

LA-UR-16-25367

Approved for public release; distribution is unlimited.

Title: THE SAVY 4000 CONTAINER STORAGE PROGRAM AT LOS ALAMOS NATIONAL

LABORATORY

Author(s): Smith, Paul Herrick; Stone, Timothy Amos; Karns, Tristan; Reeves, Kirk

Patrick; Oka, Jude M.; Yarbro, Tresa Faye; Bachman, Robin J. C; Weis, Eric; Blair, Michael W.; Veirs, Douglas Kirk; Worl, Laura Ann; Moore,

Murray E.

Intended for: Institute of Nuclear Materials Management, 2016-07-24/2016-07-28

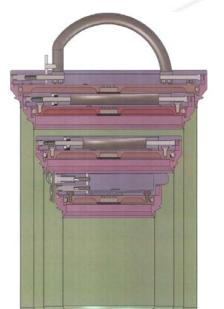
(Atlanta, Georgia, United States)

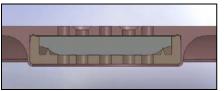
Issued: 2016-07-25 (rev.1)

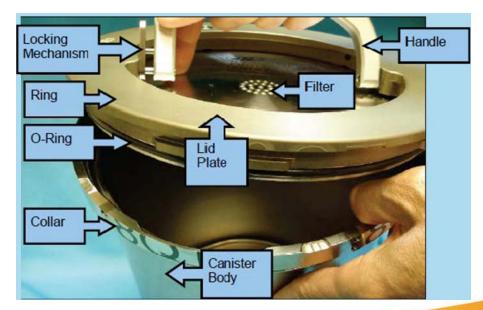
THE SAVY 4000 CONTAINER STORAGE PROGRAM AT LOS ALAMOS NATIONAL LABORATORY

Paul H. Smith, Timothy A. Stone, Tristan M. Karns, Kirk P. Reeves, Jude M. Oka, Tresa F. Yarbro, Robin J. C. Bachman, Murray E. Moore, Eric Weis, Michael W. Blair, D. Kirk Veirs, Laura A. Worl

Institute of Nuclear Materials Management 57th Annual Meeting July 24-28, 2016


Outline


- The SAVY 4000 Container
 - Design, Testing, Improvements, Production
- Surveillance
 - Approach, Plan, Results, Implications
- O-ring Lifetime Extension
 - Approach, Preliminary Results
- Summary and Conclusions


SAVY 4000 Design

2-Quart SAVY 4000 Container

- 4.77 inch diameter
- 10 inch Length
- Two containers fit within the 9977 (as long as the wattage limit is not exceeded)

2 Quart Design Qualification 12' drop tests completed, and container passed testing required for Manual compliance (drop in 7 orienations, leak checked, and filter tests)

Extending utility of container design DOT Type A Testing for Solid and Liquids

Primary goal is to develop an approved Type A container for on site material transfers

- Initiated testing for solids and liquids.
 - Bar Penetration*; Vibration; Stack test; 30' Drop test; water spray;

*The He leak rate was determined to be 9.1E-08 atm-cc/s at 32 Kpa differential pressure after the bar tests and the filter demonstrated 99.999% efficiency for DOP @ 200 ml/min @ 0.41" WC

- Further testing for low temperature evaluation on O-ring seal and bar penetration with capped filter for liquid only option.
- Results to date are promising

UNCLASSIFIED

Filterless / Capped SAVY Option for Manual Compliance

....under consideration

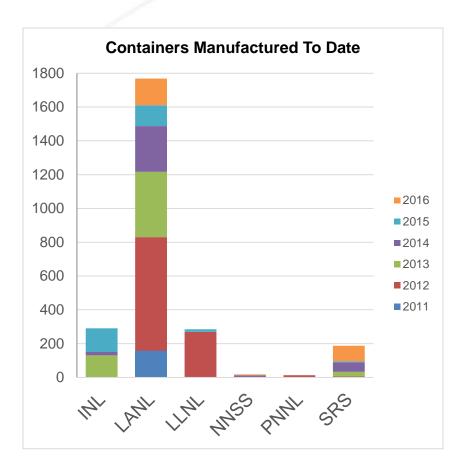
- A filterless/capped SAVY without major container modifications
 - doable, but not necessarily easy
- A new Maximum Normal Operating Pressure (MNOP) evaluation will be necessary
 - Requires analysis of the desired content materials
 - Requires content control through procedure controls
- Gas generation
 - Container testing would be required to demonstrate the new MNOP
 - testing of bagout bags and materials under bounding loading conditions may be necessary

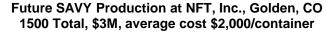
Planned Safety Analysis Report Amendments

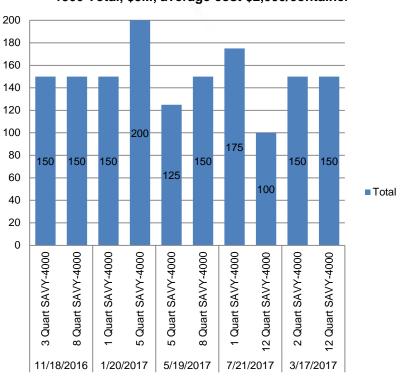
2 Quart container:

 Provided a maximum loading effeciency in 9977 Type B shipping container, and to accommodate longer material contents.

Life Extension:


- Initial Design Life 5 years (clock started April, 2014 with SAR approval)
- Expect to request at least 10 year extension
- Extended material authorized contents
- Under Consideration
 - Drop Tests: increased storage height to 16'
 - Hermetic Capped SAVY





SAVY 4000 Production for DOE Sites (2562 Manufactured, 1500 in Production)

SAVY 4000 Surveillance Approach

- No maintenance program (like a transportation container) required within the design lifetime, currently five years for all components
- Surveillance includes:
 - Lifetime extension efforts also apply to all components of the container, and no maintenance of in-service containers will be required during the extended lifetime
 - Field Shelf Life NDE/DE tests
 - In Service Inspections:
 - Prior to each use, containers and O-rings are inspected.
 - Defects found with the container will result in removal from service and provided to the Surveillance Program for evaluation
 - If defects are found with a component such as the O-ring, the O-ring is replaced and the defective O-ring is provided to the Surveillance Program for evaluation
- The goal is to have sufficient data from the surveillance and lifetime extension studies, within the 5-year design life, to gain confidence the design criteria will be met by all components over an extended lifetime as justified based on the data
- Complex Wide option available through MOUs with each site. LANL conducts a gap analysis such that the material, usage (T, height, weight) are bounded by LANL SAR.

Surveillance Program Implementation

Sample Group	2015	2016	2017	2018	2019	Total
SAVY Field Shelf-Life, NDE-only	4 from 2014 plan	4 from 2015	6 total: 4 from 2015, + 1 BLO, + 1 HATCH/3	6	6	26
SAVY Field Shelf-Life, NDE/DE	6 (from 2014 plan)	9	6	6	6	33
SAVY I-of-O, NDE-only or NDE/DE if needed	10 (transfer containers)	10	10	10	10	50
SAVY EJ, NDE/DE	0	2 total: HATCH container and Transfer container	TBD ²	TBD	TBD	2+TBD
Hagan EJ NDE/ DE	4 (EJ NDE/DE - Heat Load items)	3 ³ (Table 3- 1-b)	5 Pu-238 Residue Items (Table 3-3-b) (possibly examined after 2019)			4+TBD
Hagan I-of-O NDE/DE (up to 6 each year)	0	0	6	6	6	18
Total	24	25/28	27 + EJs	28 + EJs	28 + EJs	133/13 6 ³ + EJ TBDs

- Intent is to ensure that the SAVY-4000 containers function properly throughout their design life
- The different material characteristics, including metal, oxide and residues, are expected to bound both the corrosive properties and the thermal characteristics of the materials in storage
- The field shelf-life surveillance consists of 33 DE / NDE containers and 26 DE only containers over 5 years.
- This sampling schedule ensures availability of surveillance data within the initial SAVY design life of five years to support design life extension
- Items-of-opportunity containers will also be evaluated to provide additional data within the overall container population

Surveillance Results: Hatch Material, 7% Pu-238 in Weapons Grade Plutonium Oxide, High Heat Load, ~20 Watts

- First identified in 2015
- Significant TID wire corrosion
- No external contamination
- Identified during an In-Service Inspection
- Container Cognizant Systems
 Engineer issued Prompt
 Operability Report
 - Conclusion: Container functioning as designed
- Item is currently in glovebox line

Photos taken after introduction into glovebox

Surveillance Results: High Americium Molten Salt Extraction Residue

- No external contamination
- White powder on top exterior of lid
- Corrosion evident on internal surfaces of container
- Item was chosen for M441.1-1
 Surveillance
 - We expected it to be a "worst case" item
 - Empty container was free of contamination
- Surveillance results
 - NDE: all tests passed except visual inspection
 - DE pending

Surveillance Results: High Americium Molten Salt Extraction Residue in Hagan Container

- No external contamination
- Item identified during In-Service Inspection performed as part of MR&R re-shelving operation
- White powder identified as ammonium chloride
- Ammonium chloride on the container and shelf
- Vault personnel inspected vault locations and discovered other containers exhibiting similar behavior – no external contamination
- Container has been introduced into a glovebox for evaluation and testing

Surveillance Results: 3 Molar HCl solutions (Solution Assay Instrument standards) stored for ~14 months

- No external contamination
- Items identified after unloading standard solutions into glovebox
- Items had been stored in floor location in TA-55 for approximately 14 months
- Empty containers are free of contamination
- NDE/DE examinations pending

Surveillance Implications: Corrosion of the stainless steel container

- High Wattage Materials (Hatch)
 - HCl generation from PVC bagout bags, consider replacing PVC with other plastic
- Molten Salt Extraction (MSE) Residues
 - ~250 MSE Salts at TA-55, pending aqueous americium recovery and/or discard
 - Composition likely contains hygroscopic salts, e.g., PuCl₃, CaCl₂, etc.
 - HCl generation likely from radiolysis of salt itself, possibly after water absorption
 - Implement Enhanced Surveillance
 - Determine bounding corrosion rate and corresponding container life
 - Increase MSE residue surveillance frequency
 - Develop new packaging configuration for MSE salts
 - Stabilization, hermetically sealed inner container
 - Justified based on gas pressurization rate
- Acid Solutions
 - Rigorous control of time in storage

Why Polymer Lifetime is Important

SAVY 4000 Lifetime Assessment

- Thermal Aging on samples and whole containers
- Leak Testing
- Compression Set
- Durometry
- Spectroscopy
- Oxygen Consumption
- Radiation Aging
- Compression Set
- Durometry
- Spectroscopy
- Synergistic Effects of Heat and Radiation
 - Compression Set
 - Durometry
 - Spectroscopy

Full container aging

- 1-Qt. SAVY containers in each oven (70, 90, 120,160, 210°C)
- Periodically leak-tested.
- Difficult to remove lid after 9 months; No residue oberved

Time-Temperature Superposition Results for Compression Set for Viton O-Ring

- Results suggest two degradation mechanisms
 - High temperature (chemical) dominates at high temperature
 - Low temperature (mechanical) is not lifetime determining
- High temperature data indicates o-ring lifetime of 7,500 years at 70° C
- Represents an upper bound on the o-ring lifetime

Evidence for Lifetime Extension Request

- High temperature data support much, much longer times than 40 years for our 50 durometer Viton O-rings
- All Viton O-rings examined after service to date at LANL have shown essentially no degradation
- Savannah River Site on 70 Durometer Viton O-rings
 - Established a lifetime of 15 years at 75 C
 - High temperature data on GLT-S support greater than 50 years
 - Results show an activation energy of 60, 81, and 90 kJ/mol
 - This is lower than the activation energy of LANL's 50 durometer O-ring of 135 kJ mol-1
 - This suggests the lower durometer o-rings have an intrinsically longer life than the higher durometer o-rings

O-Ring Lifetime Extension Conclusion

- There is no evidence at this point for a degrading mechanism that will result in a substantially shorter lifetime than 40 years
- LANL will continue its surveillance program to identify issues as they arise
- LANL will continue studies designed to uncover a lifetime limiting mechanism using
 - oxygen consumption measurements, FTIR measurements of O-rings that had been in-service to identify chemical changes in the polymers, etc.
- This will ensure that issues will be discovered early if they exist

Summary

- SAVY 4000 containers have become the complex-wide standard for plutonium storage
- Los Alamos is saving DOE money by integrating container procurements and providing surveillance results for bounding contents to other sites
- Surveillance program is performing its intended function of identifying problem materials and ensuring container integrity
- Some materials will require special controls such as time limit, sealed inner container, extra stabilization, etc., to minimize corrosion
- Accelerated aging results on Viton o-ring provide technical basis for a significant lifetime extension

