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1 Introduction

When modeling system performance of space based detection systems it is important to consider
spacecraft reliability [1, 2]. As space vehicles age the components become prone to failure for
a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability
to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories:
engineering mistakes and technology surprise. This document will report on a method of simulating
space vehicle reliability in the DIORAMA framework.

2 Reliability

Reliability is commonly referred to as the ability of a system or component to function under stated
conditions for a specified period of time. For space vehicles the specified period of time may be
referred to as the Mean Mission Duration (MMD), or the average time an on-orbit space system is
operational before a mission critical failure occurs. The MMD is determined by (1) where R(t) is
the mission reliability model and Tp is the design life of the vehicle.

MMD = /O Y Ryt (1)

Often times for on-orbit systems the reliability model (R) is specified using a Weibull distri-
bution. The Weibull distribution is an exponential function in which the reliability of a vehicle
decreases as a function of time. Equation 2 shows the Weibull distribution as a function of time,
t, where « is the scale parameter and [ is the shape parameter. Both ¢ and « share the same
units of time (e.g. hours, months, years) and 3 is dimensionless. For space vehicle reliability the g
parameter is typically between 1.2 and 1.7.

R(t) = e /)" (2)

The shape parameter () has 3 possible ranges all with interesting meaning. Values of 3 less
than 1 indicate decreasing failure rates, or infant mortality. This could be caused by uncertainties
during launch (e.g. failure) or changes to the vehicle during a burn-in period. Values of 3 greater
than 1 indicates increasing failure rate, or wear out. This could apply to individual components, fuel
levels, damage, etc. Finally, a § value of 1 indicates a constant failure rate (exponential decay).
Another quantity of interest to reliability studies is the Mean Time To Failure (MTTF) or the
average time a vehicle is expected to operate before it fails. This is sometimes also called the Mean
Time to First Failure (MTTFF). The calculation of the MTTF is shown in (3).
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Figure 1: Notional space vehicle reliability versus time curve.

MTTF = /O " Rt)dt 3)

Consider a notional space vehicle which has o = 5 years, 8 = 1.54 and a design lifetime of 5
years. Figure 1 shows the associated Weibull distribution, R(t).

In Fig. 1 the Weibull distribution is shown in red where the MMD is the area under the
distribution up to the design life and the MTTF is the total area under the curve (green + blue).

3 Implementation in DIORAMA

The DIORAMA framework allows for specification of a constellation of space vehicles using an
XML description of the arrangement. Additionally, users can specify the start and end dates (e.g.
launch and retire) of each space vehicle. Using these dates, DIORAMA first determines if a satellite
was present in the constellation at the time of a given event. Next, if the satellite has clear line of
sight to the event (e.g. not Earth blocked) it will be incorporated into the simulation of that event.

In order to add spacecraft reliability to the DIORAMA framework, several additional parameters
were added to the duration element of the XML schema; the alpha and beta parameters. Listing
1 shows and example XML specification of a single satellite that was launched on 2016-07-01 and
assumed to be present in the constellation until 2030-07-01. Additionally, the alpha and beta
parameters are specified to be 4 and 1.54 respectively.
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Listing 1: Example XML duration element with Weibull parameters specified.

<body id="SV-1"” type="satellite”>

<duration>
<begin value="2016—07—01T00:00:00.00Z” />
<end value="2030—07—-01T00:00:00.00Z” />
<alpha value="4.0"/>
<beta value="1.547/>

</duration>

</body>

In this case, an event simulated in DIORAMA on 2017-07-01 will decide that satellite SV-1 is
in the current constellation, check if the event is in view of the satellite and if so, then calculate the
reliability parameters. This is accomplished by evaluating the Weibull distribution with the given
alpha and beta parameters at the time of the event, with respect to the launch date of the satellite
(e.g. in this case 1 year into the distribution). This will produce a number in the range of 0 to
1 indicating the probability of failure of the vehicle. A random number is generated on the same
range and if the random number is less than the probability of failure, then the satellite is taken
out of the simulation. This logic is applied on an event by event basis, meaning the reliability is
not applied for all time given a single sampling.

4 Example Calculations

It is useful for validation of the codes to envision a test case where the affect of reliability can be
easily observed. In this section, an example single satellite constellation will be considered. Using
the satellite definition from Listing 1, a static location can be added along with a single look angle
respondent (geometric) sensor model and a terminator processor. Listing 2 shows the full satellite
description in the DIORAMA XML format.

Here, the satellite is launched in July of 2016 and slated for retirement in July of 2030. The
Weibull parameters for alpha and beta are 4.0 years and 1.54 respectively. The satellite has been
placed at (0, 0) in latitude and longitude and 20,200 km altitude (i.e. GPS orbit). The location
of the satellite is not changing with time. The satellite has a single X-ray sensor on-board with a
hypothetical look angle constraint of 90 degrees, i.e. any satellite that is within 490 degrees of the
event will trigger the sensor. The terminator processor is a requirement of DIORAMA such that
the simulator knows when events are complete.

The next step in the simulation is to define an event or set of events. For this test case, since
the performance of the sensor over the course of many years is required, a set of event clusters will
be defined. Listing 3 shows the event cluster definition. Here, 11 dates will be evaluated starting
on July 1 of 2016 and each additional date is specified 1 year later. On each date evaluated 1000
events will be simulated over the course of the day, randomly in time (n_sample). The event is
located at (0, 0) in latitude and longitude at 100 km altitude (i.e. directly below the satellite),
therefore the sensor should always trigger on the event because the look angle is 0 degrees.
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Listing 2: Example XML body definition for a single satellite.

<body id="SV-1"” type="satellite”>
<duration>
<begin value="2016—07—01T00:00:00.00Z” />
<end value="2030—07—01T00:00:00.002” />
<alpha value="4.0”/>
<beta value="1.547/>
</duration>
<location>
<geographic>
<latitude value="0.0"/>
<longitude value="0.0”/>
<altitude value="20200.0”/>
</geographic>
</location>
<sensors>
<sensor class="lar” id="SENSOR1” />
<parameters>
<parameter name="acceptance_angle” value="90.0"/>
<parameter name="phenomenology” value="XRAY” />
</parameters>
</sensor>
<processors>
<processor class="terminator” id="TERMINATOR”>
<inputs>
<input><class source="lar” include_same_body="true” /></input>
</inputs>
</processor>
</processors>
</sensors>
</body>

Listing 3: Example event clusters definition.

<event_clusters>
<event_cluster>
<events>
<event class="sample” id="EVENT” type="nudet”>
<parameters>
<parameter name="yield” value="1.0"/>
</parameters>
<location>
<geographic>
<latitude value="0.0”/>
<longitude value="0.0"/>
<altitude value="100.0”/>
</geographic>
</location>
</event>
</events>
</event_cluster>
</event_clusters>
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Figure 2: DIORAMA results for a single satellite’s probability of report as a function of operational
time. The red points show the simulation without including spacecraft availability, the blue dots
show the same calculation including the Weibull distribution and the dashed blue line shows the
expected Weibull distribution.

If the scenario is run without the alpha and beta parameters defined for the satellite, the
sensor should always trigger on the event, and since the reliability of the satellite is always 1, the
probability of report for a single satellite should always be 1. Once the Weibull parameters are
included the probability of triggering on the event is still a constant 1, however, the satellite is not
always available and the probability of report should fall off following the distribution. Figure 2
shows the results of the simulation before (red dots) and after (green dots) including spacecraft
availability. The Weibull distribution is shown by the dashed green line and it can be seen that
the probability of report follows the Weibull distribution as expected (within the statistical error
bars).

It may also be interesting to see the affect of adding another, identical, satellite 3 years into the
operational period. This is useful in the case of studying a full constellation and effects on system
performance over many years with many different spacecraft. Figure 3 shows the probability of
report for the 2 satellite constellation (both at the same location) when the second satellite is
launched 3 years into the operations period. It can be seen that the addition of a second satellite
adds redundancy to the probability of detection but as both satellites begin to age the probability
falls off with a combination of both Weibull distributions.

5 Summary

In this document a description of spacecraft reliability has been presented. Given a two parameter
Weibull distribution, the probability of spacecraft failure can be calculated at an arbitrary date into
the operational period. These distribution functions have been added to the DIORAMA framework
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Figure 3: DIORAMA results for a two satellite constellation robability of report as a function of
operational time.

so that the effects of reliability can be considered in simulations of constellation performance.
Examples of how to specify the parameters and demonstration of functionality has been given.
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