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Video Credit: Caldwell Lab, UC-Berkeley

Active Transport & Multiscale Phenomena
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Project goal: to understand how nature’s biomolecular machines dynamically
assemble materials across multiple lengths scales, and to apply these principles
and components in hybrid or composite materials whose assembly and
organization can be “self-directed” or autonomously responsive to stimuli
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e Consumes guanosine triphosphate (GTP)

e Forces of 40 pN (polymerization) & -15 pN
depolymerization

Active Transport Proteins

Kinesin Motors

e Dimeric protein

e Consumes adenosine triphosphate
(ATP) to produce mechanical force

e Work = ~40 pNenm; Efficiency =
~50%

e “Walks” along MTs in 8-nm steps

e Transport velocity =0.5-12
um/sec
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" . Exvivo Kinesin Biomolecular Machines

A minimalistic system can be assembled
from:

e Solid surface

* Kinesin motor proteins Transport @ ~750 nm/s, forces >100s
* Biotinylated microtubules Streessvidinifamoridanlthd cargo

How can the energy-dissipative nature of these machines
exploited to dynamically assemble hybrid/composite materials?
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DSA of Nanocomposite Rings

°
o 9 %, o
< s

‘Rt o
o °°:g°°¢ °°°°° 4 $o2%,0\8 o e
° o:% i gl | Streptavidin-QDs + & Streptavidin-QDs +
o S o % N
3 £C biotinylated MTs N
<

Energy dissipation
via ATP hydrolysis

I
~50 kJ/mol ATP

Randomly assembled MTs and Actively assembled MTs and
QDs (equilibrium) QDs (+ work)

chemical energy - mechanical work = active assembly

Bachand et al, (2004), Nano Lett. 4, 718; Bachand et al., (2005), J. Nanosci. Nanotechnol. 5, 781.
Liu et al., (2008), Adv. Mater. 20, 4476; Liu et al., (2011) Soft Matter 7, 3087.
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DSA of Nanocomposite Rings

Bolketpropetioatiof Hoditiot of o -
Qdots induces the spontaneous
DSA of ring composite structures

Liu et al. (2008) Adv. Mater. 7, 3087 Lam et al. (2014) Soft Matter 10, 8731

Mechanisms proposed, but not well-characterized (effects from ROS and
photodamage)
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DSA of Nanocomposite Rings

Motor function and/or MT structure
damaged by ROS generated during imaging
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Device enables characterization of DSA

without adverse effects due to dye
excitation

VanDelinder & Bachand (2014) Analytical Chemistry 86, 721

Microfluidic deoxygenation

Inlet 1
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DSA of Nanocomposite Rings

Three mechanisms were observed with differing frequency and resulting ring
structures.

Pinning — D/ @/

e Occurs when leading tip encounters inactive motor

* Results in ring w/ small inner diameter (<3 um)

e Rarely observed when ROS are removed
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DSA of Nanocomposite Rings

Three mechanisms were observed with differing frequency and resulting ring
structures.

Collisions /i& @

)
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e Primary mechanism of ring DSA
e Strongly dependent on MT surface density

* Results in rings w/ intermediate inner diameters (3 - 8 um)
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DSA of Nanocomposite Rings

Three mechanisms were observed with differing frequency and resulting ring
structures.
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e Twisted and/or kinked domain — induced curvature

* Results in ring w/ large inner diameter (>8 um)
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Regulating Ring Properties — Building Blocks

Head-to-tail assembly of MTs - permits the production of segmented MT
building blocks with varying functionality, lengths, and frequency.

Hilyte 488
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AMCA + Biotin
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Changing Ring Building Blocks

Segmented MT building blocks dynamically
assemble into composite rings that display
similar and unique behaviors:

e Rings form through all three mechanisms

e Rings with similar morphology and size

e Rings incorporate and maintain non-
biotinylated segments of MT building blocks

e Shearing — primarily QD carrying section
break upon collision

* Incorporation of MTs lacking biotin
(transiently and stably)

* Unspooling —removal of QD carrying section
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=" DSA of Lipid & Polymer Nanotube Networks
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Energy-dissipative, active transport drives the dynamic assembly and
reorganization of lipid-based organelles into complex structures such as the
endoplasmic reticulum (ER) and Golgi apparatus.

Valenzuela et al. (2011) Mol. Cell. Neurosci., 48, 269

Can biomolecular motors dynamically
assemble complex lipid structures ex vivo?

° vesicle

tubule network
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A Synthetic System for Creating Lipid Networks

A minimalistic system can be assembled from:

Inverted kinesin motility
Biotinylated microtubules
Streptavidin bridge

Biotinylated lipid vesicle ——_ Multilamellar, single type of lipid,
supply of “source materials”

microtubule motility & dynamic tug-of-war - lipid nanotube formation
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Transport, Nanotube and Network Formation

Motor protein-based transport enables DSA of multiscale networks of lipid
nanotubes.

Large, highly bifurcate networks

e Total network size >10
mm from a single MLV

e Assembly <15 min

* Self-healing: networks
continue growing,
shrinking, moving

* Morphology can be
altered by surface
density of moving MTs
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Living Lipid Networks
Collective action of the kinesin motors enables extraction of nanotubes from a
variety of lipid phase lipids.

* Elongation & bifurcation of lipid nanotubes
* Plucking — sub-critical extraction force

* Velocity of elongation is dependent on MT length
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Self-Healing Networks

Dissipation of energy (i.e., motor transport) results in highly dynamic or self-
healing networks capable of morphological self-healing:

e Branch collapse — bond rupture

e Action of motors generate new “replacement” nanotube
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Materials Transport on Lipid Nanotube Highways

Nanoparticle (red) “surfing” — transport of
materials on outer leaflet of lipid nanotubes 0
(green) via thermal motion.
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Lipid nanotube

e Fluidity across junctions
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Lipid Nanotube Highways — Effects of Traffic
£ i
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Lipid nanotube

At high capture densities, nanoparticle
surfing experiences significant traffic "
effects (red and green QDs).

— SFD (Vt)
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Transport follows singe file 1D diffusion At (sec)

i.e., Qdots cannot pass each other
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Lipids vs. Polymers

Lipids are inherently unstable, and thus poorly suited for long-lived (i.e., > a few
hours) nanofluidic networks for materials transport.

Block copolymers
e synthetic analogues of lipid-based materials
e =physical behaviors

e >>stability

Can the collective force from kinesin motors extract nanotubes from
polymersomes?
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Assembly of Polymer Nanotube Networks

Yes, but...addition of lipid (0.5 mol %) enhances the formation of large extended
networks from polymersomes

PBD-PEO dibi‘ock___cdﬁolymer PBD-PEO '+ Texas Rﬁéd’:DHPE

Will polymer nanotubes also support Qdot surfing?
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Qdot Surfing Along Polymer Nanotubes

D, e

Streptavidin Qdots adhered to -
polymer nanotubes do not

diffuse as previously observed
with lipid nanotubes.

e Black line = MSD of Qdots on lipid -0.006

nanotubes

e Blue line = MSD of Qdots on polymer -0.004

nanotubes
£0.002

MSD (um2)

e Blue squares = MSD of Qdots on
polymer nanotubes (right axis)

0.000

Immobile islands of polymer 0 1 2 3 4
generated by multivalent binding of At (s)
Qdots to polymers?
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Biomolecular Crosslinking & Mobility

Binding of streptavidin-Qdots to polymer nanotubes alters the diffusivity of
the fluorescent lipids, suggesting the formation of larger immobile islands.

180 sec

No Qdots
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Biomolecular Crosslinking & Mobility

Lipid diffusivity ~50% slower when Qdots adhered to polymer nanotubes
(0.17 um?s?tvs. 0.30 um?s?)
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Conclusions & Future Directions

Collective force of biomolecular motors drives the assembly and dynamic
reorganization of complex polymer and lipid nanotube networks.

Differences in lipid/polymer properties result in different diffusive behaviors
and materials transport along nanotubes.

Momin et al. Soft Matter (2015); DOI: 10.1039/c4sm02856b

e Nanotube and vesicle extraction
from biphasic liposomes &
polymersomes

e Materials transport (e.g.,
nanoparticles) in interstitial
space of lipid and polymer
nanotubes

e Multi-network connection and
communication
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