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An Adaptive Mesh Algorithm:
Mesh Structure and Generation

A. J. Scannapieco
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1 Adaptive Mesh Refinement

The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the
computational space not to minimize the number of computational elements. The
additional result of the technique is that it may reduce the number of computational
elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement
is a computational technique used to dynamically select, over a region of space, a set
of computational elements designed to minimize spatial error in the computational
model of a physical process. The fundamental idea is to increase the mesh resolution
in regions where the physical variables are represented by a broad spectrum of modes
in k-space, hence increasing the effective global spectral coverage of those physical
variables. In addition, the selection of the spatially distributed elements is done
dynamically by cyclically adjusting the mesh to follow the spectral evolution of the
system.

Over the years three types of AMR schemes have evolved; block, patch and
locally refined AMR. In block and patch AMR logical blocks of various grid sizes
are overlaid to span the physical space of interest, whereas in locally refined AMR
no logical blocks are employed but locally nested mesh levels are used to span the
physical space. The distinction between block and patch AMR is that in block AMR
the original blocks refine and coarsen entirely in time, whereas in patch AMR the
patches change location and zone size with time.

1.1 Computational Errors

There are two types of computational errors, temporal and spatial, which are defined
in terms of a power of either time step or minimum zone width that represent the
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order of the error terms in the discrete solution of the physical equations. Temporal
errors are proportional to a power of the time step and are intrinsic to the temporal
discretization in the solution method.

Eτ ∝ (δτ)o

where o is the order of the temporal error. Spatial errors are set by the size and
distribution of the computational elements spanning the physical system and are
intrinsic to the spatial discretization and solution method.

Es ∝ (δx)o

where o is the order of the spatial error. Therefore decreasing the zone size
decreases the spatial error.

Anywhere in space where the bandwidth in k-space of a spatial structure is broad
the structure must be resolved at a finer resolution in physical space to enhance
the number of modes in k-space that represent the structure. Where there is an
impedance jump in a physical variable, the range of spectral wavelengths necessary
to represent the physical variable becomes large. These impedance jumps occur
at material boundaries where there is a change in density, sound speed, opacity,
compressibility, shear modulus, etc. Impedance jumps also occur at shock fronts
where there is an abrupt change in density, internal energy and momentum, as well
as at radiation fronts where there is an abrupt change in ion, electron and radiation
temperatures (e.g. Marshak waves).

1.1.1 Justification for Local Refinement

A justification for local refinement as a tool to decrease spatial errors can be found
in three facts. The first fact is that a function f(x) can be Fourier decomposed
over a finite set of modes defined by a discrete nonuniform set of sampling points
in space, and the Fourier coefficients can be found exactly. The second fact is
that the distance between sampling points in space is equivalent to the
bandwidth of the modes in k-space. The denser the points in space the
larger the bandwidth in k-space and the smaller the error in the Fourier
representation of the function. The third fact is that if the function f(x) is
convolved with a sampling function such as a top hat function, that has a value of
one over the sampling points where the function f(x) is rapidly varying in space and
a value of zero elsewhere, the coefficients of the Fourier transform of the function
remain virtually unchanged, thus retaining the spectral content of the function over
the sampled modes.
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1.2 Fourier analysis

If a (reasonably well-behaved) function is periodic, then it can be written as a discrete
sum of trigonometric or exponential functions at discrete frequencies. A general
function that isn’t necessarily periodic (but that is still reasonably well-behaved)
can be written as a continuous integral of trigonometric or exponential functions
with a continuum of possible frequencies. Both types of Fourier decompositions are
illustrated in the next four sections.

1.2.1 Discrete Fourier trigonometric series

In one dimension, 2N equally spaced points are chosen to span a length L. The
points in space at which the function f(xp) are defined are

xp = p
L

(2N − 1)
(1)

and the nth wave vector is

kn =
2πn

L
(2)

Increasing the number of points, 2N that spans the length, L increases
the bandwidth of the decomposition and decreases the spatial error.

The discrete Fourier decomposition of f(xp) is

f(xp) =
2N−1∑
n=0

(an cos(knxp) + bn sin(knxp)) (3)

an =
1

2N

2N−1∑
p=0

f(xp) cos(knxp) n = 0, 1, ......, 2N − 1 (4)

bn =
1

2N

2N−1∑
p=0

f(xp) sin(knxp) n = 0, 1, ......, 2N − 1 (5)

where an and bn represent the Fourier transform functions for the cosine and sine
terms.
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1.2.2 Fourier trigonometric series

On the interval 0 ≤ x ≤ L

f(x) = (a0/2) +
∞∑
n=1

(an cos(2πnx/L) + bn sin(2πnx/L)) (6)

an =
2

L

L∫
0

f(x) cos(2πnx/L)dx (7)

bn =
2

L

L∫
0

f(x) sin(2πnx/L)dx (8)

L∫
0

sin(
2πnx

L
) cos(

2πmx

L
)dx = 0

L∫
0

cos(
2πnx

L
) cos(

2πmx

L
)dx =

L

2
δnm

L∫
0

sin(
2πnx

L
) sin(

2πmx

L
)dx =

L

2
δnm

where an and bn represent the Fourier transform functions for the cos and sin terms.

1.2.3 Fourier exponential series

f(x) =
∞∑

n=−∞

Cne
i2πnx/L (9)

Cn =
1

L

∞∫
0

f(x)e−i2πnx/Ldx (10)

∞∫
0

ei2πnx/Le−i2πmx/Ldx = Lδnm
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where δnm is the Kronecker delta, which is defined as

δnm = 0 n ̸= m

δnm = 1 n = m

1.2.4 Fourier transforms

f(x) =

∞∫
−∞

C(k)eikxdk (11)

C(k) =
1

2π

∞∫
−∞

f(x)e−ikxdx (12)

P (k) = C(k)C∗(k) (13)

where C(k) is the Fourier transform and P (k) is the power spectrum in k-space.

1.3 Power spectra of spatial structures

The power spectrum of several spatial structures is calculated in one dimension. The
decay rate of the power spectrum is a measure of the bandwidth of the structure in k-
space. The bandwidth of each structure is used as a justification for the rules chosen
in the algorithm presented in this paper. The decay rate of the power spectrum is
important in deciding where to concentrate the mesh. The slower the decay the finer
the structure must be resolved in space, so as to maximize its bandwidth in k-space.
For each spatial variation chosen below, both the Fourier transform C(k) and the
power spectrum P (k) are calculated.

1.3.1 Constant

f(x) = A (14)

C(k) =
1

2π

∞∫
−∞

Ae−ikxdx (15)

C(k) = δ(k) (16)

P (k) = δ2(k) (17)
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1.3.2 Gradient

f(x) = Ax (18)

C(k) =
1

2π

∞∫
−∞

Axe−ikxdx (19)

C(k) = iA
dδ(k)

dk
(20)

P (k) = A2(
dδ(k)

dk
)2 (21)

1.3.3 Gaussian

f(x) = Ae−αx2

(22)

C(k) =
1

2π

∞∫
−∞

Ae−αx2

e−ikxdx (23)

C(k) =
Ae−k2/4α

2
√
(πα)

(24)

P (k) =
A2e−k2/2α

4πα
(25)

1.3.4 Exponential

f(x) = Ae−b|x| (26)

C(k) =
1

2π

∞∫
−∞

Ae−b|x|e−ikxdx (27)

C(k) =
Ab

π(b2 + k2)
(28)

P (k) =
A2b2

π2(b2 + k2)2
(29)
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1.3.5 Unit step function

f(x) = 0 x < 0

f(x) = 1 x > 0 (30)

C(k) =
1

2π

∞∫
0

e−ikxdx (31)

C(k) =
1

2
δ(k)− i

2πk
(32)

P (k) =
1

4
δ2(k) +

1

4π2k2
(33)

1.3.6 Square wave

f(x) = A − a ≤ x ≤ a

f(x) = 0 x < −a, x > a (34)

C(k) =
1

2π

a∫
−a

Ae−ikxdx (35)

C(k) =
A sin(ka)

πk
(36)

P (k) =
A2 sin2(ka)

π2k2
(37)

Both a constant and a uniform gradient are peeked only at a single wave vector
k = 0 thus no refinement is necessary for these spatial variations in the physical
variables. A power spectrum of a Gaussian spatial variation decays as a Gaussian
in k-space. The decay rate is dependent on the value of α in the Gaussian. The
variable α determines the amount of spatial resolution needed to resolve the Gaussian
in k-space. The exponential spatial variation decays as the fourth power of the
wave vector. The exponential variation requires a moderate amount of resolution to
resolve the bandwidth. However, it is clear that spatial discontinuities decay slowly:
inversely with the square of the wave vector. Therefore, discontinuities have a broad
bandwidth of modes, which necessitates resolving these structures at the finest mesh
zone size in an AMR calculation.
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1.4 Mesh Structure

1.4.1 AMR Data Structure and Layout

The type of AMR described herein is a locally refined AMR. This technique mini-
mizes the number of computational elements necessary to span the physical space.
Although, locally refined AMR obviates the question of flux continuity across block
or patch boundaries, flux continuity must be maintained across cell boundaries.

The structure and generation of the mesh is the first consideration in any adaptive
mesh algorithm. In the algorithm described here, at any point in physical space
only one zone exists at whatever level of mesh that is appropriate for that physical
location. Parent zones, or zones that are more coarse then the local zone, are not
retained. This is the description of a so-called flat mesh.

Although there are two mesh structures, the thermodynamic mesh and the duel
kinematic mesh; once the new thermodynamic mesh is defined the new duel kinematic
mesh is reestablished using the new thermodynamic mesh. This procedure is mirrored
in the map of the kinematic variables. The map of the kinematic variables is done
by calculating the contributions of kinematic variables on the old thermodynamic
mesh, mapping the kinematic variable contributions onto the new thermodynamic
mesh and then synthesizing the mapped kinematic variables on the new kinematic
mesh.

Neighbor index information is carried in two arraysNlow(nz, idir) andNhgh(nz, idir),
which are functions of zone number nz and direction idir. A neighbor index array
of a zone points to the neighbor with the lower logical index in the transverse direc-
tion, which is illustrated in Figures 1 and 2 in two and three dimensions. All other
neighbors of a zone nz are found by using the Nlow and Nhgh arrays of the neighbor
zones of the original zone nz. Neighbor zones at the same and finer levels have been
chosen to illustrate this point. The neighbor zones of a zone at a finer level than
its neighbors are illustrated in two and three dimensions in Figures 3 and 4. It is
unnecessary to describe the one dimensional adaptive mesh because it is a simple
subset of the two dimensional mesh. Additional variables and arrays necessary to
define the structure of the mesh are displayed in Table 1.
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nzNlow(nz, 1)

Nhgh(nz, 1)

Nlow(nz, 2)

Nhgh(nz, 2)

Y⃗

X⃗

Figure 1: Two dimensional AMR data structure and neighbor index layout
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Z⃗

X⃗

Y⃗

nz

Nlow(nz, 1)

Nhgh(nz, 1)

Nlow(nz, 2)

Nhgh(nz, 2)

Nlow(nz, 3)

Nhgh(nz, 3)

Figure 2: Three dimensional AMR data structure and neighbor index layout
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nz nz

nz

Nlow(nz, 2)

Nlow(nz, 1)

Y⃗

X⃗

Figure 3: Two dimensional neighbor zones at a coarser level than zone nz.
The coarser neighbor zones are neighbors to multiple nz zones
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Z⃗

X⃗

Y⃗

nz

nz

nz

nz

nz

nz

nz

Nhgh(nz, 1)

Nhgh(nz, 2)

Nhgh(nz, 3)

Figure 4: Three dimensional neighbor zones at a coarser level than zone nz.
The coarser neighbor zones are neighbors to multiple nz zones
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numdim integer number of directions
geop integer index of geometry

geop = 1, rectilinear
geop = 2, cylindrical
geop = 3, spherical
numdim = 1, geop = 1, 2, 3
numdim = 2, geop = 1, 2
numdim = 3, geop = 1

levmx integer index of the finest level mesh
nbe(lev) = 2lev integer number of boundary zones.

Only one boundary zone at each mesh level is retained.
imax(lev, idir) integer number of zones at level lev in direction idir,

which includes the nbe zones at the lower and upper
edges of the mesh in the idir direction.

limax(lev, idir) integer number of the first upper boundary zone
at level lev in direction idir.
limax(lev, idir) = imax(lev, idir)− nbe(lev) + 1

dxs(lev, idir) zone width of the level lev in direction idir.
level(nz) mesh level of zone nz.

level(nz) = 0, coarsest level mesh.
level(nz) = levmx, finest level mesh.

iv(nz, idir) integer index of zone nz in direction idir.
indx(nz) generalized index of zone nz, in 1, 2 and 3 dimensions

indx(nz) = iv(nz, 1)
indx(nz) = iv(nz, 1)+

imax(level(nz), 1) ∗ (iv(nz, 2)− 1)
indx(nz) = iv(nz, 1)+

imax(level(nz), 1) ∗ (iv(nz, 2)− 1)+
imax(level(nz), 1) ∗
imax(level(nz), 2) ∗ (iv(nz, 3)− 1)

dxe(nz, idir) zone width of zone nz in direction idir.
xe(nz, idir) geometrical center of zone nz in direction idir.

Table 1: Mesh variables and arrays
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1.4.2 Mesh Generation and Evolution

The dynamic creation of a locally refined computational mesh is made practical by
a judicious selection of four mesh rules.

1. A zone refines completely in all directions.

2. Coarsening must produce a parent zone, in which all daughter zones that com-
prise the parent zone must be scheduled to be coarsened.

3. For any mesh level, neighbor zones come from the same level, the next finer
level, or the next coarser level.

4. Signal propagation over a computational cycle is anticipated by ensuring that
all captured physics is embedded at least one zone inside its capture level.

With these rules the mesh is evolved via a mesh potential designed to concentrate
the finest mesh in regions where the physics is modally dense, and coarsen zones
in regions where the physics is modally sparse. A mesh potential Φ(nz), is a zonal
integer array that indicates whether a zone should be coarsened, refined, or left
unchanged, depending upon whether the mesh potential is negative, positive or zero.
A zone can be coarsened only if all the zones that make up the parent zone have a
negative mesh potential and they are all at the same mesh level.

A sequential process is executed once at the end of each hydro cycle. This process
is characterized by three distinct steps; release, capture, and nesting.

1. Release (i.e. mesh coarsening, Φ(nz) < 0)

(a) At the end of each hydro cycle all zones are scheduled for release, Φ(nz) =
−1000000.

(b) If the release of a zone causes a variation in the zone that exceeds a
predetermined fraction of the extensive variables of the daughter zones,
the zone is retained, Φ(nz) = 0.

(c) If all the daughter zones of a parent zone cannot be released, all are
retained. Φ(nz) is set to zero for each daughter zone.

(d) Finally, if a zone is scheduled to be coarsened and a neighbor zone at the
same level is scheduled to be unchanged the zone is also scheduled to be
unchanged, Φ(nz) = 0.

2. Capture (i.e. mesh refinement, Φ(nz) > 0)
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(a) Material interfaces or contact discontinuities are embedded in the finest
level mesh.

(b) Shocks are captured via the artificial viscosity and are embedded at the
shock capture level. The shock capture level is usually the finest level.

(c) In addition to the above capture criteria the zonal variation in the interpo-
lated kinetic, electron, ion, and radiation energy densities are checked over
the mesh to ensure that the variation is maintained within set bounds.
This is accomplished by the use of an energy error estimator define as

e = 2(Emax − Emin)/(Emax + Emin)

where Emin and Emax are the minimum and maximum zonal values of
each of the energy densities obtained by interpolation from the zonal edge
values in each direction. A zone is scheduled to be refined if e > 2.0,
Φ(nz) > 0. If however, 0.5 ≤ e ≤ 2.0 the zone is retained, Φ(nz) = 0,
while the zone is scheduled to be coarsened if e < 0.5, Φ(nz) < 0.

3. Nesting (i.e. mesh level transition)

The mesh potential generated by the capture and release algorithms is checked
for continuity across different mesh level boundaries. If there is a discontinuity
in the mesh of more than one level the mesh potential is adjusted in the coarser
level zone to ensure that the one level jump criteria is maintained. This process
ensures that refinement will take place in the coarser level, guaranteeing that
nesting will occur. The algorithm proceeds sequentially in three steps, each of
which proceeds from the finest to the coarsest mesh level.

(a) First, ensure that a neighbor zone nb at the same level as zone nz will not
have a mesh potential Φ(nb) that is less than the mesh potential Φ(nz)−1
of zone nz.

(b) Second, if a neighbor zone nb is at a finer level then zone nz and the mesh
potential of the neighbor zone Φ(nb) > −2 set the mesh potential Φ(nz)
of zone nz to

Φ(nz) = max(1 + (Φ(nb) + 1)/2,Φ(nz))

Also calculate the maximum value of the mesh potential Φmax over the
mesh.
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(c) Third, proceed from a mesh potential value Φ = Φmax, to a mesh potential
value of Φ = 0. If the mesh potential of zone nz is equal to Φ, then set
the neighbor zones nb at the same mesh level as nz to

Φ(nb) = max(Φ− 1,Φ(nb))

The mesh potential Φ(nz) generated by the above algorithm is then used to create
the new mesh, and map the physical variables. At the end of the hydro cycle, after
the mesh potential is created, if no mesh refinement nor mesh coarsening are needed
the reestablishment of the mesh and the mapping algorithms are skipped for that
cycle.

1.4.3 Demonstration of the Algorithm

To illustrate the evolution of an AMR mesh using the algorithm described, a two
dimensional blast problem was run, which had four materials and four AMR mesh
levels. The mesh and the density are shown at three problem times in Figures 5, 6,
and 7. The problem evolution illustrates how the algorithm captures the material
boundaries, shocks and change in the kinetic and internal energy densities while
nesting the various mesh levels to ensure that the four mesh criteria used in the
algorithm are satisfied.
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Figure 5: Blast mesh and density at 0.0000µs
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Figure 6: Blast mesh and density at 0.0210µs
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Figure 7: Blast mesh and density at 0.1201µs
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1.4.4 Conclusion

Once the structure of the new mesh is defined, it then remains to map the old mesh
data onto the new mesh. This process is the subject of the next report ”An Adaptive
Mesh Algorithm: Mapping the Mesh Variables”.
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