
LA-UR-
Approved for public release; 
distribution is unlimited. 

~Alamos 
NATIONAL LABORATORY 
--- EST. 1943 ---

Title: Full-scale fatigue tests of CX-100 wind turbine blades. Part II 
- analysis 

Author(s): Stuart G. Taylor *,** 
Hyomi Jeong***, Jae Kyeong Jang*** 
Kevin M. Farinholt*, Michael D. Todd**, Curtt Ammerman* 

* Los Alamos National Laboratory, Los Alamos, NM 
** University of California, San Diego, La Jolla, CA 
*** Chonbuk National University, Korea 

Intended for: Proceedings of the SPIE Smart Structures/NDE Conference 
San Diego, CA, USA 
March 11-15,2012 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution , or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish ; as an institution , however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness . 

Form 836 (7/06) 



Full-scale fatigue tests of eX-IOO wind turbine blades. Part II - analysis 

Stuart G. Taylor*a,b, Hyomi Jeong\ Jae Kyeong JangC
, Gyuhae Parka, Kevin M. Farinholta, 

Michael D. Todd b,Curtt M. Ammermana 

a Los Alamos National Laboratory, Los Alamos, NM; 
b University of California, San Diego, La Jolla, CA 

C Chonbuk National University, Korea 

ABSTRACT 

This paper presents the initial analysis results of several structural health monitoring (SHM) methods applied to two 9-
meter CX-lOO wind turbine blades subjected to fatigue loading at the National Renewable Energy Laboratory's (NREL) 
National Wind Technology Center (NWTC). The first blade was a pristine blade, manufactured to standard CX-lOO 
design specifications. The second blade was manufactured for the University of Massachusetts, Lowell (UMass), with 
intentional simulated defects within the fabric layup. Each blade was instrumented with a variety of sensors on its 
surface. The blades were subject to harmonic excitation at their first natural frequency with steadily increasing loading 
until ultimately reaching failure. Data from the sensors were collected between and during fatigue loading sessions. The 
data were measured at multi-scale frequency ranges using a variety of data acquisition equipment, including off-the-shelf 
systems and prototype data acquisition hardware. The data were analyzed to identify fatigue damage initiation and to 
assess damage progression. Modal response, diffuse wave-field transfer functions in time and frequency domains, and 
wave propagation methods were applied to assess the condition of the turbine blade. The analysis methods implemented 
were evaluated in conjunction with hardware-specific performance for their efficacy in enabling the assessment of 
damage progression in the blade. The results of this assessment will inform the selection of specific data to be collected 
and analysis methods to be implemented for a CX-lOO flight test to be conducted in collaboration with Sandia National 
Laboratory at the U.S. Department of Agriculture ' s (USDA) Conservation and Production Research Laboratory (CPRL) 
in Bushland, Texas. 
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1. INTRODUCTION 

1.1 Overview 

The authors have been investigating several design parameters of SHM techniques and the performance of high­
frequency active-sensing SHM techniques , including wave propagation and diffuse wave-field transfer functions as 
methods to monitor the health of a wind turbine blade using piezoelectric sensors. In addition, a multi-scale sensing is 
proposed in order to assess the influence of structural damage on the low-frequency dynamic response of a blade. In 
order to implement these systems in the field, compact sensor nodes, which the authors have been developing [1-3] , are 
necessary. To that end, prototype embedded sensing hardware is tested alongside commercial-off-the-shelf (COTS) data 
acquisition systems. With the proposed sensing strategy, a series of full scale fatigue tests were performed in 
collaboration with Sandia National laboratory and the National Renewable Energy Laboratory (NREL). These tests are 
a precursor for a planned full-scale deployment of an SHM system on CX-lOO rotor blades to be flown in the field in 
collaboration with Sandia National Laboratory (SNL) at the U.S. Department of Agriculture's (USDA) Conservation and 
Production Research Laboratory (CPRL) in Bushland, Texas. 
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Figure I. Test setup: a 9m CX-I 00 blade under a fixed-free condition 

1.2 Test Structures 

Two test structures were employed for fatigue testing. Each was a 9-m ex-lOo blade [4], originally designed at Sandia 
National Laboratory. The first blade, dubbed the LANL blade, was manufactured according to standard specifications 
for the ex-lOo blade. The LANL blade is shown mounted to the test fixture in Figure I. The second blade, dubbed the 
University of Massachusetts, Lowell (UMass) blade, was manufactured with intentional defects. Each blade was 
mounted to a steel frame designed to approximate a fixed-free condition, and loads were introduced to the blade using a 
Universal Resonant EXcitation (UREX) system oscillating at the first resonant frequency of the blade. 

1.3 Analysis Methods 

Various methods were implemented using several data acquisition hardware systems; these systems are described in 
detail in our concurrent work [5] . The analysis methods considered were applied to wave propagation data using both 
diffuse waves and pulsed waves, which are characterized by propagating wave packets. Methods include principle 
component analysis of raw received signal, which was utilized for traveling wave analysis, prediction error using auto­
regressive (AR) models, or ARX models (which include exogenous inputs) in the case of non-white noise excitation, 
correlation coefficients among frequency response functions (FRFs) in the diffuse wave field, and received power 
estimates. This paper presents a preliminary analysis of data collected in the course of the fatigue test. The techniques 
considered are not necessarily optimal detectors, but are a sampling of techniques commonly used in the literature for 
similar applications. 

1.4 Blade Failure 

The fatigue test began on 8/11112, and it ran intermittently for approximately 8.5 million cycles until a fatigue crack 
became visible 1118112. The crack was a through-thickness crack that appeared on the surface of the blade in the root 
area on the leading edge. The area including the crack is shown in a photograph in Figure 2. The surfacing of this crack 
dramatically altered the dynamic characteristics of the blade, causing the blade's first resonance to vary as a function of 
loading. However, the authors believe that the damage that ultimately manifested itself as this externally visible crack 
was detectable using some of the methods applied in this paper as early as 10/20/12, approximately three weeks prior to 
the catastrophic failure. In the discussions to follow, the blade will be referred to as 'healthy' for the period prior to 
10/20/12, 'transitionally damaged' for the period between 10/20/12 and 1118/12, and 'catastrophically damaged' for the 
period after 11 /8/12. 



Figure 2. Photograph offatigue crack in root area of blade. 

2. SENSOR DIAGNOSTICS 

2.1 Method Overview 

The condition of a piezoelectric sensor mounted directly to a structure can be assessed by measuring the sensor's 
impedance over a relatively low frequency range, say from 5 kHz to 30 kHz, and computing the slope of the imaginary 
part of the admittance [6]. In this way, the health of the sensor can be assessed largely independently of the health of the 
underlying structure. Most active sensing methods focus on higher frequency ranges, say in the 50 kHz to 100 kHz 
range, because changes in structural behavior tend to be more pronounced at higher frequencies. Once a baseline has 
been established, or if there are enough sensors installed in the same configuration to act as an instantaneous baseline, 
this method permits a simple threshold algorithm to inform whether the sensor has broken, is becoming de-bonded from 
the structure, or its condition remains unchanged. An example measurement identifying the effect of each type of sensor 
failure is shown in Figure 3. Throughout the course of this fatigue test, the condition of the sensors was monitored using 
an HP 4291 impedance analyzer. However, more compact hardware can be utilized in order to perform this assessment, 
including low-power wireless devices [7]. 
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Figure 3. Depiction of sensor diagnostic measurement conclusions 
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2.2 Sensor Reliability and Longevity 

The duration of this fatigue test was just over 12 weeks, exceeding by a factor of 3 the expected fatigue life of the blade. 
To the authors' knowledge, PZT sensors have not been sUbjected to extensive, real-world conditions for such a length of 
time. Throughout the course of the test, sensors failed and required replacement for a variety of reasons, including 
mundane cable breaks, but also de-bonding and ceramic cracking. For a long-term SHM system deployment, it is 
absolutely imperative that a sensor diagnostic capability be built in to the system. Sensor longevity should also be a 
consideration in the design of an SHM system, in terms of sensor construction and installation techniques. 

2.3 Specific Diagnostic Examples 

This section details some of the circumstances during the fatigue test in which sensors failed and required either repair or 
replacement. Figure 4 (left) shows the diagnostic data for a sensor that was replaced once near the end of the test. The 
replacement for this sensor survived through the end of the test. Figure 4 (right) shows a sensor that broke twice near the 
end of the test, possibly because of its close proximity to the site of the eventual catastrophic fatigue crack. This sensor 
was replaced once, but it was not replaced following its breaking at the end of the test. 
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Figure 4. Sensor diagnostic measurement histories for sensors requiring either repair or replacement. 

3. WAVE PROPAGATION METHODS 

3.1 Principal Component Analysis 

07/10 07/30 

The method of applying principal component analysis (peA) to the wave propagation data was first to isolate the 
received wave from the measured signal, and then transform that wave to the frequency domain by computing fast 

Fourier transform (FFT), so that the result is some function ¢ of power density. Sample figures for one sensor path 

depicting this process are shown in Figure 5. 
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Figure 5. Raw and processed wave propagation data. 
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Treating the values of the FFT at each frequency line as a sample from a multivariate random distribution, the sample 
covariance matrix was calculated, and principle component loads were computed as the dot products of each FFT vector 
with the eigenvectors of the sample covariance matrix. The first and second principal component loads were plotted 
versus each other. Data drawn from two different high-dimensional multivariate distributions can often be separated by 
projecting them onto a lower-dimensional subspace in this way. Plots showing the PCA results for the low-pressure and 
high-pressure side arrays are shown in Figure 6 and Figure 7, respectively. Each plot includes an inset identifying the 
sensor paths, as well as the location of the damage on the low-pressure side, shown with a red line between sensors 4 and 
5. In each PCA plot, the second principal component load is plotted versus the first. The loads computed using data 
taken from the blade in a healthy state are plotted in black, loads computed using data taken from the blade in the 
transition state are shown in green, and loads computed using data collected from the damaged blade are shown in red. 
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Figure 6. Wave propagation peA results for the low-pressure side array. 
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Figure 7, Wave propagation peA results for the high-pressure side array, 
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On the low-pressure side, there is strong separation between the loads extracted from healthy blade data and those 
extracted from damaged blade data in sensor paths 1-4 and 1-5, correlating well with the actual location of the crack, 
The loads extracted from transitional blade data show moderate deviation from those for the healthy blade data, but not 
in a way that corresponds to the location of the developing damage, This method can successfully identify and locate the 
catastrophic damage, but does not seem effective in locating the transitional damage, 

3.2 Received Wave Power 

In the second method applied to the wave propagation data, a monotonic function of the received wave power in the 
frequency range of excitation was estimated by calculating the area under the FFT curve between 100 kHz and 250 kHz, 
Although data was collected over multiple frequency ranges, only the data with 200 kHz excitation are considered here, 
The results from this computation are shown for the low-pressure side and the high-pressure side arrays in Figure 8 and 
Figure 9, respectively, In each figure, there is an inset diagram indicating the sensor locations by number, as well as an 
indication of the damage location on the low-pressure side, given by a red line between sensors 4 and 5 on the low­
pressure side, Furthermore, the received power feature values are plotted in black for healthy blade data, green for 
transitionally damaged blade data, and red for data from the failed bade, In Figure 8, there is a noticeable drop change in 
the received wave power for sensors 4 and 5 beginning with tests corresponding to Nov 8, following the catastrophic 
failure , However, the baseline measurements exhibit some non-stationary behavior prior to that point, making this 
feature somewhat difficult to use in detecting the transitionally damaged state, 
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Figure 8, Received wave power results for the low-pressure side array, 
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Figure 9, Received wave power results for the high-pressure side array, 



4. DIFFUSE WAVE METHODS 

4.1 ARX Model-based Principal Component Analysis 

For the analysis of the WASP data, which were obtained using a chirp excitation, an ARX model of order (12,3) was fit 
to the data. The ARX model (with exogenous inputs) was required because the excitation was not white noise, so the 
process could not be modeled simply as autoregressive. Treating the model parameters as samples of a multivariate 
distribution, the covariance matrix was computed, and its eigenvectors were used to compute the principal component 
loadings for each set of model parameters. In this case, the covariance matrix was computed using only the baseline data, 
and the principle loads for all data were computed with respect to the baseline. 

Plots showing the PCA results for the WASP data on the low-pressure side are shown in Figure 10, along with an inset 
identifying the sensor paths and the location of the fatigue crack, which was between sensors 4 and 5. In each plot, the 
blue dots were computed from data taken prior to Oct. 20, and the red dots were computed from data taken after Oct. 20. 
There is very little separation in the data for paths 1-2, 1-3, and 1-6, but there is near complete separation in the data for 
paths 1-4 and 1-5, which were physically nearest the crack. This method appears as though it is sensitive to local 
structural changes while still permitting localization. 
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Figure 10. WASP ARX-PCA results for the low-pressure side array. 

4.2 Frequency Domain Correlation Coefficient 
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Using the LASER system, diffuse wave-field frequency response functions were measured from 0.5 kHz to 40 kHz, with 
a sampling rate of 96 kHz. The cross-correlation (CC) between a newly measured FRF and a baseline FRF was 
computed, and the feature was taken as unity minus this CC value (1- CC). If the newly measured FRF is the same as 

the baseline, the value 1- CC will be zero, but if the underlying structure has changed (e.g. if damage occurs), the 

value will increase. The values of the 1- CC feature are plotted versus test number in Figure 11 for the LASER Inner 
array, and in Figure 12 for the LASER Outer array. There are noticeable increases in the (1-CC) feature for all sensor 
paths in the inner array after 10/20112 (corresponding to test 280 in Figure 11 and Figure 12), but for the outer array, 
there appeared to be no significant change until the blade underwent catastrophic damage. 



Figure II . Cross correlation-based feature results for the LASER inner array. 
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Figure 12. Cross correlation-based feature results for the LASER outer array. 



5. SUMMARY 

A sampling of data analysis methods have been presented and assessed for their ability to detect fatigue crack damage in 
a CX-100 wind turbine blade. Some of the methods and/or datasets appear insensitive to the crack's presence, while 
others may be overly sensitive, responding strongly to the crack' s presence irrespective of the sensor path's proximity to 
the crack. The results of this study will be used to drive algorithm development and excitation and sensing methods for 
an upcoming flight test of a CX-100 blade. 

The data from which the results presented in this paper were computed will be made available on the LANL Engineering 
Institute website: http://institute.lanl.gov/ei/software-and-data. 
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