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Notes on the ExactPack Implementation of the DSD Rate Stick Solver
Ann Kaul, XCP-5

The DSD rate stick problemrequires the solution of the level set equation
¢t + Dnlvd)l =0
where D,, isthe detonation velocity in the shock-normal direction given by
Dy =D¢;—ak
and k is the curvature of ¢.

The complete problem can be defined in eitheraplanarslab configuration which sandwiches the HE between
two layers of confinement materials orin an axisymmetric cylinder configuration with a cylinder of HE confined
by a hollow cylinder of material. The planarslab case is calculated in xy-space and will use those variablesinthe
following explanation. The axisymmetriccylinder case is calculated in rz-space. In the following explanation, r is
denoted by x and z isdenoted by y in order to consolidate the two casesinto one set of functions.

Development of the Level Set Equation
The level setfunctionisassumed to be of the form

p=y—fxt)
and the burn frontisassumedto be located at ¢ = 0. Takingthe appropriate derivatives, we obtain
be =1t
Vo = —fil+7]
Vol =1+ (f)?
and
fix fx

TTUT ) A F (D)2

wheren = 0 forthe planar slab case and n = 1 forthe axisymmetriccylinder case. It should be noted that the
secondtermis undefined when x = 0. However, using L'Hopital’s Rule, it can be shown that

limx = —=2f,,
x—0

and that valueisused forx = 0. The level setequation canthen be written as

ft=Dc1+ (f)? +a—1 +}C)E2C)2+an%.

Initial and Boundary Conditions
In the planarslab case, the HE islocated inthe region —R < x < R, butis calculatedin only the right half of this
interval. Inthe cylindrical case, the HEislocated inthe region 0 < x < R. The boundary conditions are the same
for the two cases and consist of a symmetry boundary at the center of the HE:
£:(0,t) =0

and satisfaction of the DSD edge angle condition along the confinement material:

fr(R,t) = — cot(w,).
In addition, the location of the burnfrontisspecifiedatt = 0. Several cases are included inthe solverand are
describedinthe ExactPack documentation.



Discretization of the Level Set Equation
Let the subscript denote the x-location of agrid point:

x; = iAx, 0<i<nx
and the superscript denote the time step. The following discretizations are used in the solver:
fn+1 _fl
ny —
ft(x )= At
f (xn) fl+1 fL
x 2Ax
n n
f (xn) — fi+1 — Zﬁ + ﬁ—l
XX (Ax)?

This leadsto the following discretization of the level setfunctioninthe slab case:

1 2 sz-lH — ifzn +fi711

fi A fl —DC]\/1+<f;+12A){; ) +a f.j) -
( 2Ax )

In orderfor a discretization to be useful, it must be convergent. The usual way to show convergence is to show
that a scheme is both consistent (the difference between the discretization schemeand the corresponding PDE
approaches0as At and Ax approach 0) and stable (the solution remains bounded in some sense). In addition,
the problem mustbe well-posed. The following sections address the consistency and stability of the proposed
discretization.

Consistency of the Discretization
To prove consistency, we expand the function values at othernodes usingaTaylorseriesaboutx} such as

= +Atft+ (At)zftt

ity = f*+ Axfy +E (A%)? frx +€(Ax) 3fxx +

and

= 1 = Axfy +5 (00 oy = 2 (00 o +

It can then be shown that

n+1
fi = il = f, +%Atftt+ o((at)?)
fl+12Axfz =f, + % (A%) frrpx + 0((AX)*)
= _é{ﬁ) g o 1—12<Ax)2fxxxx +0((2)*.

Substitutingtheseinto the discretization schemegives the following equation which must be compared to the
original PDE:



fo 3 Atfe +0((4)?)

frxx+ 1_12 (Ax) 2fxxxx +0((ax) Y

2
=chj1+<fx+%(Ax)2fxxx+ 0((Ax)4)> +a 5.
1+ <fx + % (Ax) 2f;cxx + 0((Ax)4)>

Because the PDE is nonlinear, to finish the consistency argument, both this form of the discretization and the
original PDE must be expandedin Taylorseries, aswell. We use the following expansions:

1 1 1
V1+x2= 1+§x2——x4+—x6+~--

8 16
and

1
T2 =1—-x2+x*—x64-

The PDE becomes
o= Doy 14582 5 (5 |+ a1 = (5024 (1) =)

The discretization becomes

fo 5 Atfe+0((8)?)
4

2
= 0oy 13 (4 00+ 0@ )~ + 500 oae +0@IY) 4

[ ———

2
ta [ﬁcxx + 1_12 (Ax)zfxxxx + O((Ax)4)] [1 - <f;c + % (Ax) Zﬁcxx + 0((Ax)4)>

4
+ (fx +%(Ax) 2fxxx + 0((Ax)4)> — ]
The difference (discretization—PDE) is
At (%ftt) +0((A)%)
1 1
= @02 {Dey [ e = 55 () e + ]

4| fuenr = 75 frann ()2 = 3 fe G + 5 (R fue + -+ ||+ 0Ca00%).

Assuming that all of the derivatives are smooth across the domain, itis easy to see thatthe consistency
conditionis metby this discretization. This also shows that the discretization should be close tofirst-order
accurate intime and second-orderaccurate in space.

Stability of the Discretization
Stability analysisis based on Fourier analysis. However, the integrals can be replaced with asimplerand
equivalent procedure where we define the discretized value atanode to be the complex-valued function

fm — gneimﬁ
where g isthe amplification factor, which gives the amount that the amplitude of each frequency in the solution
ismultiplied by in each time step. For stability, we need to show that |g(¥)| < 1.



We return to the original discretization

0 faa 2R
=D¢; |1+ |5 +a 5
At 2Ax fro o —fn
14+ ( m+1 m—l)
2Ax
and again apply a Taylor series expansion. Keeping only the linear terms, we obtain
A fom = fm D+ fm+1— 2fm + fn—1
At ¢ (Ax)?
which we use to estimate the stability of the nonlinear discretization. The constantisignoredinthe analysis asit

does not affectthe amplification factor. Pluggingin the above complex-valued function, we obtain
gn+1eim19 _gneimﬂ gnei(m+1)19 zg elmﬁ +g el(m—1)19

At * (Ax)?
Factoring out the common factor, this becomes
g—1_ e¥—2+4+e
A YT ()2

—1 (ZAt 2(19)
g= (A )zsm 3

or, equivalently,

which must satisfy the condition |g(¥)| < 1.Thus,

-1<1-4 alt sin2<i)<1
(Ax)? 2/~
and
0<—— alt sin? (19> <1
~ (Ax)? -2
Since sin? (g) < 1, the stability condition becomes
alAt <1
(Ax)%2~ 2
or
A < L @02
2a

Typically, the time stepis chosen to be some fraction of this condition, especially in the case of a nonlinear
equation. | have chosento use 80% of this time step, eventhough the calculations appeared to be stable at the
full time step. The stability condition is often called the CFL (Courant-Friedrichs-Lewy) condition.

Boundary Conditions
Because the DSD solutionisalmost entirely dependent onthe boundary conditions, itis necessarytouse a
mathematically defensible treatment of them. The symmetry boundary condition
f:0,t) =0

isdiscretized usingaghostnode, whichis setto the value

f—nl+1 — f1n+1-
This boundary conditionis second-order accurate in space. It also makes physical sense, asthe nodeatx = 0
should be allowed to stay slightly ahead of these two nodes, aswould be seenin a propagating wave.



There are many choices of discretizations toimplement the boundary condition at the confinement boundary:
fr(R,t) = — cot(w,).

Previous versions of codes to solve this problem used aghost node and a discretization to match the overall
scheme given above:

ot = il — 2Ax cot(w,)
where R = NAx. While thisis mathematicallyconsistent with the first derivative, it causes problems with the
second derivativeand curvature because it does not move the boundary node towhere ittruly belongs. Asa
result, very large curvatures are calculated at this boundary and the discretization scheme is nolongerstable. In
the previous codes, both maximum and minimum limits were placed on the curvature to control its effect on the
calculation. Since the curvature atthe boundaryisthe very thingthat is supposed to drive the solution, itis hard
to justify using these limits from a mathematical perspective.

It makes mathematical and physical senseto use a one-sided schemethat places the boundary node where it
needsto be to satisfy the boundary condition:

ol = it — Ax cot(w,).
While this choice is only first-orderin space, it does not affect the stability of the scheme and the boundary

curvature can now directly drive the solution on the adjacent nodes.

Conclusion

It has beenshown above thatthe discretization scheme implemented in the ExactPack solverforthe DSD Rate
Stick equationis consistent with the Rate Stick PDE. In addition, astability analysis has provided a CFLcondition
for a stable time step. Together, consistency and stability imply convergence of the scheme, which is expected
to be close to first-orderintime and second-orderin space. Itis understood that the nonlinearity of the
underlying PDE will affect this rate somewhat.

In the solverlimplemented in ExactPack, | used the one-sided boundary condition described above atthe outer
boundary. Inaddition, l used 80% of the time step calculated in the stability analysis above. By making these two
changes, | was able to implementasolverthat calculates the solution without any arbitrary limits placed on the
values of the curvature at the boundary. Thus, the calculation is driven directly by the conditions at the
boundary as formulated inthe DSDtheory. The chosen scheme is completely coherentand defensiblefroma
mathematical standpoint.



