

LA-UR-16-25871

Approved for public release; distribution is unlimited.

Title: X-ray simulation algorithms used in ISP.

Author(s): Sullivan, John P.

Intended for: Report

Issued: 2016-08-02

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

UNCLASSIFIED

X-ray simulation algorithms used in ISP
John P. Sullivan, LANL, ISR-1
29-Jul-2016

ISP is a simulation code which is sometimes used in the USNDS program. ISP is maintained by Sandia National Lab. However, the X-ray simulation algorithm used by ISP was written by scientists at LANL – mainly by Ed Fenimore with some contributions from John Sullivan and George Neuschaefer and probably others. In email to John Sullivan on July 25, 2016, Jill Rivera, ISP project lead, said “ISP uses the function xdosemeters_sim from the xgen library.” This is a fortran subroutine which is also used to simulate the X-ray response in consim (a descendant of xgen). Therefore, no separate documentation of the X-ray simulation algorithms in ISP have been written – the documentation for the consim simulation [1] can be used.

References

[1] John P. Sullivan, “X-ray Simulation Algorithms in Consim,” LA-CP-20345 (2016).