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ABSTRACT

This paper presents the initial analysis results of several structural health monitoring (SHM) methods applied to two 9-
meter CX-100 wind turbine blades subjected to fatigue loading at the National Renewable Energy Laboratory’s (NREL)
National Wind Technology Center (NWTC). The first blade was a pristine blade, manufactured to standard CX-100
design specifications. The second blade was manufactured for the University of Massachusetts, Lowell (UMass), with
intentional simulated defects within the fabric layup. Each blade was instrumented with a variety of sensors on its
surface. The blades were subject to harmonic excitation at their first natural frequency with steadily increasing loading
until ultimately reaching failure. Data from the sensors were collected between and during fatigue loading sessions. The
data were measured at multi-scale frequency ranges using a variety of data acquisition equipment, including off-the-shelf
systems and prototype data acquisition hardware. The data were analyzed to identify fatigue damage initiation and to
assess damage progression. Modal response, diffuse wave-field transfer functions in time and frequency domains, and
wave propagation methods were applied to assess the condition of the turbine blade. The analysis methods implemented
were evaluated in conjunction with hardware-specific performance for their efficacy in enabling the assessment of
damage progression in the blade. The results of this assessment will inform the selection of specific data to be collected
and analysis methods to be implemented for a CX-100 flight test to be conducted in collaboration with Sandia National
Laboratory at the U.S. Department of Agriculture’s (USDA) Conservation and Production Research Laboratory (CPRL)
in Bushland, Texas.
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1. INTRODUCTION

1.1 Overview

The authors have been investigating several design parameters of SHM techniques and the performance of high-
frequency active-sensing SHM techniques, including wave propagation and diffuse wave-field transfer functions as
methods to monitor the health of a wind turbine blade using piezoelectric sensors. In addition, a multi-scale sensing is
proposed in order to assess the influence of structural damage on the low-frequency dynamic response of a blade. In
order to implement these systems in the field, compact sensor nodes, which the authors have been developing [1-3], are
necessary. To that end, prototype embedded sensing hardware is tested alongside commercial-off-the-shelf (COTS) data
acquisition systems. With the proposed sensing strategy, a series of full scale fatigue tests were performed in
collaboration with Sandia National laboratory and the National Renewable Energy Laboratory (NREL). These tests are
a precursor for a planned full-scale deployment of an SHM system on CX-100 rotor blades to be flown in the field in
collaboration with Sandia National Laboratory (SNL) at the U.S. Department of Agriculture’s (USDA) Conservation and
Production Research Laboratory (CPRL) in Bushland, Texas.
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Figure 1. Test setup: a 9m CX-100 blade under a fixed-free condition

1.2 Test Structures

Two test structures were employed for fatigue testing. Each was a 9-m CX-100 blade [4], originally designed at Sandia
National Laboratory. The first blade, dubbed the LANL blade, was manufactured according to standard specifications
for the CX-100 blade. The LANL blade is shown mounted to the test fixture in Figure 1. The second blade, dubbed the
University of Massachusetts, Lowell (UMass) blade, was manufactured with intentional defects. Each blade was
mounted to a steel frame designed to approximate a fixed-free condition, and loads were introduced to the blade using a
Universal Resonant EXcitation (UREX) system oscillating at the first resonant frequency of the blade.

1.3 Analysis Methods

Various methods were implemented using several data acquisition hardware systems; these systems are described in
detail in our concurrent work [5]. The analysis methods considered were applied to wave propagation data using both
diffuse waves and pulsed waves, which are characterized by propagating wave packets. Methods include principle
component analysis of raw received signal, which was utilized for traveling wave analysis, prediction error using auto-
regressive (AR) models, or ARX models (which include exogenous inputs) in the case of non-white noise excitation,
correlation coefficients among frequency response functions (FRFs) in the diffuse wave field, and received power
estimates. This paper presents a preliminary analysis of data collected in the course of the fatigue test. The techniques
considered are not necessarily optimal detectors, but are a sampling of techniques commonly used in the literature for
similar applications.

1.4 Blade Failure

The fatigue test began on 8/11/12, and it ran intermittently for approximately 8.5 million cycles until a fatigue crack
became visible 11/8/12. The crack was a through-thickness crack that appeared on the surface of the blade in the root
area on the leading edge. The area including the crack is shown in a photograph in Figure 2. The surfacing of this crack
dramatically altered the dynamic characteristics of the blade, causing the blade’s first resonance to vary as a function of
loading. However, the authors believe that the damage that ultimately manifested itself as this externally visible crack
was detectable using some of the methods applied in this paper as early as 10/20/12, approximately three weeks prior to
the catastrophic failure. In the discussions to follow, the blade will be referred to as ‘healthy’ for the period prior to
10/20/12, ‘transitionally damaged’ for the period between 10/20/12 and 11/8/12, and ‘catastrophically damaged’ for the
period after 11/8/12.



Figure 2. Photograph of fatigue crack in root area of blade.

2. SENSOR DIAGNOSTICS
2.1 Method Overview

The condition of a piezoelectric sensor mounted directly to a structure can be assessed by measuring the sensor’s
impedance over a relatively low frequency range, say from 5 kHz to 30 kHz, and computing the slope of the imaginary
part of the admittance [6]. In this way, the health of the sensor can be assessed largely independently of the health of the
underlying structure. Most active sensing methods focus on higher frequency ranges, say in the 50 kHz to 100 kHz
range, because changes in structural behavior tend to be more pronounced at higher frequencies. Once a baseline has
been established, or if there are enough sensors installed in the same configuration to act as an instantaneous baseline,
this method permits a simple threshold algorithm to inform whether the sensor has broken, is becoming de-bonded from
the structure, or its condition remains unchanged. An example measurement identifying the effect of each type of sensor
failure is shown in Figure 3. Throughout the course of this fatigue test, the condition of the sensors was monitored using
an HP 4291 impedance analyzer. However, more compact hardware can be utilized in order to perform this assessment,
including low-power wireless devices [7].
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Figure 3. Depiction of sensor diagnostic measurement conclusions



2.2 Sensor Reliability and Longevity

The duration of this fatigue test was just over 12 weeks, exceeding by a factor of 3 the expected fatigue life of the blade.
To the authors” knowledge, PZT sensors have not been subjected to extensive, real-world conditions for such a length of
time. Throughout the course of the test, sensors failed and required replacement for a variety of reasons, including
mundane cable breaks, but also de-bonding and ceramic cracking. For a long-term SHM system deployment, it is
absolutely imperative that a sensor diagnostic capability be built in to the system. Sensor longevity should also be a
consideration in the design of an SHM system, in terms of sensor construction and installation techniques.

2.3 Specific Diagnostic Examples

This section details some of the circumstances during the fatigue test in which sensors failed and required either repair or
replacement. Figure 4 (left) shows the diagnostic data for a sensor that was replaced once near the end of the test. The
replacement for this sensor survived through the end of the test. Figure 4 (right) shows a sensor that broke twice near the
end of the test, possibly because of its close proximity to the site of the eventual catastrophic fatigue crack. This sensor
was replaced once, but it was not replaced following its breaking at the end of the test.
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Figure 4. Sensor diagnostic measurement histories for sensors requiring either repair or replacement.

3. WAVE PROPAGATION METHODS
3.1 Principal Component Analysis

The method of applying principal component analysis (PCA) to the wave propagation data was first to isolate the
received wave from the measured signal, and then transform that wave to the frequency domain by computing fast
Fourier transform (FFT), so that the result is some function ¢ of power density. Sample figures for one sensor path

depicting this process are shown in Figure 5.
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Figure 5. Raw and processed wave propagation data.
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Treating the values of the FFT at each frequency line as a sample from a multivariate random distribution, the sample
covariance matrix was calculated, and principle component loads were computed as the dot products of each FFT vector
with the eigenvectors of the sample covariance matrix. The first and second principal component loads were plotted
versus each other. Data drawn from two different high-dimensional multivariate distributions can often be separated by
projecting them onto a lower-dimensional subspace in this way. Plots showing the PCA results for the low-pressure and
high-pressure side arrays are shown in Figure 6 and Figure 7, respectively. Each plot includes an inset identifying the
sensor paths, as well as the location of the damage on the low-pressure side, shown with a red line between sensors 4 and
5. In each PCA plot, the second principal component load is plotted versus the first. The loads computed using data
taken from the blade in a healthy state are plotted in black, loads computed using data taken from the blade in the
transition state are shown in green, and loads computed using data collected from the damaged blade are shown in red.
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Figure 6. Wave propagation PCA results for the low-pressure side array.
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Figure 7. Wave propagation PCA results for the high-pressure side array.

On the low-pressure side, there is strong separation between the loads extracted from healthy blade data and those
extracted from damaged blade data in sensor paths 1-4 and 1-5, correlating well with the actual location of the crack.
The loads extracted from transitional blade data show moderate deviation from those for the healthy blade data, but not
in a way that corresponds to the location of the developing damage. This method can successfully identify and locate the
catastrophic damage, but does not seem effective in locating the transitional damage.

3.2 Received Wave Power

In the second method applied to the wave propagation data, a monotonic function of the received wave power in the
frequency range of excitation was estimated by calculating the area under the FFT curve between 100 kHz and 250 kHz.
Although data was collected over multiple frequency ranges, only the data with 200 kHz excitation are considered here.
The results from this computation are shown for the low-pressure side and the high-pressure side arrays in Figure 8 and
Figure 9, respectively. In each figure, there is an inset diagram indicating the sensor locations by number, as well as an
indication of the damage location on the low-pressure side, given by a red line between sensors 4 and 5 on the low-
pressure side. Furthermore, the received power feature values are plotted in black for healthy blade data, green for
transitionally damaged blade data, and red for data from the failed bade. In Figure 8, there is a noticeable drop change in
the received wave power for sensors 4 and 5 beginning with tests corresponding to Nov 8, following the catastrophic
failure. However, the baseline measurements exhibit some non-stationary behavior prior to that point, making this
feature somewhat difficult to use in detecting the transitionally damaged state.
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Figure 8. Received wave power results for the low-pressure side array.
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Figure 9. Received wave power results for the high-pressure side array.
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4. DIFFUSE WAVE METHODS

4.1 ARX Model-based Principal Component Analysis

For the analysis of the WASP data, which were obtained using a chirp excitation, an ARX model of order (12,3) was fit
to the data. The ARX model (with exogenous inputs) was required because the excitation was not white noise, so the
process could not be modeled simply as autoregressive. Treating the model parameters as samples of a multivariate
distribution, the covariance matrix was computed, and its eigenvectors were used to compute the principal component
loadings for each set of model parameters. In this case, the covariance matrix was computed using only the baseline data,
and the principle loads for all data were computed with respect to the baseline.

Plots showing the PCA results for the WASP data on the low-pressure side are shown in Figure 10, along with an inset
identifying the sensor paths and the location of the fatigue crack, which was between sensors 4 and 5. In each plot, the
blue dots were computed from data taken prior to Oct. 20, and the red dots were computed from data taken after Oct. 20.
There is very little separation in the data for paths 1-2, 1-3, and 1-6, but there is near complete separation in the data for
paths 1-4 and 1-5, which were physically nearest the crack. This method appears as though it is sensitive to local
structural changes while still permitting localization.
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Figure 10. WASP ARX-PCA results for the low-pressure side array.

4.2 Frequency Domain Correlation Coefficient

Using the LASER system, diffuse wave-field frequency response functions were measured from 0.5 kHz to 40 kHz, with
a sampling rate of 96 kHz. The cross-correlation (CC) between a newly measured FRF and a baseline FRF was
computed, and the feature was taken as unity minus this CC value (1 —CC). If the newly measured FRF is the same as
the baseline, the value 1 —CC will be zero, but if the underlying structure has changed (e.g. if damage occurs), the
value will increase. The values of the 1 —CC feature are plotted versus test number in Figure 11 for the LASER Inner
array, and in Figure 12 for the LASER Outer array. There are noticeable increases in the (1-CC) feature for all sensor
paths in the inner array after 10/20/12 (corresponding to test 280 in Figure 11 and Figure 12), but for the outer array,
there appeared to be no significant change until the blade underwent catastrophic damage.
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Figure 11. Cross correlation-based feature results for the LASER inner array.

© o o o
[=} [=] [=] [=}
N w & (%]

e
o
=4

1 - (Cross Correlation)

© © o o
[=} (=3 (=] [=}
N w & (4]

1 - (Cross Correlation)
=]
2

Sensor Path 1

100

200 300
Test Number

Sensor Path 4

400

b

100

200 300
Test Number

400

1 - (Cross Correlation)

1 - (Cross Correlation)

0.05
Sensor #5 #6 #2
0.04 \ %
N o
| 1
- 7
0.03 M
— —— ’//{/__
o T,
0.02 5 7
#1
0.01 Actuator #3 ™
~ —
i T LF
0 100 200 300 400 500
Test Number
Sensor Path 4 Sensor Path 5
0.05 0.05
0.04 S 0.04
3
0.03 £ 003
[=]
o
[’
0.02 ® 0.02
2
Q
0.01 L o001
0 0
0 100 200 300 400 500 0 100 200 300 400 500
Test Number Test Number
Sensor Path 2 Sensor Path 3
0.05 0.05
0.04 5 0.04
5
0.03 £ 003
[=]
5}
[’
0.02 2 0.02
5
0.01 L o001
0 MM 0
0 100 200 300 400 0 100 200 300 400
Test Number Test Number
Sensor Path § Sensor Path 6
0.05 0.05
0.04 g 0.04
K
0.03 £ 003
[=]
5}
2
0.02 8 0.02
e
0.01 L o0.01
0 owhﬂm
0 100 200 300 400 0 100 200 300 400

Test Number

Figure 12. Cross correlation-based feature results for the LASER outer array.

Test Number



5. SUMMARY

A sampling of data analysis methods have been presented and assessed for their ability to detect fatigue crack damage in
a CX-100 wind turbine blade. Some of the methods and/or datasets appear insensitive to the crack’s presence, while
others may be overly sensitive, responding strongly to the crack’s presence irrespective of the sensor path’s proximity to
the crack. The results of this study will be used to drive algorithm development and excitation and sensing methods for
an upcoming flight test of a CX-100 blade.

The data from which the results presented in this paper were computed will be made available on the LANL Engineering
Institute website: http://institute.lanl.gov/ei/software-and-data.
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