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Materials Response in a Dynamic Tensile 
Experiment (Spall) 

2 

t0: initial state 

    t1: Compressed (shocked) 
   * Δt: Pulse duration (< 1µs) 
   * ΔV ↔ σc(GPa): Peak state 
  

t2: De-compression 
      * Release rate  

    Full spall             Incipient  spall 

tension 
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Motivation: Do Not Understand the Role 
of a Second Phase on Damage 

Evolution 
    During shock release, voids nucleate, 

grow and coalesce 
!

 Grain 
boundaries are 
possible sites of 
nucleation 

Role of second phase particles, inclusions in 
comparison to the grain boundaries during defect 
nucleation 
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Second Phase can alter the Location 
of Void Nucleation 

Voids nucleate at grain boundaries 

Cu-1%Pb 
Cu-Ag 

Cu-Nb 

How does the second phase dictate the 
location? 
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Simulation Details 

•  Molecular-dynamics simulations using LAMMPS 
•  6-8 million atoms with free surfaces/vacuum at the edges parallel to 

the interfaces 
•  EAM model for CuPb and CuAg  

•  CuPb: Mishin Cu, Zhou Pb, Cross-term fit by B. Liu 
•  CuAg: Developed by Yuri Mishin 

•  Plate type impact similar to experiments 
•  Particle velocities, up, of 500 m/s 
•  Shock perpendicular to the interface, spall plane at interface 
•  Simulations performed at 100 K 

 
 

Cu#Pb# Cu#
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Plastic Deformation Affected by 
Grain Boundary Structure  

Σ3 Σ5 

Σ11 order 
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Interfacial Structures and Free Energies 
for Cu/Ag at 0 K 

110: 430 mJ/m2 111: 141 mJ/m2 

111: x[11-2]; y[111]; z[1-10] 
110: x[1-10]; y[010]; z[-101] 

 

Atoms colored by excess potential energy  
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Interfacial Structures and Free 
Energies for Cu/Pb at 0 K 

110: 989 mJ/m2 

!
111:773 mJ/m2 

!

Atoms colored by excess potential energy  
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Voids Located within Ag in Cu/Ag 
Independent of Orientation 

Cu Ag Cu 
{111} 

{110} 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy�s NNSA 

No Plastic Deformation in the {111}
Interface under Shock Compression  
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 Plastic Deformation in the {100}
Interface under Shock Compression  
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The Difference in Mechanisms can be 
Attributed Various Factors 

70.5° 

(111) Interface - (d) face 

(1-1-1) slip plane (b) face 

βA//[1-12] 

The Schmid factor for load normal to 
interface  plane: 0.157 

54.8° 

(010) interface 

54.8° 

[-101]//CB 

[101]//DA 

(111) or (d) (-1 1 -1) or 
(d) 

αD//[-1-2-1] 

The Schmid factor for load normal to 
interface plane: 0.471 
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Differences in Shear Stress as a 
Function of Orientation 
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Stress required to nucleate voids in {111} and {110} 
interface is 11.3 and 10.4 GPa, respectively.  

{111} {110} 
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Voids Located within Pb in Cu/Pb 
Independent of Orientation 

Pb Cu 
{111} 

{110} 
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Low Plastic Deformation of in the {111} 
Interface under Shock Compression  
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 Plastic Deformation in the {110}
Interface under Shock Compression  
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Solid Pb becomes Disordered during 
Release Leading to Low Strength 
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Differences in Shear Stress as a 
Function of Orientation 

−500  0  500  1000
Shock Direction (Å)

 0

 20

 40

 60

 80

 100

Ti
m

e 
(p

s)

−12

−10

−8

−6

−4

−2

 0

 2

 4

S
he

ar
 S

tr
es

s 
(G

P
a)

−400 −200  0  200  400  600  800  1000  1200
Shock Direction (Å)

 0

 20

 40

 60

 80

 100

Ti
m

e 
(p

s)
−12

−10

−8

−6

−4

−2

 0

 2

 4

S
he

ar
 S

tr
es

s 
(G

P
a)

{111} {110} 

Stress required to nucleate voids in {111} and {110} 
interface is 8.8 and 8.5 GPa, respectively.  
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Affect of Second Phase Materials on 
Void nucleation 

Pb Cu 

Ag Cu 
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Conclusions 
•  The difference in properties between the phases can determine 

the location for void nucleation. 
•  The orientation of the interface itself can affect the specific 

mechanisms for plastic deformation and affect the spall 
strength of the material. 

•  The {111} interfaces do not undergo plastic deformation under 
compression in comparison to the {110} interfaces. 

•  This could be attributed to low Schmid factors associated with 
that orientation.  In addition, the stacking fault energy also plays 
a role in determining nucleation of dislocations.  

•  In CuAg, voids nucleate at twin-twin and dislocation 
intersections within Ag. 

•  In CuPb, regardless of the orientation void nucleate in Pb 
because it becomes “superheated” under release.  



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy�s NNSA 

Questions? 


