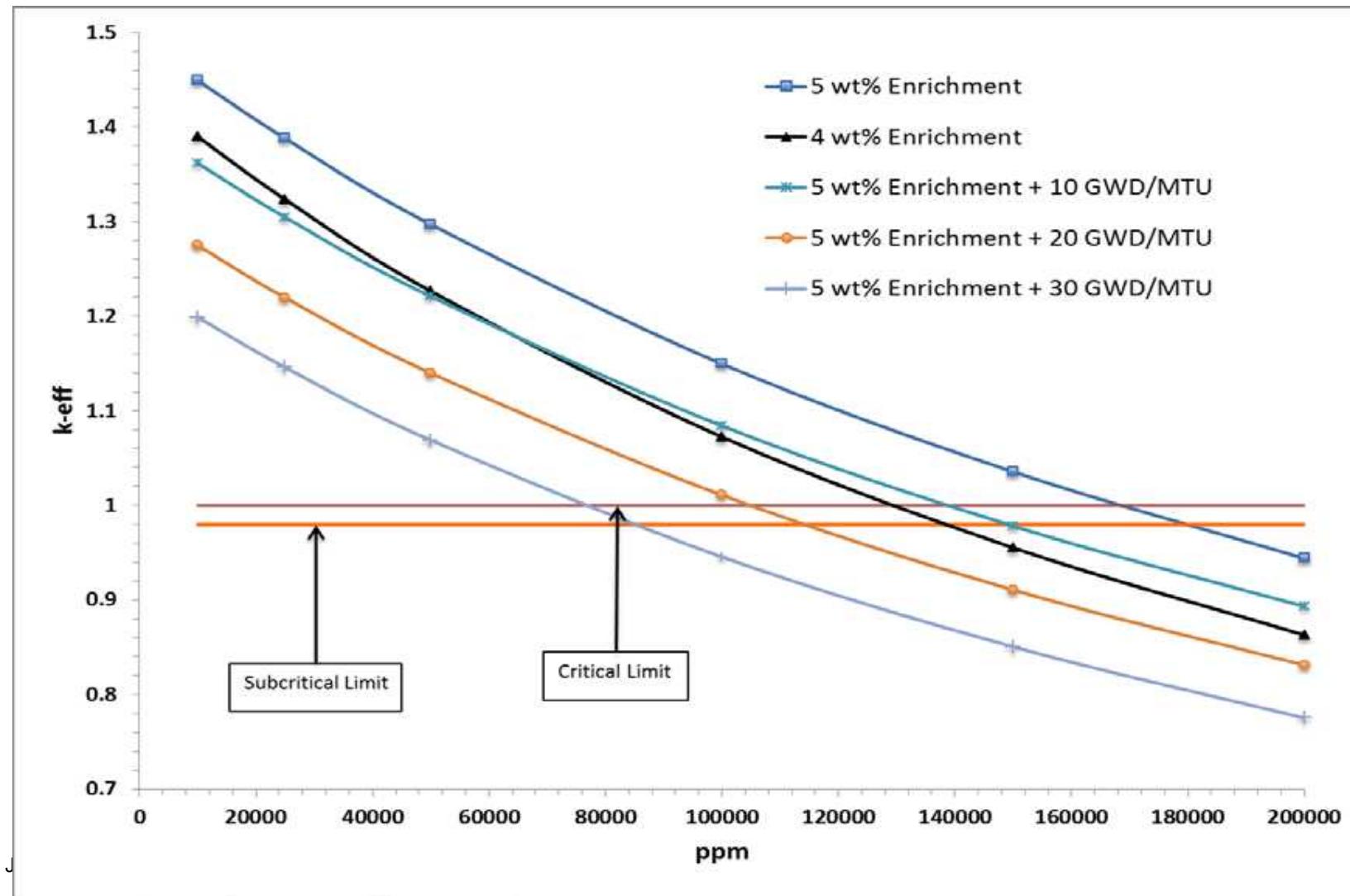

■ Peak temperature and time limits used in study

- 100°C for clay-based buffer/backfill and clay-rich sedimentary host rock
- 200°C for crystalline hard rock and salt
- 350°C for cladding
- 100 years of above-ground storage for DPCs
- 50 years of ventilation

■ Enclosed disposal modes not recommended (except for disposal in salt)

■ Salt disposal concept and hard-rock unbackfilled open disposal concept are the most feasible with respect to thermal management

Thermal Management



- Neutron-absorber materials will not last over repository time scales
- Criticality is possible ONLY if DPCs are flooded with groundwater
- To be excluded from the postclosure performance assessment on the basis of probability, the probability of criticality must be less than 10^{-4} over 10,000 years (or 10^{-8} per year).
- To be excluded from the postclosure performance assessment on the basis of consequence, the criticality events must have a negligible effect on repository performance objectives.

- Examined the 2007 DOE estimate of the probability of failure of an overpack from manufacturing defects
- Conducted an importance analysis to identify primary drivers of the failure probability
- Concluded that no single change to the system would drive the probability of failure below 10^{-8} failures per package
- Identified several opportunities for improving the previous modeling approach
 - Use updated Human Reliability Analysis methods
 - Include a well designed monitoring system to the overpack manufacturing process and take credit for it in the analysis

- Developed two stylized configurations representing degraded states
 - Total loss of neutron absorber from unspecified degradation and transport processes
 - Loss of the internal basket structure (including neutron absorber components) resulting in elimination of assembly-to-assembly spacing.
- Looked at 17 common dissolved aqueous species in various pore water compositions
- Chlorine is the only naturally abundant, neutron-absorbing element in groundwater that can offer significant reactivity reduction

Postclosure Criticality Control – Effect of Chlorine with Degraded Basket Configuration

■ Summary of analysis results for eight sites

- Seven PWR sites, one BWR site
- Seven used loss-of-absorber configuration; one used basket-degradation configuration

Number of Canisters	Number of Canisters with $K_{\text{eff}} > 0.98$ (design basis analysis)	Number of Canisters with $K_{\text{eff}} > 0.98$ (as-loaded analysis)	Number of Canisters with $K_{\text{eff}} > 0.98$ if chlorine is present at 19,000 ppm or greater	Number of Canisters with $K_{\text{eff}} > 0.98$ if chlorine is present at 31,000 ppm or greater
215	215	53	19	0

- Determine site-specific attributes of natural and engineered materials with respect to radionuclide transport
- Determine site-specific attributes of natural and engineered materials with respect to limiting postclosure criticality
- Develop performance assessment models that can discern differences in waste isolation performance for direct disposal of commercial SNF in DPCs compared to packaging purpose-designed for disposal
- Investigate effects of using cementitious materials in repository construction

- Understand fuel characteristics that are age-dependent for the purposes of aging management
- Develop logistical model and perform logistical simulation
- Investigate vertical handling of canisters designed for horizontal handling
- Further development of surface-to-underground transport
- Further development of underground emplacement vehicle
- Develop self-shielding waste package
- Perform corrosion tests for DPC basket materials
- Perform corrosion tests for corrosion-resistant overpacks
- Develop more robust overpack reliability analysis and design overpack manufacturing process
- Establish underground stability for extended repository ventilation

- Determine site-specific host rock thermal properties
- Establish backfill properties, degradation, and temperature tolerance (peak temperature tolerance of 200°C is desirable, as is high thermal conductivity)
- Investigate sinking of heavy packages in plastic host media (salt and perhaps clay)
- Develop process models for thermally driven coupled processes

- Criticality analysis for as-loaded DPCs
- Develop and justify stylized scenarios
- Develop in-package criticality consequence model*
- Develop burnup credit approach for BWR SNF
- Evaluate effects from radiolysis on basket degradation*
- Develop and evaluate DPC fillers for criticality control*
- Establish accuracy of reactor records for SNF

* Not needed for salt site