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Notes on the ExactPack Implementation of the DSD Rate Stick Solver 
 

Ann Kaul, XCP-5 
 
The DSD rate stick problem requires the solution of the level set equation 

𝜙𝜙𝑡𝑡 +𝐷𝐷𝑛𝑛|∇𝜙𝜙| = 0 
where 𝐷𝐷𝑛𝑛 is the detonation velocity in the shock-normal direction given by 

𝐷𝐷𝑛𝑛 = 𝐷𝐷𝐶𝐶𝐶𝐶− 𝛼𝛼𝛼𝛼 
and 𝜅𝜅 is the curvature of 𝜙𝜙.  
 
The complete problem can be defined in either a planar slab configuration which sandwiches the HE between 
two layers of confinement materials or in an axisymmetric cylinder configuration with a cylinder of HE confined 
by a hollow cylinder of material. The planar slab case is calculated in 𝑥𝑥𝑥𝑥-space and will use those variables in the 
following explanation. The axisymmetric cylinder case is calculated in 𝑟𝑟𝑟𝑟-space. In the following explanation, 𝑟𝑟 is 
denoted by 𝑥𝑥 and 𝑧𝑧 is denoted by 𝑦𝑦 in order to consolidate the two cases into one set of functions. 
 
Development of the Level Set Equation 
The level set function is assumed to be of the form 

𝜙𝜙 = 𝑦𝑦 − 𝑓𝑓(𝑥𝑥, 𝑡𝑡) 
and the burn front is assumed to be located at 𝜙𝜙 = 0. Taking the appropriate derivatives, we obtain 

𝜙𝜙𝑡𝑡 = −𝑓𝑓𝑡𝑡 
∇𝜙𝜙 = −𝑓𝑓𝑥𝑥𝚤𝚤+ 𝚥𝚥 

|∇𝜙𝜙| = �1 + (𝑓𝑓𝑥𝑥)2 
and 

𝜅𝜅 = −
𝑓𝑓𝑥𝑥𝑥𝑥

(1 + (𝑓𝑓𝑥𝑥)2)3 2⁄ − 𝑛𝑛
𝑓𝑓𝑥𝑥

𝑥𝑥(1 + (𝑓𝑓𝑥𝑥)2)1 2⁄  

where 𝑛𝑛 = 0 for the planar slab case and 𝑛𝑛 = 1 for the axisymmetric cylinder case. It should be noted that the 
second term is undefined when 𝑥𝑥 = 0. However, using L’Hopital’s Rule, it can be shown that  

lim
𝑥𝑥→0

𝜅𝜅 = −2𝑓𝑓𝑥𝑥𝑥𝑥 

and that value is used for 𝑥𝑥 = 0. The level set equation can then be written as 

𝑓𝑓𝑡𝑡 = 𝐷𝐷𝐶𝐶𝐶𝐶�1 + (𝑓𝑓𝑥𝑥)2 + 𝛼𝛼
𝑓𝑓𝑥𝑥𝑥𝑥

1 + (𝑓𝑓𝑥𝑥)2 + 𝛼𝛼𝛼𝛼
𝑓𝑓𝑥𝑥
𝑥𝑥 . 

 
Initial and Boundary Conditions 
In the planar slab case, the HE is located in the region −𝑅𝑅 ≤ 𝑥𝑥 ≤ 𝑅𝑅, but is calculated in only the right half of this 
interval. In the cylindrical case, the HE is located in the region 0 ≤ 𝑥𝑥 ≤ 𝑅𝑅. The boundary conditions are the same 
for the two cases and consist of a symmetry boundary at the center of the HE: 

𝑓𝑓𝑥𝑥(0, 𝑡𝑡) = 0 
and satisfaction of the DSD edge angle condition along the confinement material: 

𝑓𝑓𝑥𝑥(𝑅𝑅, 𝑡𝑡) = − cot(𝜔𝜔𝑐𝑐). 
In addition, the location of the burn front is specified at 𝑡𝑡 = 0. Several cases are included in the solver and are 
described in the ExactPack documentation. 



 
Discretization of the Level Set Equation 
Let the subscript denote the 𝑥𝑥-location of a grid point: 

𝑥𝑥𝑖𝑖 = 𝑖𝑖∆𝑥𝑥, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛 
and the superscript denote the time step. The following discretizations are used in the solver: 

𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖𝑛𝑛) =
𝑓𝑓𝑖𝑖𝑛𝑛+1 − 𝑓𝑓𝑖𝑖𝑛𝑛

∆𝑡𝑡  

𝑓𝑓𝑥𝑥(𝑥𝑥𝑖𝑖𝑛𝑛) =
𝑓𝑓𝑖𝑖+1𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑥𝑥  

𝑓𝑓𝑥𝑥𝑥𝑥(𝑥𝑥𝑖𝑖𝑛𝑛) =
𝑓𝑓𝑖𝑖+1𝑛𝑛 − 2𝑓𝑓𝑖𝑖𝑛𝑛 + 𝑓𝑓𝑖𝑖−1𝑛𝑛

(∆𝑥𝑥)2 . 

This leads to the following discretization of the level set function in the slab case: 

𝑓𝑓𝑖𝑖𝑛𝑛+1 − 𝑓𝑓𝑖𝑖𝑛𝑛

∆𝑡𝑡 = 𝐷𝐷𝐶𝐶𝐽𝐽�1 + �𝑓𝑓𝑖𝑖+1
𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑥𝑥
�
2

+ 𝛼𝛼

𝑓𝑓𝑖𝑖+1𝑛𝑛 − 2𝑓𝑓𝑖𝑖𝑛𝑛 + 𝑓𝑓𝑖𝑖−1𝑛𝑛
(∆𝑥𝑥)2 .

1 + �𝑓𝑓𝑖𝑖+1
𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑥𝑥 �
2 

 
In order for a discretization to be useful, it must be convergent. The usual way to show convergence is to show 
that a scheme is both consistent (the difference between the discretization scheme and the corresponding PDE 
approaches 0 as ∆𝑡𝑡 and ∆𝑥𝑥 approach 0) and stable (the solution remains bounded in some sense). In addition, 
the problem must be well-posed. The following sections address the consistency and stability of the proposed 
discretization. 
 
Consistency of the Discretization 
To prove consistency, we expand the function values at other nodes using a Taylor series about 𝑥𝑥𝑖𝑖𝑛𝑛 such as 

𝑓𝑓𝑖𝑖𝑛𝑛+1 = 𝑓𝑓𝑖𝑖𝑛𝑛 + ∆𝑡𝑡𝑓𝑓𝑡𝑡 +
1
2

(∆𝑡𝑡)2𝑓𝑓𝑡𝑡𝑡𝑡 +⋯ 

𝑓𝑓𝑖𝑖+1𝑛𝑛 = 𝑓𝑓𝑖𝑖𝑛𝑛 + ∆𝑥𝑥𝑓𝑓𝑥𝑥 +
1
2

(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥 +
1
6

(∆𝑥𝑥)3𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 +⋯ 

and  

𝑓𝑓𝑖𝑖−1𝑛𝑛 = 𝑓𝑓𝑖𝑖𝑛𝑛 − ∆𝑥𝑥𝑓𝑓𝑥𝑥 +
1
2

(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥 −
1
6

(∆𝑥𝑥)3𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 +⋯ 

It can then be shown that 
𝑓𝑓𝑖𝑖𝑛𝑛+1 − 𝑓𝑓𝑖𝑖𝑛𝑛

∆𝑡𝑡 = 𝑓𝑓𝑡𝑡 +
1
2
∆𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 + 𝑂𝑂((∆𝑡𝑡)2) 

𝑓𝑓𝑖𝑖+1𝑛𝑛 − 𝑓𝑓𝑖𝑖−1𝑛𝑛

2∆𝑥𝑥 = 𝑓𝑓𝑥𝑥 +
1
6

(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 +𝑂𝑂((∆𝑥𝑥)4) 

𝑓𝑓𝑖𝑖+1𝑛𝑛 − 2𝑓𝑓𝑖𝑖𝑛𝑛 + 𝑓𝑓𝑖𝑖−1𝑛𝑛

(∆𝑥𝑥)2 = 𝑓𝑓𝑥𝑥𝑥𝑥 +
1

12
(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 +𝑂𝑂((∆𝑥𝑥)4). 

Substituting these into the discretization scheme gives the following equation which must be compared to the 
original PDE: 



𝑓𝑓𝑡𝑡 +
1
2 ∆𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 +𝑂𝑂((∆𝑡𝑡)2)

= 𝐷𝐷𝐶𝐶𝐶𝐶�1 + �𝑓𝑓𝑥𝑥 +
1
6

(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥+𝑂𝑂((∆𝑥𝑥)4)�
2

+ 𝛼𝛼
𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥+ 1

12 (∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 +𝑂𝑂((∆𝑥𝑥)4)

1 + �𝑓𝑓𝑥𝑥 + 1
6 (∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 +𝑂𝑂((∆𝑥𝑥)4)�

2. 

 
Because the PDE is nonlinear, to finish the consistency argument, both this form of the discretization and the 
original PDE must be expanded in Taylor series, as well. We use the following expansions: 

�1 + 𝑥𝑥2 = 1 +
1
2𝑥𝑥

2 −
1
8 𝑥𝑥

4 +
1

16𝑥𝑥
6 +⋯ 

and 
1

1 + 𝑥𝑥2 = 1−𝑥𝑥2 + 𝑥𝑥4 − 𝑥𝑥6 +⋯ 

The PDE becomes 

𝑓𝑓𝑡𝑡 = 𝐷𝐷𝐶𝐶𝐶𝐶 �1 +
1
2

(𝑓𝑓𝑥𝑥)2−
1
8

(𝑓𝑓𝑥𝑥)4 + ⋯�+ 𝛼𝛼𝑓𝑓𝑥𝑥𝑥𝑥[1− (𝑓𝑓𝑥𝑥)2 + (𝑓𝑓𝑥𝑥)4−⋯ ]. 

The discretization becomes 

𝑓𝑓𝑡𝑡 +
1
2 ∆𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 +𝑂𝑂((∆𝑡𝑡)2)

= 𝐷𝐷𝐶𝐶𝐶𝐶 �1 +
1
2
�𝑓𝑓𝑥𝑥 +

1
6

(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 +𝑂𝑂((∆𝑥𝑥)4)�
2

−
1
8
�𝑓𝑓𝑥𝑥 +

1
6

(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 +𝑂𝑂((∆𝑥𝑥)4)�
4

+⋯�

+ 𝛼𝛼�𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥+
1

12
(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥+ 𝑂𝑂((∆𝑥𝑥)4)��1− �𝑓𝑓𝑥𝑥 +

1
6

(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 +𝑂𝑂((∆𝑥𝑥)4)�
2

+ �𝑓𝑓𝑥𝑥 +
1
6

(∆𝑥𝑥)2𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 +𝑂𝑂((∆𝑥𝑥)4)�
4

−⋯�. 

The difference (discretization – PDE) is 

∆𝑡𝑡 �
1
2𝑓𝑓𝑡𝑡𝑡𝑡

�+𝑂𝑂((∆𝑡𝑡)2)

= (∆𝑥𝑥)2 �𝐷𝐷𝐶𝐶𝐶𝐶�
1
6 𝑓𝑓𝑥𝑥𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥−

1
12

(𝑓𝑓𝑥𝑥)3𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 +⋯�

+ 𝛼𝛼 �
1

12𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 −
1

12
𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑓𝑓𝑥𝑥)2−

1
3
𝑓𝑓𝑥𝑥(𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥)2 +

2
3

(𝑓𝑓𝑥𝑥)3𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥+ ⋯��+𝑂𝑂((∆𝑥𝑥)4). 

Assuming that all of the derivatives are smooth across the domain, it is easy to see that the consistency 
condition is met by this discretization. This also shows that the discretization should be close to first-order 
accurate in time and second-order accurate in space. 
 
Stability of the Discretization 
Stability analysis is based on Fourier analysis. However, the integrals can be replaced with a simpler and 
equivalent procedure where we define the discretized value at a node to be the complex-valued function 

𝑓𝑓𝑚𝑚𝑛𝑛 = 𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
where 𝑔𝑔 is the amplification factor, which gives the amount that the amplitude of each frequency in the solution 
is multiplied by in each time step. For stability, we need to show that |𝑔𝑔(𝜗𝜗)| ≤ 1.  



We return to the original discretization  

𝑓𝑓𝑚𝑚𝑛𝑛+1 − 𝑓𝑓𝑚𝑚𝑛𝑛

∆𝑡𝑡 = 𝐷𝐷𝐶𝐶𝐶𝐶�1 + �𝑓𝑓𝑚𝑚+1
𝑛𝑛 − 𝑓𝑓𝑚𝑚−1

𝑛𝑛

2∆𝑥𝑥
�
2

+ 𝛼𝛼

𝑓𝑓𝑚𝑚+1
𝑛𝑛 − 2𝑓𝑓𝑚𝑚𝑛𝑛 + 𝑓𝑓𝑚𝑚−1

𝑛𝑛

(∆𝑥𝑥)2

1 + �𝑓𝑓𝑚𝑚+1
𝑛𝑛 − 𝑓𝑓𝑚𝑚−1

𝑛𝑛

2∆𝑥𝑥 �
2  

and again apply a Taylor series expansion. Keeping only the linear terms, we obtain 
𝑓𝑓𝑚𝑚𝑛𝑛+1 − 𝑓𝑓𝑚𝑚𝑛𝑛

∆𝑡𝑡 = 𝐷𝐷𝐶𝐶𝐶𝐶 +  𝛼𝛼�
𝑓𝑓𝑚𝑚+1
𝑛𝑛 − 2𝑓𝑓𝑚𝑚𝑛𝑛 + 𝑓𝑓𝑚𝑚−1

𝑛𝑛

(∆𝑥𝑥)2 � 

which we use to estimate the stability of the nonlinear discretization. The constant is ignored in the analysis as it 
does not affect the amplification factor. Plugging in the above complex-valued function, we obtain 

𝑔𝑔𝑛𝑛+1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 −𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

∆𝑡𝑡 = 𝛼𝛼
𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖(𝑚𝑚+1)𝜗𝜗 − 2𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑔𝑔𝑛𝑛𝑒𝑒𝑖𝑖(𝑚𝑚−1)𝜗𝜗

(∆𝑥𝑥)2 . 

Factoring out the common factor, this becomes 
𝑔𝑔− 1
∆𝑡𝑡 = 𝛼𝛼

𝑒𝑒𝑖𝑖𝑖𝑖 − 2 + 𝑒𝑒−𝑖𝑖𝑖𝑖
(∆𝑥𝑥)2  

or, equivalently, 

𝑔𝑔 = 1 − 4
𝛼𝛼∆𝑡𝑡

(∆𝑥𝑥)2sin2 �
𝜗𝜗
2
� 

which must satisfy the condition |𝑔𝑔(𝜗𝜗)| ≤ 1. Thus, 

−1 ≤ 1− 4
𝛼𝛼∆𝑡𝑡

(∆𝑥𝑥)2sin2 �
𝜗𝜗
2
� ≤ 1 

and 

0 ≤
𝛼𝛼∆𝑡𝑡

(∆𝑥𝑥)2sin2 �
𝜗𝜗
2
� ≤

1
2

. 

Since sin2 �𝜗𝜗
2
� ≤ 1, the stability condition becomes 

𝛼𝛼∆𝑡𝑡
(∆𝑥𝑥)2≤

1
2 

or 

∆𝑡𝑡 ≤
(∆𝑥𝑥)2

2𝛼𝛼  

Typically, the time step is chosen to be some fraction of this condition, especially in the case of a nonlinear 
equation. I have chosen to use 80% of this time step, even though the calculations appeared to be stable at the 
full time step. The stability condition is often called the CFL (Courant-Friedrichs-Lewy) condition. 
 
Boundary Conditions 
Because the DSD solution is almost entirely dependent on the boundary conditions, it is necessary to use a 
mathematically defensible treatment of them. The symmetry boundary condition 

𝑓𝑓𝑥𝑥(0, 𝑡𝑡) = 0 
is discretized using a ghost node, which is set to the value 

𝑓𝑓−1𝑛𝑛+1 = 𝑓𝑓1𝑛𝑛+1. 
This boundary condition is second-order accurate in space. It also makes physical sense, as the node at 𝑥𝑥 = 0 
should be allowed to stay slightly ahead of these two nodes, as would be seen in a propagating wave. 



 
There are many choices of discretizations to implement the boundary condition at the confinement boundary: 

𝑓𝑓𝑥𝑥(𝑅𝑅, 𝑡𝑡) = − cot(𝜔𝜔𝑐𝑐). 
Previous versions of codes to solve this problem used a ghost node and a discretization to match the overall 
scheme given above: 

𝑓𝑓𝑁𝑁+1𝑛𝑛+1 = 𝑓𝑓𝑁𝑁−1𝑛𝑛+1 − 2∆𝑥𝑥 cot(𝜔𝜔𝑐𝑐) 
where 𝑅𝑅 = 𝑁𝑁∆𝑥𝑥. While this is mathematically consistent with the first derivative, it causes problems with the 
second derivative and curvature because it does not move the boundary node to where it truly belongs. As a 
result, very large curvatures are calculated at this boundary and the discretization scheme is no longer stable. In 
the previous codes, both maximum and minimum limits were placed on the curvature to control its effect on the 
calculation. Since the curvature at the boundary is the very thing that is supposed to drive the solution, it is hard 
to justify using these limits from a mathematical perspective. 
 
It makes mathematical and physical sense to use a one-sided scheme that places the boundary node where it 
needs to be to satisfy the boundary condition: 

𝑓𝑓𝑁𝑁𝑛𝑛+1 = 𝑓𝑓𝑁𝑁−1𝑛𝑛+1 − ∆𝑥𝑥 cot(𝜔𝜔𝑐𝑐). 
While this choice is only first-order in space, it does not affect the stability of the scheme and the boundary 
curvature can now directly drive the solution on the adjacent nodes. 
 
Conclusion 
It has been shown above that the discretization scheme implemented in the ExactPack solver for the DSD Rate 
Stick equation is consistent with the Rate Stick PDE. In addition, a stability analysis has provided a CFL condition 
for a stable time step. Together, consistency and stability imply convergence of the scheme, which is expected 
to be close to first-order in time and second-order in space. It is understood that the nonlinearity of the 
underlying PDE will affect this rate somewhat. 
 
In the solver I implemented in ExactPack, I used the one-sided boundary condition described above at the outer 
boundary. In addition, I used 80% of the time step calculated in the stability analysis above. By making these two 
changes, I was able to implement a solver that calculates the solution without any arbitrary limits placed on the 
values of the curvature at the boundary. Thus, the calculation is driven directly by the conditions at the 
boundary as formulated in the DSD theory. The chosen scheme is completely coherent and defensible from a 
mathematical standpoint. 
 


